JP3745242B2 - Discharge type surge absorber - Google Patents

Discharge type surge absorber Download PDF

Info

Publication number
JP3745242B2
JP3745242B2 JP2001135700A JP2001135700A JP3745242B2 JP 3745242 B2 JP3745242 B2 JP 3745242B2 JP 2001135700 A JP2001135700 A JP 2001135700A JP 2001135700 A JP2001135700 A JP 2001135700A JP 3745242 B2 JP3745242 B2 JP 3745242B2
Authority
JP
Japan
Prior art keywords
discharge
type surge
gap
trigger
absorbing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001135700A
Other languages
Japanese (ja)
Other versions
JP2002334765A (en
Inventor
孝一 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Priority to JP2001135700A priority Critical patent/JP3745242B2/en
Publication of JP2002334765A publication Critical patent/JP2002334765A/en
Application granted granted Critical
Publication of JP3745242B2 publication Critical patent/JP3745242B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、気密容器内に封入した放電間隙における放電現象を利用して誘導雷等のサージを吸収することにより、電子機器が損傷することを防止する放電型サージ吸収素子に係り、特に、気中放電に対するトリガ手段として沿面コロナ放電を用いる放電型サージ吸収素子に関する。
【0002】
従来、誘導雷等のサージから電子機器の電子回路を保護するためのサージ吸収素子として、電圧非直線特性を有する高抵抗体素子よりなるバリスタや、放電間隙を気密容器内に収容したガスアレスタ等が広く使用されている。
【0003】
上記バリスタは、サージ吸収の応答性に優れるものの、単位面積当たりの電流耐量が比較的小さく、したがって大きなサージ電流を効率よく吸収することが困難である。また、上記ガスアレスタは、放電間隙にアーク放電を生成し、このアーク電圧は殆ど上昇しないため、電流耐量を大きくすることができるのであるが、その反面、放電遅れ時間が大きく、急峻な立ち上がり特性を有するサージに対しては、残留電圧が発生してサージ防護を十分に行い得ないという問題がある。
【0004】
そこで、図4に示すように、セラミック等よりなる略円柱状の絶縁体60の表面に導電性被膜62を被着させたうえで、この導電性被膜62に幅が20〜100μm程度の微小放電間隙64を周回状に形成して導電性被膜62を分割すると共に、絶縁体60の両端に主放電間隙66を隔てて放電電極68,68を嵌着して上記導電性被膜62,62と放電電極68,68とを接続し、これを放電ガスと共にガラス等で構成された気密容器70内に封入し、外部端子72,72を導出した放電型サージ吸収素子74が提案されている。
【0005】
上記放電型サージ吸収素子74に、この放電型サージ吸収素子74の定格電圧以上のサージが印加された場合、まず微小放電間隙64を隔てた導電性被膜62,62間に電位差が生じ、これにより微小放電間隙64に電子が放出されて沿面コロナ放電が発生する。次いで、この沿面コロナ放電に伴って生ずる電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電がサージ電流の増加によって主放電間隙66へと転移し、さらに主放電としてのアーク放電に移行してサージの吸収が行われるのである。
このように、上記放電型サージ吸収素子74は、微小放電間隙64に生ずる元来応答速度の速い沿面コロナ放電をトリガ放電として利用するものであるため、上記ガスアレスタに比べて高い応答性を実現できると共に、主放電間隙66に生ずる主放電たるアーク放電によってサージを吸収するものであるため、上記バリスタに比べて大きな電流耐量を実現できるものである。
【0006】
【発明が解決しようとする課題】
しかしながら、従来の放電型サージ吸収素子74にあっては、強度の小さい導電性被膜62,62間でトリガ放電を生成していたため、トリガ放電時の衝撃により導電性被膜62,62がスパッタされ、その結果、導電性被膜62,62間にスパッタ物質(導電性被膜62,62の構成材料)が付着してしまい、このスパッタ物質の付着が、微小放電間隙64の絶縁劣化を引き起こし、放電型サージ吸収素子74の寿命を縮める原因となっていた。
【0007】
この発明は、従来の上記問題に鑑みてなされたものであり、その目的とするところは、スパッタによる微小放電間隙の絶縁劣化を効果的に防止し得る長寿命の放電型サージ吸収素子を実現することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る放電型サージ吸収素子は、複数の放電電極を主放電間隙を隔てて対向配置すると共に、これを放電ガスと共に気密容器内に封入し、上記放電電極に接続されたリード端子を気密容器外に導出して成る放電型サージ吸収素子において、上記気密容器内に、上記各放電電極と、微小放電間隙を隔てて対向配置される導電性被膜を備えたトリガ放電部材を配置して成り、該トリガ放電部材は、絶縁性材料より成る本体部と、該本体部に形成された複数の孔と、本体部表面から所定の高さ突出した凸部とを有しており、上記孔内に、上記放電電極を挿通した状態で、各放電電極と微小放電間隙を隔てて対向配置される導電性被膜を、各放電電極の内方側の外面の略半周に亘って、上記凸部表面に形成したことを特徴とする。
【0009】
本発明の放電型サージ吸収素子に、リード端子を介してサージが印加されると、導電性被膜と各放電電極間の微小放電間隙に電界が集中し、これにより微小放電間隙に電子が放出されてトリガ放電としての沿面コロナ放電が発生する。次いで、この沿面コロナ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電がサージ電流の増加によって主放電間隙へと転移し、さらに主放電としてのアーク放電に移行してサージの吸収が行われるのである。本発明の放電型サージ吸収素子は、微小放電間隙に生ずる元来応答速度の速い沿面コロナ放電をトリガ放電として利用するものであるため、高い応答性を実現できる。
【0010】
本発明の放電型サージ吸収素子にあっては、放電電極と、トリガ放電部材の導電性被膜との間に微小放電間隙を形成し、トリガ放電としての沿面コロナ放電を、強度の大きい放電電極と、導電性被膜との間で生成するようにしているので、上記した従来の放電型サージ吸収素子74の如く、強度の小さい導電性被膜62,62同士間でトリガ放電を生成する場合に比べ、導電性被膜がスパッタされて発生するスパッタ物質の発生量を少なくすることができる。この結果、スパッタ物質が放電電極と導電性被膜間に付着することに起因して、微小放電間隙が絶縁劣化する可能性を減少させることができ、放電型サージ吸収素子の長寿命化を図ることができる。
【0011】
また、本発明の放電型サージ吸収素子にあっては、各放電電極と導電性被膜とが、各放電電極の内方側の外面の略半周に亘って対向配置されているので、微小放電間隙における沿面コロナ放電を広い範囲に亘って生成することができる。
【0012】
さらに、本発明の放電型サージ吸収素子は、導電性被膜を、トリガ放電部材の本体部表面から所定の高さ突出する凸部表面に形成したので、放電電極と導電性被膜間の沿面距離を、上記凸部の突出高さに相当する分増大することができる。この結果、スパッタ物質が放電電極と導電性被膜間に付着することに起因して、微小放電間隙が絶縁劣化する可能性を更に減少させることができる。
【0013】
【発明の実施の形態】
以下、添付図面に基づき本発明に係る放電型サージ吸収素子を説明する。図1は、本発明の放電型サージ吸収素子10を示す縦断面図である。
この放電型サージ吸収素子10は、ガラスより成る気密容器12内に、アルゴン、ネオン、ヘリウム、キセノン等の希ガスあるいは窒素ガス等の不活性ガスの単体又は混合ガスより成る放電ガス、又は上記放電ガスに水素、六フッ化硫黄ガス、二酸化炭素を混合して成る放電ガスと、導電性に優れたニッケル等の金属を細長い丸棒状に加工して成る一対の放電電極14,14と、絶縁性材料であるフォルステライト、アルミナ、ステアタイト等のセラミックより成るトリガ放電部材16を封入して成る。
上記一対の放電電極14,14は、所定の距離を隔てて平行配置されており、両放電電極14,14間に主放電間隙18が形成されている。また、上記放電電極14,14の下端部には、デュメット線(銅被覆鉄ニッケル合金線)や42−6合金線等より成るリード端子20,20の一端が接続されており、上記リード端子20,20の他端は、上記気密容器12の封止部22を貫通して外部に導出されている。
【0014】
上記トリガ放電部材16は、図2及び図3に拡大して示すように、略楕円盤状の本体部24と、該本体部24を上下に貫通する一対の孔26,26を有しており、上記本体部24の下端は、気密容器12の封止部22内に埋設されて固定されている。
上記孔26,26は、その上端から下端へ向かって所定位置に至るまでは、上記放電電極14の外形寸法と略同径と成されており、上記所定位置から下端へ至るまでは、放電電極14の外形寸法より小径と成されている。そして、上記孔26,26内に、放電電極14,14とリード端子20,20が挿通されている。
上記孔26,26内に挿入された放電電極14,14の外面は、本体部24の壁面に当接すると共に、上記放電電極14,14の下端部は、孔26,26内の上記所定位置近傍の本体部24壁面に当接支持されている。
【0015】
