JPH0443584A - Gas-tight structure of surge absorbing element - Google Patents

Gas-tight structure of surge absorbing element

Info

Publication number
JPH0443584A
JPH0443584A JP15118890A JP15118890A JPH0443584A JP H0443584 A JPH0443584 A JP H0443584A JP 15118890 A JP15118890 A JP 15118890A JP 15118890 A JP15118890 A JP 15118890A JP H0443584 A JPH0443584 A JP H0443584A
Authority
JP
Japan
Prior art keywords
porcelain
electrodes
absorbing element
surge absorbing
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15118890A
Other languages
Japanese (ja)
Inventor
Kumeo Kono
光野 粂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIBETSUKUSU KK
Original Assignee
AIBETSUKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AIBETSUKUSU KK filed Critical AIBETSUKUSU KK
Priority to JP15118890A priority Critical patent/JPH0443584A/en
Publication of JPH0443584A publication Critical patent/JPH0443584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To set a current density small even to an overcurrent, and decrease effects of a thermal stress by a local heat or the like by forming electrodes of a sealing metal having a similar thermal expansion coefficient to that of a ceramic coating material, engaging the ceramic coating material between the electrodes, and composing a gas-tight structure where the whole circumference is sealed. CONSTITUTION:A main electrode 40 is moulded of sealing metal having a similar expansion coefficient to that of a ceramic coating material 5, and an end part of a cap-like electrode 4 is fixed at a center recess of if to form an integrated electrode. For a sealing material 61, BAg-8 silver braze is used if the ceramic coating material is of ceramic, it is inserted into a step part 60 between both edge parts of the ceramic coating material and the main electrode, mixed gas 7 is enclosed in the main electrodes, and it is heated to a predetermined temperature and sealed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は各種電子機器の保護、静電気対策および避雷
用として、サージに起因する種々の弊害を回避するため
のサージ吸収素子の気密構造に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an airtight structure of a surge absorbing element for protecting various electronic devices, static electricity countermeasures, and lightning protection to avoid various harmful effects caused by surges. It is.

[従来の技術] 第2A図は、従来のサージ吸収素子の気密構造を示す断
面図、第2B図は第2A図のE−E断面図である。図に
おいて11は円柱状に成型した絶縁体、12は絶縁体1
1の表面に密着させた導電性薄膜、この導電性薄膜12
に微小幅のマイクロギャップ13を切欠して2個に分割
し、その分割した導電性薄膜12の各端部にキャップ状
の電極I4を固定し、この電極14にリード線18を溶
接して取り付け、これを混合ガス17の雰囲気中におい
て磁器質被覆材15で全体を被覆し、該混合ガス17を
内部に封じ込んだ気密構成である。
[Prior Art] FIG. 2A is a cross-sectional view showing an airtight structure of a conventional surge absorbing element, and FIG. 2B is a cross-sectional view taken along line EE in FIG. 2A. In the figure, 11 is an insulator molded into a cylindrical shape, and 12 is an insulator 1
1, this conductive thin film 12
A micro-gap 13 with a minute width is cut out to divide it into two pieces, a cap-shaped electrode I4 is fixed to each end of the divided conductive thin film 12, and a lead wire 18 is welded and attached to this electrode 14. This is an airtight structure in which the entire body is covered with a porcelain covering material 15 in an atmosphere of a mixed gas 17, and the mixed gas 17 is sealed inside.

この構成において、磁器質被覆材15として加工性のよ
い鉛ガラスを用い、リード線18として鉛ガラス封入線
として好適なジュメット線を用い、上記鉛ガラスの両側
端部において上記ジュメット線を封入した接合部16が
形成されているる。
In this configuration, lead glass with good workability is used as the porcelain covering material 15, a Dumet wire suitable as a lead glass-enclosed wire is used as the lead wire 18, and the Dumet wire is enclosed at both ends of the lead glass. A portion 16 is formed.

