JPH0443529A - Fluorescent surface forming method - Google Patents

Fluorescent surface forming method

Info

Publication number
JPH0443529A
JPH0443529A JP2150624A JP15062490A JPH0443529A JP H0443529 A JPH0443529 A JP H0443529A JP 2150624 A JP2150624 A JP 2150624A JP 15062490 A JP15062490 A JP 15062490A JP H0443529 A JPH0443529 A JP H0443529A
Authority
JP
Japan
Prior art keywords
phosphor
electrode
forming
strip
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2150624A
Other languages
Japanese (ja)
Inventor
Hitoshi Hattori
仁 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2150624A priority Critical patent/JPH0443529A/en
Publication of JPH0443529A publication Critical patent/JPH0443529A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a fluorescent surface giving no influence to the phosphor itself and generating no corrosion on the interface with an insulating layer along the whole process by forming an insulating layer on the surface of a subtrate including strip-form anodes along the lining-up direction of anodes to form a segment electrode line, and attaching the phosphor to every part of electrode where the phosphor is to be attached. CONSTITUTION:An anode 2 of a strip form of A1 wiring pattern is formed on a substrate 1 by a photo-lithgraphy process. Then, a photoresist 4 is spread on the anode 2, and the patterning of the resist is carried out by using masks 5 and 6 so that the resist is left only at the parts a phosphor is attached. After the moisture on the substrate 1 is removed sufficiently, an insulating membrane 13 is formed. As the insulating membrane 13, the SiO2 membrane and the like are available, for example. By removing the photo-resist perfectly, the electrode surface is exposed, and then an insulating layer 3 is formed by a screen printing. And after that, by attaching the phosphor on the exposed A1 electrode, a phosphor-dot array 7 can be obtained.

Description

【発明の詳細な説明】 投4立互 本発明は、蛍光体ドツトアレイ管の蛍光面形成方法関し
1例えば、蛍光表示管、バーコード表示管、光プリンタ
の光書き込みデバイス、フラットデイスプレィバネなど
に適用されるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a phosphor screen in a phosphor dot array tube. applicable.

灸米丘生 蛍光体ドツトアレイ管は、一方向に一列又は複数列に配
列形成された多数の短冊状の陽極電極(セグメント電極
)に蛍光面を形成して、これを熱陰極とともに真空容器
中に封入し、熱陰極から熱電子を発生させる一方、短冊
状の陽極電極に選択的に正電圧を印加して1選択された
短冊状の陽極電極に熱電子を引き付け、この熱電子が蛍
光面に衝突する際に発する蛍光により表示等を行うもの
であり、蛍光表示管、バーコー・ド表示管、光プリンタ
の光書き込み部、あるいはフラットデイスプレィパネル
等に応用されている。
The moxibustion phosphor dot array tube is made by forming a phosphor screen on a large number of strip-shaped anode electrodes (segment electrodes) arranged in one or more rows in one direction, and placing this together with a hot cathode in a vacuum container. Thermal electrons are generated from the hot cathode, while a positive voltage is selectively applied to the strip-shaped anode electrode to attract thermionic electrons to one selected strip-shaped anode electrode, and these thermionic electrons are transferred to the phosphor screen. Displays are performed using the fluorescence emitted during collision, and are applied to fluorescent display tubes, bar code display tubes, optical writing parts of optical printers, flat display panels, etc.

第3図(a)、(b)は、蛍光体ドツトアレイ管の従来
例を示す構成図で、図(a)は全体斜視図、図(b)は
図(a)の■−■線断面図である。図中、21はガラス
基板、22はアルミ陽極電極、23は蛍光体(発光体)
セグメント。
FIGS. 3(a) and 3(b) are configuration diagrams showing a conventional example of a phosphor dot array tube, where FIG. 3(a) is an overall perspective view, and FIG. 3(b) is a sectional view taken along the line It is. In the figure, 21 is a glass substrate, 22 is an aluminum anode electrode, and 23 is a phosphor (light emitter).
segment.

24a、24bは絶縁体層、25a、25bは制御(グ
リッド)電極、26は陰極電極、27は高真空室(10
、torr以下)、28はフェースガラスである。ガラ
ス基板21には、一連の蛍光体セグメント23が該ガラ
ス基板21の長手方向に列設されていて、この蛍光体セ
グメント23にはその個々に蛍光面とアルミ陽極電極2
2が形成されている。前記ガラス基板21の蛍光面の配
列の両側には、絶縁体層24a、24bがガラス基板2
1の長手方向に沿って形成され、該絶縁体層24a、2
4bは、制御電極25a、25bがそれぞれ形成されて
いる。ガラス基板21の長手方向に陰極電極26が張り
渡され、表面に電子放射性物質を塗布されている。また
、ガラス等からなる透明な材料で形成されたフェースガ
ラス28は。
24a and 24b are insulator layers, 25a and 25b are control (grid) electrodes, 26 is a cathode electrode, and 27 is a high vacuum chamber (10
, torr or less), and 28 is a face glass. A series of phosphor segments 23 are arranged on the glass substrate 21 in the longitudinal direction of the glass substrate 21, and each of the phosphor segments 23 has a phosphor screen and an aluminum anode electrode 2.
2 is formed. Insulator layers 24a and 24b are provided on both sides of the phosphor screen arrangement of the glass substrate 21.
1, and the insulator layers 24a, 2
4b, control electrodes 25a and 25b are formed, respectively. A cathode electrode 26 is stretched in the longitudinal direction of the glass substrate 21, and the surface thereof is coated with an electron emitting substance. Further, the face glass 28 is made of a transparent material such as glass.