上記トリガ放電部材16の一対の孔26,26間には、本体部24表面から所定の高さ(例えば、約1mmの高さ)で突出し、その表面にカーボン系材料等より成る導電性被膜28が被着された凸部30が形成されており、該凸部30の両端縁の一部は、図3に示すように、微小放電間隙32を隔てて、孔26,26内に挿入された放電電極14,14の内方側の外面略半周に沿って配置されている。そして、凸部30表面の導電性被膜28と、各放電電極14,14とが、放電電極14,14の内方側の外面の略半周に亘って、上記微小放電間隙32を隔てて対向配置されている。尚、上記微小放電間隙32は、例えば10〜50μmの範囲に設定される。
【0016】
上記構成を備えた本発明の放電型サージ吸収素子10に、リード端子20,20を介してサージが印加されると、導電性被膜28と各放電電極14,14間の微小放電間隙32に電界が集中し、これにより微小放電間隙32に電子が放出されてトリガ放電としての沿面コロナ放電が発生する。次いで、この沿面コロナ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電がサージ電流の増加によって主放電間隙18へと転移し、さらに主放電としてのアーク放電に移行してサージの吸収が行われるのである。本発明の放電型サージ吸収素子10は、微小放電間隙32に生ずる元来応答速度の速い沿面コロナ放電をトリガ放電として利用するものであるため、高い応答性を実現できるものである。
上記の通り、本発明の放電型サージ吸収素子10にあっては、各放電電極14,14と導電性被膜28とが、放電電極14,14の内方側の外面の略半周に亘って対向配置されているので、上記微小放電間隙32における沿面コロナ放電を広い範囲に亘って生成することができる。
【0017】
而して、本発明の放電型サージ吸収素子10にあっては、放電電極14と導電性被膜28との間に微小放電間隙32を形成し、トリガ放電としての沿面コロナ放電を、強度の大きい放電電極14と、導電性被膜28との間で生成するようにしているので、従来の放電型サージ吸収素子74の如く、強度の小さい導電性被膜62,62同士間でトリガ放電を生成する場合に比べ、導電性被膜がスパッタされて発生するスパッタ物質の発生量を少なくすることができる。この結果、スパッタ物質が放電電極14と導電性被膜28間に付着することに起因して、微小放電間隙32が絶縁劣化する可能性を減少させることができる。
しかも、本発明の放電型サージ吸収素子10にあっては、上記導電性被膜28を、トリガ放電部材16の本体部24表面から所定の高さ突出する凸部30表面に形成していることから、放電電極14と導電性被膜28間の沿面距離を、上記凸部30の突出高さに相当する分増大することができる。この結果、スパッタ物質が放電電極14と導電性被膜28間に付着することに起因して、微小放電間隙32が絶縁劣化する可能性を更に減少させることができるようになっている。
【0018】
【発明の効果】
本発明に係る放電型サージ吸収素子にあっては、放電電極と、トリガ放電部材の導電性被膜との間に微小放電間隙を形成し、トリガ放電としての沿面コロナ放電を、強度の大きい放電電極と、導電性被膜との間で生成するようにしているので、強度の小さい導電性被膜同士間でトリガ放電を生成する従来の放電型サージ吸収素子に比べ、導電性被膜がスパッタされて発生するスパッタ物質の発生量を少なくすることができる。この結果、スパッタ物質が放電電極と導電性被膜間に付着することに起因して、微小放電間隙が絶縁劣化する可能性を減少させることができ、放電型サージ吸収素子の長寿命化を図ることができる。
【図面の簡単な説明】
【図1】 本発明に係る放電型サージ吸収素子を示す縦断面図である。
【図2】 放電電極とトリガ放電部材の詳細を示す拡大断面図である。
【図3】 図3のA−A拡大断面図である。
【図4】 従来の放電型サージ吸収素子を示す概略断面図である。
【符号の説明】
10 放電型サージ吸収素子
12 気密容器
14 放電電極
16 トリガ放電部材
18 主放電間隙
24 トリガ放電部材の本体部
26 トリガ放電部材の孔
28 導電性被膜
30 トリガ放電部材の凸部
32 微小放電間隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a discharge type surge absorbing element that prevents damage to an electronic device by absorbing a surge such as an induced lightning by utilizing a discharge phenomenon in a discharge gap enclosed in an airtight container. The present invention relates to a discharge type surge absorbing element that uses creeping corona discharge as a trigger means for medium discharge.
[0002]
Conventionally, as a surge absorbing element for protecting electronic circuits of electronic equipment from surges such as induced lightning, a varistor made of a high-resistance element having voltage non-linear characteristics, a gas arrester in which a discharge gap is housed in an airtight container, etc. Is widely used.
[0003]
Although the varistor is excellent in surge absorption responsiveness, it has a relatively small current resistance per unit area, and therefore it is difficult to efficiently absorb a large surge current. In addition, the gas arrester generates arc discharge in the discharge gap, and the arc voltage hardly rises, so that the current withstand capability can be increased, but on the other hand, the discharge delay time is large and the steep rise characteristic There is a problem that a surge having a voltage cannot generate sufficient surge protection due to a residual voltage.
[0004]
Therefore, as shown in FIG. 4, after a conductive coating 62 is deposited on the surface of a substantially cylindrical insulator 60 made of ceramic or the like, a minute discharge having a width of about 20 to 100 μm is applied to the conductive coating 62. A gap 64 is formed in a circular shape to divide the conductive film 62, and discharge electrodes 68 and 68 are fitted to both ends of the insulator 60 with a main discharge gap 66 therebetween to discharge the conductive film 62 and 62. There has been proposed a discharge type surge absorbing element 74 in which electrodes 68 and 68 are connected, sealed in an airtight container 70 made of glass or the like together with a discharge gas, and external terminals 72 and 72 are led out.
[0005]
When a surge higher than the rated voltage of the discharge type surge absorbing element 74 is applied to the discharge type surge absorbing element 74, first, a potential difference is generated between the conductive films 62 and 62 separated by the minute discharge gap 64. Electrons are emitted into the minute discharge gap 64 to generate creeping corona discharge. Next, a transition to glow discharge is made by the priming effect of electrons generated along with the creeping corona discharge. Then, the glow discharge is transferred to the main discharge gap 66 due to the increase of the surge current, and further shifts to the arc discharge as the main discharge to absorb the surge.