従来のサージ吸収素子の気密構造は上記のように構成さ
れ、まず、リード線18.18間にサージ電圧が印加さ
れた場合、マイクロギャップ13に電界が集中し、その
電界に起因して発生する電子によって上記マイクロギャ
ップ13に第一段の放電が起こる。次いで、この第一段
の放電により放出された電子が周囲の混合ガス17と衝
突し混合ガスをイオン化する。同様にマイクロギャップ
13の円周に沿った沿面放電で混合ガス17をイオン化
する現象が急激に進行し、最終的に混合ガス17の絶縁
性が破壊されてキャップ状電極14゜14間に第二段の
放電が発生する。この第二段の放電はリード線18.1
8間に印加されるサージ電流が大きくなるに伴ってグロ
ー放電からアーク放電に移行する。このように二段階放
電機構が構成されている。
The hermetic structure of the conventional surge absorption element is constructed as described above. First, when a surge voltage is applied between the lead wires 18 and 18, an electric field is concentrated in the micro gap 13, and a surge is generated due to the electric field. A first stage discharge occurs in the microgap 13 due to the electrons. Next, the electrons emitted by this first-stage discharge collide with the surrounding mixed gas 17 to ionize the mixed gas. Similarly, the phenomenon of ionizing the mixed gas 17 due to the creeping discharge along the circumference of the micro gap 13 rapidly progresses, and eventually the insulation of the mixed gas 17 is destroyed and a second Stage discharge occurs. This second stage discharge is connected to the lead wire 18.1.
As the surge current applied between 8 and 8 increases, glow discharge shifts to arc discharge. In this way, a two-stage discharge mechanism is configured.

[発明が解決しようとする課題] 上記のような従来のサージ吸収素子の気密構造において
、このサージ吸収素子がインピーダンスの低い電源に接
続されている場合に、サージ放電が終了した後に電路の
商用電源から引込まれる続流や、落雷等に起因して過大
電流が発生する。この過大電流はリード線18.18間
の電流密度を増大させ、鉛ガラスに封入されたジュメッ
ト線の接合部16を異常に加熱させる。そのためにジュ
メット線と鉛ガラスとの熱膨張係数の相異によって鉛ガ
ラスに亀裂が生じ、気密性が破壊されるという致命的な
欠点かあった。
[Problems to be Solved by the Invention] In the airtight structure of the conventional surge absorbing element as described above, when this surge absorbing element is connected to a power source with low impedance, the commercial power supply of the electric circuit after the surge discharge ends. Excessive currents occur due to follow-on currents drawn from the ground, lightning strikes, etc. This excessive current increases the current density between the leads 18, 18 and causes the joint 16 of the Dumet wire encapsulated in lead glass to become abnormally heated. As a result, cracks occur in the lead glass due to the difference in thermal expansion coefficients between the Dumet wire and the lead glass, resulting in a fatal drawback in that the airtightness is destroyed.

また、このサージ吸収素子を基板等に配線する際にリー
ド線18の曲率半径を誤って曲げ加工した場合や、過度
の衝撃を与えた場合に鉛ガラスを破損させるという機械
的強度の問題点があった。
Additionally, when wiring this surge absorbing element to a board, etc., if the radius of curvature of the lead wire 18 is incorrectly bent, or if excessive impact is applied, the lead glass may be damaged, which is a mechanical strength problem. there were.

この発明は、かかる問題点を解決するために創案された
もので、従来のジュメット線を鉛ガラスで封止する気密
構造を根本的に変更し、磁器質被覆材の熱膨張係数と近
似する熱膨張係数を有する封着金属を用いて電極を形成
し、この電極間に磁器質被覆材の両縁部を嵌合して封着
する構成で、該電極間に封入した混合ガスの気密性と機
械的強度を強固ならしめたサージ吸収素子の気密構造を
提供することを目的とする。
This invention was devised to solve these problems, and it fundamentally changes the airtight structure of the conventional Dumet wire sealed with lead glass, and has a thermal expansion coefficient similar to that of the porcelain sheathing material. The electrodes are formed using a sealing metal with a coefficient of expansion, and both edges of the porcelain covering material are fitted between the electrodes to seal them, thereby ensuring the airtightness of the mixed gas sealed between the electrodes. The object of the present invention is to provide an airtight structure for a surge absorbing element that has strong mechanical strength.