ガラス基板21側と一体化される。このようにガラス基
板21と絶縁体層24 a、24bと制御電極25a、
25bとフェースガラス28とにより閉空間を形成し、
該空間内には、蛍光体セグメント23と陰極電極26が
閉じ込められている。上記閉空間は高度に真空化されて
いる。
It is integrated with the glass substrate 21 side. In this way, the glass substrate 21, the insulator layers 24a, 24b, the control electrode 25a,
25b and the face glass 28 form a closed space,
A phosphor segment 23 and a cathode electrode 26 are confined within the space. The closed space is highly evacuated.

制御電極25a、25bに適宜の電圧を印加しておいて
、陰極電極26に交流電流を通ずると、該陰極電極26
は、ジュール熱によって加熱されて熱電子を放出する。
When an appropriate voltage is applied to the control electrodes 25a and 25b and an alternating current is passed through the cathode electrode 26, the cathode electrode 26
is heated by Joule heat and emits thermoelectrons.

かかる状態において、蛍光体セグメント23の−っに正
電圧を印加してこれを正電位にすると、上記熱電子は正
電位の蛍光体セグメント23の電極部に引き寄せられ、
該電極部に吸い込まれるとき蛍光面の蛍光物質のエネル
ギー状態を励起させる。励起した蛍光物質は、基底状態
へ戻る際に蛍光を発する。この蛍光はフェースガラス2
8を介して観察される。
In this state, when a positive voltage is applied to - of the phosphor segment 23 to make it a positive potential, the thermoelectrons are attracted to the electrode portion of the phosphor segment 23 at a positive potential,
When absorbed into the electrode part, the energy state of the fluorescent substance on the fluorescent screen is excited. The excited fluorescent substance emits fluorescence when returning to the ground state. This fluorescence is on the face glass 2.
observed through 8.

ところで、上述したような構成の蛍光体ドツトアレイ管
においては、短冊状の陽極電極に蛍光面を形成する際に
、その蛍光面のサイズを正確に制御する必要があり、ま
た、輝度の経時劣化が少ない蛍光面を形成することが必
要とされる。このため、例えば特開昭62−15453
0公報には以下に説明するような蛍光面形成方法が提案
されている。
By the way, in the phosphor dot array tube having the above-mentioned configuration, when forming the phosphor screen on the strip-shaped anode electrode, it is necessary to accurately control the size of the phosphor screen, and there is also a problem with the luminance deterioration over time. It is required to form fewer phosphor screens. For this reason, for example, JP-A No. 62-15453
0 proposes a method for forming a phosphor screen as described below.

第4図は、蛍光体ドツトアレイ管の蛍光面形成方法の従
来例を示す図で、この方法は一般に前述したりフトオフ
法と呼ばれている。図中、51は基板、52は陽極電極
、53は絶縁層、54はレジスト層、55.56はマス
ク、57は蛍光体ドツトである。まず、電極形成工程に
おいて、基板51上に陽極電極52を形成し、次の絶縁
層形成工程で絶縁層53が形成される。次のフォトレジ
スト層形成工程において、まず、(a)の工程でフォト
レジストで基板51を被覆してレジスト層S4を形成し
た後に、(b)、(C)の工程で蛍光体の付着する部分
をマスク55.56を用いて現像露光で除去する。(d
)の蛍光面形成工程において、電着などの方法により上
記露出した電極部に蛍光体を付着させ、フォトレジスト
層除去工程において、最後に残ったレジスト層を焼成な
どの方法により除去して蛍光体ドシト57を形成するも
のである。
FIG. 4 is a diagram showing a conventional method for forming a phosphor screen of a phosphor dot array tube, and this method is generally referred to as the above-mentioned or called the lift-off method. In the figure, 51 is a substrate, 52 is an anode electrode, 53 is an insulating layer, 54 is a resist layer, 55, 56 is a mask, and 57 is a phosphor dot. First, in an electrode forming step, an anode electrode 52 is formed on a substrate 51, and an insulating layer 53 is formed in the next insulating layer forming step. In the next photoresist layer forming step, first, in the step (a), the substrate 51 is coated with photoresist to form a resist layer S4, and then in the steps (b) and (C), the portion to which the phosphor is attached is formed. is removed by development exposure using masks 55 and 56. (d
) In the phosphor screen forming process, a phosphor is attached to the exposed electrode part by a method such as electrodeposition, and in the photoresist layer removal process, the last remaining resist layer is removed by a method such as baking to form a phosphor. This forms a dosit 57.