As described above, the discharge type surge absorbing element 74 uses a creeping corona discharge, which is originally generated in the minute discharge gap 64 and has a high response speed, as a trigger discharge, and therefore has higher responsiveness than the gas arrester. In addition, since the surge is absorbed by arc discharge that is the main discharge generated in the main discharge gap 66, a large current resistance can be realized as compared with the varistor.
[0006]
[Problems to be solved by the invention]
However, in the conventional discharge type surge absorbing element 74, since the trigger discharge was generated between the conductive films 62, 62 having a low strength, the conductive films 62, 62 were sputtered by the impact at the time of the trigger discharge, As a result, a sputtered substance (a constituent material of the conductive coats 62 and 62) adheres between the conductive coatings 62 and 62, and the adhesion of the sputtered substance causes insulation degradation of the minute discharge gap 64, and discharge surge. This is a cause of shortening the life of the absorption element 74.
[0007]
The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to realize a long-life discharge type surge absorbing element that can effectively prevent insulation deterioration of a minute discharge gap due to sputtering. There is.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a discharge type surge absorbing element according to the present invention has a plurality of discharge electrodes arranged opposite to each other with a main discharge gap, and encloses the discharge electrodes together with a discharge gas in an airtight container. In the discharge type surge absorbing element formed by leading the lead terminal connected to the outside of the hermetic container, a conductive film is provided in the hermetic container, facing each of the discharge electrodes with a minute discharge gap therebetween. A trigger discharge member is disposed, and the trigger discharge member includes a main body portion made of an insulating material, a plurality of holes formed in the main body portion, and a convex portion protruding at a predetermined height from the surface of the main body portion. A conductive coating disposed opposite to each discharge electrode with a minute discharge gap in a state where the discharge electrode is inserted into the hole, and a substantially half circumference of the outer surface on the inner side of each discharge electrode. over that was formed on the surface of the protrusion And it features.
[0009]
When a surge is applied to the discharge-type surge absorbing element of the present invention via a lead terminal, an electric field is concentrated in the minute discharge gap between the conductive coating and each discharge electrode, thereby releasing electrons into the minute discharge gap. As a result, creeping corona discharge as a trigger discharge occurs. Next, this creeping corona discharge shifts to glow discharge due to an electron priming effect. The glow discharge is transferred to the main discharge gap due to the increase of the surge current, and further, the arc discharge as the main discharge is transferred to absorb the surge. Since the discharge type surge absorbing element of the present invention uses creeping corona discharge, which is originally generated in a minute discharge gap and has a high response speed, as a trigger discharge, high responsiveness can be realized.
[0010]
In the discharge type surge absorbing element of the present invention, a minute discharge gap is formed between the discharge electrode and the conductive coating of the trigger discharge member, and creeping corona discharge as trigger discharge is performed with a discharge electrode having high strength. In addition, since it is generated between the conductive coatings, as in the case of the above-described conventional discharge type surge absorbing element 74, compared to the case where the trigger discharge is generated between the conductive coatings 62, 62 having low strength, It is possible to reduce the amount of sputtered material generated when the conductive coating is sputtered. As a result, it is possible to reduce the possibility that the minute discharge gap is insulated and deteriorated due to adhesion of the sputtered substance between the discharge electrode and the conductive film, and to extend the life of the discharge type surge absorbing element. Can do.