c問題点を解決するための手段] この発明に係るサージ吸収素子の気密構造は、表面にマ
イクロギャップを介して導電性薄膜を付着させた絶縁体
の両端に電極を固定し、該電極間の空間を磁器質被覆材
によって密閉し、該密閉空間内に混合ガスを封入してな
るサージ吸収素子において、上記磁器質被覆材の熱膨張
係数と近似する熱膨張係数を有する封着金属で上記電極
を形成し、上記電極間に上記磁器質被覆材を嵌合し封着
したものである。
c. Means for Solving Problems] The airtight structure of the surge absorbing element according to the present invention has electrodes fixed to both ends of an insulator having a conductive thin film attached to the surface through a micro gap, and a gap between the electrodes. In a surge absorbing element in which a space is sealed with a porcelain covering material and a mixed gas is sealed in the sealed space, the electrode is made of a sealing metal having a coefficient of thermal expansion similar to that of the porcelain covering material. The above-mentioned porcelain covering material is fitted and sealed between the above-mentioned electrodes.

請求項2に記載したサージ吸収素子の気密構造は、前記
磁器質被覆材としてセラミックスまたは硬質ガラスを用
いた場合、前記封着金属はコバール(Fe ”N1−G
o金合金で電極を形成し、該電極間に磁器質被覆材を嵌
合して封着したものである。
In the airtight structure of the surge absorbing element according to claim 2, when ceramics or hard glass is used as the porcelain coating material, the sealing metal is Kovar (Fe''N1-G).
o Electrodes are formed from a gold alloy, and a porcelain covering material is fitted and sealed between the electrodes.

請求項3に記載したサージ吸収素子の気密構造は、前記
磁器質被覆材としてセラミックスまたは硬質ガラスを用
いた場合、前記封着金属として42ALLOY (F 
e−N i 42%合金)で電極を形成し、該電極間に
磁器質被覆材を嵌合して封着したものである。
The hermetic structure of the surge absorbing element according to claim 3 is such that when ceramics or hard glass is used as the porcelain covering material, 42ALLOY (F
The electrodes are made of (e-N i 42% alloy), and a porcelain covering material is fitted and sealed between the electrodes.

請求項4に記載したサージ吸収素子の気密構造は、前記
磁器質被覆材として軟質ガラスを用いた場合、前記封着
金属として426ALLOY (Fe−Ni42%−〇
r6%合金)で電極を形成し、該電極間に磁器質被覆材
を嵌合して封着したものである。
In the airtight structure of the surge absorption element according to claim 4, when soft glass is used as the porcelain covering material, an electrode is formed of 426ALLOY (42% Fe-Ni 6% alloy) as the sealing metal, A porcelain covering material is fitted and sealed between the electrodes.

請求項5に記載したサージ吸収素子の気密構造は、前記
磁器質被覆材として軟質ガラスを用いた場合、前記封着
金属として52’ALLOY(FeNi 50%合金)
で電極を形成し、該電極間に磁器質被覆材を嵌合して封
着したものである。
In the airtight structure of the surge absorbing element according to claim 5, when soft glass is used as the porcelain covering material, 52'ALLOY (50% FeNi alloy) is used as the sealing metal.
electrodes are formed, and a porcelain covering material is fitted and sealed between the electrodes.