[0011]
Further, in the discharge type surge absorbing element of the present invention, each discharge electrode and the conductive coating are disposed so as to face each other over substantially half of the outer surface on the inner side of each discharge electrode. The creeping corona discharge in can be generated over a wide range.
[0012]
Furthermore, in the discharge type surge absorbing element of the present invention, the conductive coating is formed on the convex surface protruding a predetermined height from the surface of the body portion of the trigger discharge member, so that the creepage distance between the discharge electrode and the conductive coating is increased. The height can be increased corresponding to the protruding height of the convex portion. As a result, it is possible to further reduce the possibility that the minute discharge gap is insulated and deteriorated due to adhesion of the sputtered substance between the discharge electrode and the conductive film.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a discharge type surge absorbing element according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view showing a discharge type surge absorbing element 10 of the present invention.
This discharge type surge absorbing element 10 has a discharge gas made of a single or mixed gas of inert gas such as rare gas such as argon, neon, helium, xenon or nitrogen gas, or nitrogen gas, in the hermetic container 12 made of glass, or the above discharge. A discharge gas made by mixing hydrogen, sulfur hexafluoride gas and carbon dioxide into the gas, a pair of discharge electrodes 14 and 14 formed by processing a metal such as nickel having excellent conductivity into an elongated round bar, and insulating properties A trigger discharge member 16 made of ceramic such as forsterite, alumina, or steatite, which is a material, is enclosed.
The pair of discharge electrodes 14, 14 are arranged in parallel at a predetermined distance, and a main discharge gap 18 is formed between the discharge electrodes 14, 14. Further, one end of lead terminals 20 and 20 made of dumet wire (copper-coated iron-nickel alloy wire), 42-6 alloy wire or the like is connected to the lower ends of the discharge electrodes 14 and 14, and the lead terminal 20 , 20 penetrates the sealing portion 22 of the hermetic container 12 and is led out to the outside.
[0014]
2 and 3, the trigger discharge member 16 has a substantially elliptical disc-shaped main body 24 and a pair of holes 26, 26 penetrating the main body 24 vertically. The lower end of the main body portion 24 is embedded and fixed in the sealing portion 22 of the airtight container 12.
The holes 26 and 26 have substantially the same outer diameter as the discharge electrode 14 until reaching a predetermined position from the upper end to the lower end, and the discharge electrode until reaching the lower end from the predetermined position. Smaller than 14 outer dimensions. The discharge electrodes 14 and 14 and the lead terminals 20 and 20 are inserted into the holes 26 and 26, respectively.
The outer surfaces of the discharge electrodes 14, 14 inserted into the holes 26, 26 are in contact with the wall surface of the main body 24, and the lower ends of the discharge electrodes 14, 14 are in the vicinity of the predetermined position in the holes 26, 26. The main body 24 is in contact with and supported by the wall surface.
[0015]
Between the pair of holes 26 and 26 of the trigger discharge member 16, it protrudes from the surface of the main body 24 at a predetermined height (for example, a height of about 1 mm), and a conductive coating 28 made of a carbon-based material or the like on the surface. Is formed, and part of both end edges of the protrusion 30 are inserted into the holes 26 and 26 with a minute discharge gap 32 therebetween as shown in FIG. The discharge electrodes 14 and 14 are disposed along substantially the outer circumference of the inner surface of the discharge electrodes 14 and 14. Then, the conductive coating 28 on the surface of the convex portion 30 and the discharge electrodes 14 and 14 are arranged opposite to each other across the micro discharge gap 32 over the almost half of the outer surface on the inner side of the discharge electrodes 14 and 14. Has been. The minute discharge gap 32 is set in a range of 10 to 50 μm, for example.
[0016]