[作 用] この発明のサージ吸収素子の気密構造において、電極間
に印加されるサージ電圧は、まず導電性薄膜のマイクロ
ギャップ沿面でグロー放電し、次いで電流の増大に伴い
電極間のアーク放電に移行してサージエネルギーが吸収
される止いう二段階放電機構が構成されている。しかし
て、電極間に落雷や続流等の過大電流が印加された場合
において、この発明の気密構造は磁器質被覆材の熱膨張
係数と近似する熱膨張係数を有する封着金属で電極を形
成し、この電極間に磁器質被覆材の両縁部が嵌合してそ
の全周を封着した構成であるから過大電流に対してもそ
の電流密度は小さく、従って局部加熱による熱応力の影
響は回避されるので、サージ吸収作用が容易にかつ長期
にわたり奏功する。
[Function] In the airtight structure of the surge absorbing element of the present invention, the surge voltage applied between the electrodes first causes a glow discharge along the microgap of the conductive thin film, and then as the current increases, an arc discharge occurs between the electrodes. A two-stage discharge mechanism is constructed in which the surge energy is absorbed. Therefore, when an excessive current is applied between the electrodes due to a lightning strike or a follow-on current, the airtight structure of the present invention forms the electrodes with a sealing metal having a thermal expansion coefficient similar to that of the porcelain covering material. However, since both edges of the porcelain covering material are fitted between the electrodes and the entire circumference is sealed, the current density is small even in the case of excessive current, and therefore the influence of thermal stress due to local heating is small. Since this is avoided, the surge absorption effect is easily and successfully achieved over a long period of time.

次に、この発明を実施例によってさらに具体的に説明す
るが、この発明はその要旨を超えない限り以下の実施例
に限定されるものではない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

[実施例] 第1A図はこの発明の一実施例を示す断面図、第1B図
は第1A図のD−D断面図である。1は磁器粉末を円柱
状に押出したものを焼成した絶縁体であって、絶縁体l
はムライト磁器、フォルステライト磁器、アルミナ磁器
及びステアタイト磁器よりなる群の中から選ばれた一種
からなり、その比誘電率は6〜1oと極めて大きくなっ
ている。
[Embodiment] FIG. 1A is a sectional view showing an embodiment of the present invention, and FIG. 1B is a sectional view taken along line DD in FIG. 1A. 1 is an insulator made by extruding porcelain powder into a cylindrical shape and firing it.
is made of one selected from the group consisting of mullite porcelain, forsterite porcelain, alumina porcelain, and steatite porcelain, and its dielectric constant is extremely large at 6 to 1o.

この絶縁体Iの表面に導電性薄H2を蒸着させる。この
導電性薄膜2としては導電性金属酸化物および侵入型窒
化物よりなる群の中から選ばれた一種の化合物からなり
、高融点で耐酸化性、耐食性にすぐれた導電性セラミッ
クス薄膜であって、従来の導電性塗料や薄膜を用いて製
造された二段放電型のアレスター等と比較して、インパ
ルスサージの印加に対する放電開始電圧の安定度や寿命
特性に於いて遥かに優れたものとなっている。
A conductive thin layer H2 is deposited on the surface of this insulator I. The conductive thin film 2 is made of a kind of compound selected from the group consisting of conductive metal oxides and interstitial nitrides, and is a conductive ceramic thin film with a high melting point and excellent oxidation resistance and corrosion resistance. Compared to conventional two-stage discharge type arresters manufactured using conductive paints and thin films, the stability of the discharge starting voltage against the application of impulse surges and the life characteristics are far superior. ing.

次に、この導電性セラミックス薄膜2に幅2゜0μm以
下のマイクロギャップ3を1本〜複数本設けて2個〜複
数個の部分に分割する。このマイクロギャップ3はレー
ザー又は−ダイヤモンド工具を用いて円周方向に平行に
切欠する。
Next, this conductive ceramic thin film 2 is divided into two to a plurality of parts by providing one to a plurality of microgaps 3 having a width of 2.0 .mu.m or less. This microgap 3 is cut out parallel to the circumferential direction using a laser or a diamond tool.

この分割した導電性セラミックス薄膜2の両端部に、電
気伝導度の高いステンレス・スチール又はコバールで成
型したキャップ状電極4を固定する。以上で二段階放電
素子本体が形成される。
Cap-shaped electrodes 4 made of highly electrically conductive stainless steel or Kovar are fixed to both ends of the divided conductive ceramic thin film 2. With the above steps, a two-stage discharge element body is formed.

以下、本発明に係るサージ吸収素子の気密構造を説明す
る。
Hereinafter, the airtight structure of the surge absorbing element according to the present invention will be explained.