When a surge is applied via the lead terminals 20 and 20 to the discharge type surge absorbing element 10 of the present invention having the above-described configuration, an electric field is generated in the minute discharge gap 32 between the conductive film 28 and each of the discharge electrodes 14 and 14. As a result, electrons are emitted into the minute discharge gap 32, and creeping corona discharge as a trigger discharge is generated. Next, this creeping corona discharge shifts to glow discharge due to an electron priming effect. Then, the glow discharge is transferred to the main discharge gap 18 due to an increase in surge current, and is further transferred to arc discharge as the main discharge to absorb the surge. Since the discharge type surge absorbing element 10 of the present invention uses the creeping corona discharge, which is originally generated in the small discharge gap 32 and has a high response speed, as a trigger discharge, it can realize high responsiveness.
As described above, in the discharge type surge absorbing element 10 of the present invention, the discharge electrodes 14 and 14 and the conductive coating 28 face each other over substantially half of the outer surface on the inner side of the discharge electrodes 14 and 14. Thus, the creeping corona discharge in the minute discharge gap 32 can be generated over a wide range.
[0017]
Thus, in the discharge type surge absorbing element 10 of the present invention, the minute discharge gap 32 is formed between the discharge electrode 14 and the conductive coating 28, and the creeping corona discharge as the trigger discharge is high in strength. Since it is generated between the discharge electrode 14 and the conductive coating 28, a trigger discharge is generated between the low-strength conductive coatings 62 and 62 as in the conventional discharge type surge absorber 74. As compared with the above, it is possible to reduce the amount of sputtered material generated by sputtering the conductive film. As a result, it is possible to reduce the possibility that the minute discharge gap 32 is insulated and deteriorated due to adhesion of the sputtered substance between the discharge electrode 14 and the conductive coating 28.
Moreover, in the discharge type surge absorbing element 10 of the present invention, the conductive coating 28 is formed on the surface of the convex portion 30 protruding a predetermined height from the surface of the main body portion 24 of the trigger discharge member 16. The creepage distance between the discharge electrode 14 and the conductive coating 28 can be increased by an amount corresponding to the protrusion height of the protrusion 30. As a result, it is possible to further reduce the possibility that the minute discharge gap 32 is insulated and deteriorated due to adhesion of the sputtered substance between the discharge electrode 14 and the conductive coating 28.
[0018]
【The invention's effect】
In the discharge type surge absorbing element according to the present invention, a minute discharge gap is formed between the discharge electrode and the conductive coating of the trigger discharge member, and the creeping corona discharge as the trigger discharge is applied to the discharge electrode having a high strength. Is generated between the conductive film and the conductive film, so that the conductive film is sputtered as compared with the conventional discharge type surge absorbing element that generates the trigger discharge between the conductive films having low strength. The amount of sputtered material generated can be reduced. As a result, it is possible to reduce the possibility that the minute discharge gap is insulated and deteriorated due to adhesion of the sputtered substance between the discharge electrode and the conductive film, and to extend the life of the discharge type surge absorbing element. Can do.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a discharge type surge absorbing element according to the present invention.
FIG. 2 is an enlarged sectional view showing details of a discharge electrode and a trigger discharge member.
3 is an AA enlarged cross-sectional view of FIG. 3. FIG.
FIG. 4 is a schematic cross-sectional view showing a conventional discharge type surge absorbing element.
[Explanation of symbols]
10 Discharge type surge absorber
12 Airtight container
14 Discharge electrode
16 Trigger discharge member
18 Main discharge gap
24 Trigger discharge member body
26 Trigger discharge member hole
28 Conductive coating
30 Convex part of trigger discharge member
32 Micro discharge gap