40は主電極であって、下記する磁器質被覆材5の熱膨
張係数と近似する熱膨張係数を有する封着金属を用いて
図示した形状に成型し、その中央凹部にそれぞれ上記キ
ャップ状電極4の端部をそれぞれ固定し一体形状の電極
を形成する。また、主電極40の外周には上記磁器質被
覆材5の肉厚に相当する深さの段差部60が設けられて
いる。
Reference numeral 40 denotes a main electrode, which is molded into the shape shown in the figure using a sealing metal having a thermal expansion coefficient similar to that of the porcelain covering material 5 described below, and the cap-shaped electrode 4 is placed in the central recess of the sealing metal. The ends of each are fixed to form an integral electrode. Furthermore, a stepped portion 60 having a depth corresponding to the thickness of the porcelain covering material 5 is provided on the outer periphery of the main electrode 40 .

61は封着材であって、上記磁器質被覆材5がセラミッ
クスの場合はB A g −8(JIS−Z−a261
)の銀ロウを用い、また該磁器質被覆材5が軟質ガラス
または硬質ガラスの場合はガラスパウダーを用いて該磁
器質被覆材5の両縁部と主電極、40とを上記段差部6
0に挿入する。6は段差部6oと封着材61からなる封
着部を示している。
61 is a sealing material, and when the above-mentioned porcelain covering material 5 is ceramic, it is B A g -8 (JIS-Z-a261
), or if the porcelain sheathing material 5 is soft glass or hard glass, glass powder is used to connect both edges of the porcelain sheathing material 5 and the main electrode 40 to the stepped portion 6.
Insert into 0. Reference numeral 6 indicates a sealing portion made up of a stepped portion 6o and a sealing material 61.

なお、上記軟、硬質ガラスと主電極4oとの封着に際し
て、封着材6Iを使用せずにガラスを直接加熱して封着
することも可能である。
Note that when sealing the soft or hard glass and the main electrode 4o, it is also possible to heat the glass directly and seal the glass without using the sealing material 6I.

次に、アルゴンガス、ネオンガスおよび窒素ガス等の中
から、選ばれた混合ガス7と、そのガス圧力とから放電
開始電圧を決定した加熱炉雰囲気中において、上記封着
部6が形成された全体を規定温度に(上記銀ロウの場合
は780〜900’C)に加熱して封着する二辺上で上
記混合ガス7を主電極40.40間に封入したサージ吸
収素子の気密構造が完成する。
Next, the entire body on which the sealed portion 6 is formed is heated in a heating furnace atmosphere in which a discharge starting voltage is determined from a mixed gas 7 selected from argon gas, neon gas, nitrogen gas, etc. and the gas pressure. The hermetic structure of the surge absorbing element is completed by sealing the mixed gas 7 between the main electrodes 40 and 40 on the two sides to be heated to a specified temperature (780 to 900'C in the case of the silver solder) and sealed. do.

本実施例において、上記磁器質被覆材5としてセラミッ
クスを用いた場合、主電極40と嵌合するセラミックス
の封着部分に前辺てMo、Mnでメタライジング処理し
たものを用いてロウ接を容易ならしめた。
In this embodiment, when ceramic is used as the porcelain covering material 5, the sealed portion of the ceramic that fits with the main electrode 40 is metallized with Mo and Mn on the front side to facilitate soldering. I got used to it.

請求項2の気密構造は、磁器質被覆材5としてセラミッ
クスまたは硬質ガラスを用いた場合、その磁器質被覆材
5の熱膨張係数と近似する熱膨張係数を有する封着金属
としてコバール(Fe−Ni42%−Co17%合金)
を用いて主電極40を形成し、主電極40.40間に上
記磁器質被覆材5を嵌合し封着したものである。
In the airtight structure of claim 2, when ceramics or hard glass is used as the porcelain sheathing material 5, Kovar (Fe-Ni42 %-Co17% alloy)
The main electrode 40 is formed using the main electrodes 40 and 40, and the above-mentioned porcelain covering material 5 is fitted and sealed between the main electrodes 40 and 40.

この実施例で用いたセラミックスはアルミナセラミック
スであって、そのAItosの成分比率は93%のもの
であるが、AI、O8の成分比率が86〜93%程度の
メタライズ性良好なものであればAItosの成分比率
を限定するものではない。
The ceramic used in this example is an alumina ceramic with an AItos component ratio of 93%, but if the AI and O8 component ratios are about 86 to 93% and have good metallization properties, AItos can be used. It does not limit the component ratio.