Claims (1)

複数の放電電極を主放電間隙を隔てて対向配置すると共に、これを放電ガスと共に気密容器内に封入し、上記放電電極に接続されたリード端子を気密容器外に導出して成る放電型サージ吸収素子において、上記気密容器内に、上記各放電電極と、微小放電間隙を隔てて対向配置される導電性被膜を備えたトリガ放電部材を配置して成り、該トリガ放電部材は、絶縁性材料より成る本体部と、該本体部に形成された複数の孔と、本体部表面から所定の高さ突出した凸部とを有しており、上記孔内に、上記放電電極を挿通した状態で、各放電電極と微小放電間隙を隔てて対向配置される導電性被膜を、各放電電極の内方側の外面の略半周に亘って、上記凸部表面に形成したことを特徴とする放電型サージ吸収素子。Discharge type surge absorption in which a plurality of discharge electrodes are arranged opposite to each other with a main discharge gap, sealed together with a discharge gas in an airtight container, and lead terminals connected to the discharge electrodes are led out of the airtight container. In the element, a trigger discharge member provided with a conductive coating disposed opposite to each discharge electrode with a minute discharge gap is disposed in the hermetic container, and the trigger discharge member is made of an insulating material. A main body portion, a plurality of holes formed in the main body portion, and a convex portion protruding from the surface of the main body at a predetermined height , and the discharge electrode is inserted into the hole, A discharge-type surge characterized in that a conductive coating disposed opposite to each discharge electrode with a minute discharge gap is formed on the surface of the convex portion over substantially half of the outer surface on the inner side of each discharge electrode. Absorbing element.
JP2001135700A 2001-05-07 2001-05-07 Discharge type surge absorber Expired - Lifetime JP3745242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001135700A JP3745242B2 (en) 2001-05-07 2001-05-07 Discharge type surge absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001135700A JP3745242B2 (en) 2001-05-07 2001-05-07 Discharge type surge absorber

Publications (2)

Publication Number Publication Date
JP2002334765A JP2002334765A (en) 2002-11-22
JP3745242B2 true JP3745242B2 (en) 2006-02-15

Family

ID=18983113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001135700A Expired - Lifetime JP3745242B2 (en) 2001-05-07 2001-05-07 Discharge type surge absorber

Country Status (1)

Country Link
JP (1) JP3745242B2 (en)

Also Published As

Publication number Publication date
JP2002334765A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
JP2004014466A (en) Chip type surge absorber and its manufacturing method
JPH056797B2 (en)
JP3745242B2 (en) Discharge type surge absorber
JP2004111311A (en) Surge absorber
JP5316020B2 (en) surge absorber
JP4268031B2 (en) Discharge type surge absorber
JPH01311585A (en) Discharge type surge absorbing element
JP4268032B2 (en) Discharge type surge absorber
JP2615221B2 (en) Gas input / discharge arrester
JP3156065U (en) Surge absorber
JP2745393B2 (en) Discharge type surge absorbing element
JP3686013B2 (en) Chip type surge absorber
JP7459767B2 (en) surge protection element
JP2927698B2 (en) Discharge type surge absorbing element
JP4437616B2 (en) Surge absorber
JP3686012B2 (en) Chip type surge absorber
JPH0443584A (en) Gas-tight structure of surge absorbing element
JPH0569270B2 (en)
JPH0536460A (en) Discharge type surge absorbing element
JPH0132712Y2 (en)
JP2534954B2 (en) Discharge type surge absorber and method for manufacturing the same
JP3156033U (en) Surge absorber
JPH0132714Y2 (en)
JPH0226154Y2 (en)
JP2020004578A (en) Surge protection element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3745242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term