請求項3の気密構造は、磁器質被覆材5として上記同様
A1*Osの成分比率が86〜93%程度のメタライズ
性良好なアルミナセラミックスまたは硬質ガラスを用い
た場合、その磁器質被覆材5の熱膨張係数と近似する熱
膨張係数を有する封着金属として42ALLOY (F
e−Ni 42%合金)を用いて主電極40を形成し、
主電極40゜40間に上記磁器質被覆材5を嵌合し封着
したものである。
In the airtight structure of claim 3, when alumina ceramics or hard glass having good metallization property and having an A1*Os component ratio of about 86 to 93% as described above is used as the porcelain sheathing material 5, the porcelain sheathing material 5 42ALLOY (F
The main electrode 40 is formed using e-Ni 42% alloy,
The above-mentioned porcelain covering material 5 is fitted and sealed between the main electrodes 40° and 40°.

尚、磁器質被覆材5としては上記請求項2.3の実施例
に記載したアルミナセラミックスA l tOSでなく
てもよい。例えば窒化アルミニウム磁器AIN、ステア
タイト磁器MgO・5ift、又はフォルステライト磁
器2 M g O−S i Otを用いた場合、その熱
膨張係数と近似する熱膨張係数を有する封着金属を選定
して電極40を形成すれば上記同様な効果が得られるこ
とは勿論である。
Incidentally, the porcelain covering material 5 does not have to be the alumina ceramic Al tOS described in the embodiment of claim 2.3 above. For example, when aluminum nitride porcelain AIN, steatite porcelain MgO・5ift, or forsterite porcelain 2MgO-S i Ot is used, a sealing metal having a thermal expansion coefficient similar to that of the aluminum nitride porcelain AIN is used, and the electrode is Of course, the same effect as described above can be obtained by forming 40.

請求項4の気密構造は、磁器質被覆材5として軟質ガラ
スを用いた場合、その磁器質被覆材5の熱膨張係数と近
似する熱膨張係数を有する封着金属として426ALL
OY (Fe−Ni42%−Cr6%合金)を用いて主
電極40を形成し、主電極40.40間に磁器質被覆材
5を嵌合し封着したものである。
In the airtight structure of claim 4, when soft glass is used as the porcelain sheathing material 5, 426ALL is used as the sealing metal having a thermal expansion coefficient similar to that of the porcelain sheathing material 5.
A main electrode 40 is formed using OY (42% Fe-Ni-6% Cr alloy), and a porcelain covering material 5 is fitted and sealed between the main electrodes 40 and 40.

請求項5の気密構造は、磁器質被覆材5として軟質ガラ
スを用いた場合、その磁器質被覆材5の熱膨張係数と近
似する熱膨張係数を有する封着金属として52ALLO
Y (Fe−Ni50%合金)を用いて主電極40を形
成し、その主電極40゜40間に上記磁器質被覆材5を
嵌合して封着したものである。
In the airtight structure of claim 5, when soft glass is used as the porcelain sheathing material 5, 52ALLO is used as the sealing metal having a coefficient of thermal expansion close to that of the porcelain sheathing material 5.
The main electrode 40 is formed using Y (50% Fe-Ni alloy), and the above-mentioned porcelain covering material 5 is fitted and sealed between the main electrodes 40° and 40°.

[発明の効果] 体は従来の二段放電型サージ吸収素子の特性であるサー
ジ吸収特性、特に寿命特性および放電開始電圧の安定性
をそのまま保有する機構を構成し、さらに磁器質被覆材
の熱膨張係数と近似する熱膨張係数を有する封着金属で
電極を形成し、この電極間に磁器質被覆材を嵌合して全
周を封着した気密構造であるから、落雷や続流等の過大
電流が印加された場合においてもその電流密度は小さく
、局部加熱等による熱応力の影響は回避されるので従来
の二段放電型アレスター等に比較してサージ吸収特性や
放電開始電圧特性がはるかに安定し、特に寿命特性に優
れた気密構造の工業的価値は大である。
[Effects of the invention] The body constitutes a mechanism that maintains the surge absorption characteristics, especially the life characteristics and the stability of the discharge starting voltage, which are the characteristics of the conventional two-stage discharge type surge absorption element, and furthermore, it The electrodes are made of a sealing metal with a thermal expansion coefficient similar to the expansion coefficient, and a porcelain covering material is fitted between the electrodes to seal the entire circumference, making it airtight. Even when an excessive current is applied, the current density is small and the influence of thermal stress due to local heating is avoided, so the surge absorption characteristics and discharge starting voltage characteristics are far superior to conventional two-stage discharge arresters etc. The industrial value of an airtight structure that is stable and has particularly excellent longevity characteristics is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は本発明の一実施例を示す断面図、第1B図は
第1A図のD−D断面図、第2A図は従来のサージ吸収
素子の気密構造を示す断面図、第2B図は第2Av!:
JのE−E断面図である。 図において、 l:絶縁体      2:導電性薄膜3:マイクロギ
ャップ 4・キャップ状電極5:磁器質被覆材   6
:封着部 7:混合ガス     8ニリード線 40:主電極     60:段差部 61:封着材である。 なお、各図中同一符号は同一または相当部分を示す。 特許出願人  アイペックス株式会社
FIG. 1A is a sectional view showing one embodiment of the present invention, FIG. 1B is a sectional view taken along line DD in FIG. 1A, FIG. 2A is a sectional view showing an airtight structure of a conventional surge absorbing element, and FIG. 2B is 2nd Av! :
It is an EE sectional view of J. In the figure, l: insulator 2: conductive thin film 3: microgap 4 cap-shaped electrode 5: porcelain covering material 6
: Sealing part 7 : Mixed gas 8 Lead wire 40 : Main electrode 60 : Step part 61 : Sealing material. Note that the same reference numerals in each figure indicate the same or corresponding parts. Patent applicant Ipex Co., Ltd.

Claims (1)

【特許請求の範囲】 1、表面にマイクロギャップを介して導電性薄膜を付着
させた絶縁体の両端に電極を固定し、該電極間の空間を
磁器質被覆材によって密閉し、該密閉空間内に混合ガス
を封入してなるサージ吸収素子において、 上記磁器質被覆材の熱膨張係数と近似する熱膨張係数を
有する封着金属で上記電極を形成し、上記電極間に上記
磁器質被覆材を嵌合し封着したことを特徴とするサージ
吸収素子の気密構造。 2、前記磁器質被覆材はセラミックスまたは硬質ガラス
であって、前記封着金属はコバール(Fe−Ni−Co
合金)である請求項1記載のサージ吸収素子の気密構造
。 3、前記磁器質被覆材はセラミックスまたは硬質ガラス
であって、前記封着金属は42ALLOY(Fe−Ni
42%合金)である請求項1記載のサージ吸収素子の気
密構造。 4、前記磁器質被覆材は軟質ガラスであって、前記封着
金属は426ALLOY(Fe−Ni42%−Cr6%
合金)である請求項1記載のサージ吸収素子の気密構造
。 5、前記磁器質被覆材は軟質ガラスであって、前記封着
金属は52ALLOY(Fe−Ni50%合金)である
請求項1記載のサージ吸収素子の気密構造。
[Claims] 1. Electrodes are fixed to both ends of an insulator having a conductive thin film attached to the surface through a microgap, the space between the electrodes is sealed with a magnetic covering material, and the inside of the sealed space is In the surge absorbing element, the electrode is formed of a sealing metal having a coefficient of thermal expansion similar to that of the porcelain sheathing material, and the porcelain sheathing material is placed between the electrodes. The airtight structure of the surge absorption element is characterized by fitting and sealing. 2. The porcelain coating material is ceramic or hard glass, and the sealing metal is Kovar (Fe-Ni-Co).
2. The airtight structure of the surge absorbing element according to claim 1, wherein the surge absorbing element is an alloy. 3. The porcelain coating material is ceramic or hard glass, and the sealing metal is 42ALLOY (Fe-Ni
42% alloy). 4. The porcelain covering material is soft glass, and the sealing metal is 426ALLOY (42% Fe-Ni-6% Cr).
2. The airtight structure of the surge absorbing element according to claim 1, wherein the surge absorbing element is an alloy. 5. The hermetic structure of the surge absorbing element according to claim 1, wherein the porcelain covering material is soft glass, and the sealing metal is 52ALLOY (50% Fe-Ni alloy).
JP15118890A 1990-06-08 1990-06-08 Gas-tight structure of surge absorbing element Pending JPH0443584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15118890A JPH0443584A (en) 1990-06-08 1990-06-08 Gas-tight structure of surge absorbing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15118890A JPH0443584A (en) 1990-06-08 1990-06-08 Gas-tight structure of surge absorbing element

Publications (1)

Publication Number Publication Date
JPH0443584A true JPH0443584A (en) 1992-02-13

Family

ID=15513204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15118890A Pending JPH0443584A (en) 1990-06-08 1990-06-08 Gas-tight structure of surge absorbing element

Country Status (1)

Country Link
JP (1) JPH0443584A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077632A1 (en) * 2003-02-28 2004-09-10 Mitsubishi Materials Corporation Surge absorber and production method therefor
JP2006032090A (en) * 2004-07-15 2006-02-02 Mitsubishi Materials Corp Surge absorber
US7660095B2 (en) 2003-07-17 2010-02-09 Mitsubishi Materials Corporation Surge protector
WO2013028001A1 (en) * 2011-08-22 2013-02-28 스마트전자 주식회사 Surge absorber and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077632A1 (en) * 2003-02-28 2004-09-10 Mitsubishi Materials Corporation Surge absorber and production method therefor
US7733622B2 (en) 2003-02-28 2010-06-08 Mitsubishi Materials Corporation Surge absorber and production method therefor
KR101054629B1 (en) * 2003-02-28 2011-08-04 미츠비시 마테리알 가부시키가이샤 Surge Absorbers and Manufacturing Method Thereof
US7660095B2 (en) 2003-07-17 2010-02-09 Mitsubishi Materials Corporation Surge protector
KR100994656B1 (en) * 2003-07-17 2010-11-16 미쓰비시 마테리알 가부시키가이샤 Surge absorber
US7937825B2 (en) 2003-07-17 2011-05-10 Mitsubishi Materials Corporation Method of forming a surge protector
JP2006032090A (en) * 2004-07-15 2006-02-02 Mitsubishi Materials Corp Surge absorber
WO2013028001A1 (en) * 2011-08-22 2013-02-28 스마트전자 주식회사 Surge absorber and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH0443584A (en) Gas-tight structure of surge absorbing element
KR100723572B1 (en) Chip type surge absorber and method of manufacturing the same
US20020167773A1 (en) Chip-type surge absorber and method for producing the same
JP4544255B2 (en) Electronic component enclosure
JP7459767B2 (en) surge protection element
JP5316020B2 (en) surge absorber
JPH01311585A (en) Discharge type surge absorbing element
JP2001160502A (en) Surge absorbing device and its manufacturing method
JP6094882B2 (en) surge absorber
KR100257585B1 (en) Surge absorber
JP7022390B2 (en) Surge protection element and its manufacturing method
JP4239422B2 (en) surge absorber
JP2541069B2 (en) Sealing electrode and surge absorber using the same
JP2020181720A (en) Surge protective element and manufacturing method thereof
JPH0536460A (en) Discharge type surge absorbing element
JPH11224761A (en) High voltage surge absorber
JPH0268877A (en) Discharge gap
JP3745242B2 (en) Discharge type surge absorber
JP2615221B2 (en) Gas input / discharge arrester
JPH06310252A (en) Surge absorber
JP2534954B2 (en) Discharge type surge absorber and method for manufacturing the same
JP2541068B2 (en) Sealing electrode and surge absorber using the same
JP3777886B2 (en) Chip type surge absorber (1)
JP2023123251A (en) surge protective element
JPH02236982A (en) Arrester