第5図(a)、(b)は、実際に蛍光体を付着させる方
法の一例を示す図で、一般には電気泳動法(電着)と呼
ばれている。図中、60は撹拌翼(回転翼)、61は基
板、62は陽極電極、63は絶縁層、64はレジスト層
、65は対向電極、66は電源、67はモータ、68は
分散媒体(蛍光体、IPA;イソプロピルアルコールな
ど)である。蛍光体を含む分散媒体(溶媒としてはIP
Aを用いる)を撹拌翼により撹拌し、対向電極とセグメ
ント電極との間に電界をかけることにより蛍光体を前述
した所望の場所に付着させる。フォトレジストは精度上
の問題によりポジタイプを用いる(例えば、東京応化社
製の0FPR800など)、ポジタイプのフォトレジス
トは、通常電着時ニ分散媒体として用いるIPAなとの
有機溶媒に溶解してしまうので、溶解しないように紫外
線などを照射してハードニングを行ない蛍光体を付着さ
せた後、焼成などによりレジスト層を除去する。
FIGS. 5(a) and 5(b) are diagrams showing an example of a method for actually depositing a phosphor, which is generally called electrophoresis (electrodeposition). In the figure, 60 is a stirring blade (rotary blade), 61 is a substrate, 62 is an anode electrode, 63 is an insulating layer, 64 is a resist layer, 65 is a counter electrode, 66 is a power source, 67 is a motor, 68 is a dispersion medium (fluorescent alcohol, IPA; isopropyl alcohol, etc.). Dispersion medium containing phosphor (IP as solvent)
A) is stirred with a stirring blade, and an electric field is applied between the counter electrode and the segment electrode to cause the phosphor to adhere to the desired location described above. Due to accuracy issues, positive type photoresists are used (for example, 0FPR800 manufactured by Tokyo Ohka Co., Ltd.); positive type photoresists are usually dissolved in organic solvents such as IPA that are used as dispersion media during electrodeposition. After hardening the resist layer by irradiating it with ultraviolet rays or the like to prevent it from dissolving and attaching the phosphor, the resist layer is removed by baking or the like.

このレジスト除去の際、付着している蛍光体がその雰囲
気により蛍光体自身の発光効率や発光寿命を低下させら
れてしまうなどの影響がある。また、基板の長手方向に
わたって均一に十分なレジストのハードニングが行なわ
れなかった場合、電着時にレジストが溶解して適切な蛍
光体ドツトが形成できなかったり、電着液を汚染したり
、また逆に、部分的に過剰なハードニングがされた場合
、通常の焼成条件ではレジストが除去できずに基板上に
残ってしまい、管球化後の輝度や寿命などの特性に悪影
響することが考えられる。
When this resist is removed, the attached phosphor is affected by the atmosphere, such as reducing the luminous efficiency and luminous life of the phosphor itself. Furthermore, if the resist is not sufficiently hardened uniformly along the length of the substrate, the resist may dissolve during electrodeposition, making it impossible to form appropriate phosphor dots, contaminating the electrodeposition solution, or On the other hand, if excessive hardening is done in some areas, the resist cannot be removed under normal firing conditions and remains on the substrate, which may adversely affect characteristics such as brightness and lifespan after tube formation. It will be done.

そこで、レジストによる蛍光体ドラトノ(ターンではな
く、全工程にわたって蛍光体自身に影響せず、かつ管球
化後の諸特性にもまったく影響しないような蛍光面形成
方法については先に提案されている。この提案された蛍
光面形成方法は、絶縁膜を形成してからフォトレジスト
を用いた通常のフォトリソグラフィーとエツチングとに
より、蛍光体が付着する電極面を露出させてから蛍光体
を付着させて蛍光面を形成する方法である。しかしなが
ら、先に形成した絶縁膜をフォトリソグラフィー及びエ
ツチングにより蛍光体の付着する電極面を露出させてい
るので、エツチングの条件を最適に設定して保持及び管
理しなければ、例えば、電極としてA1をもちいる場合
、オーバーエツチングによる断線などが発生したり、エ
ツチング不足による絶縁膜残渣が起きたりするので、蛍
光体を電気泳動法等によって基板の長手方向に渡って完
全に付着させることができなくなってしまう。
Therefore, a method of forming a phosphor screen using a resist (rather than turning the phosphor) has been previously proposed, which does not affect the phosphor itself during the entire process and does not affect the characteristics after it is made into a tube. This proposed method for forming a phosphor screen involves forming an insulating film, exposing the electrode surface to which the phosphor will adhere by ordinary photolithography and etching using a photoresist, and then attaching the phosphor. This method forms a phosphor screen.However, since the previously formed insulating film is exposed by photolithography and etching to expose the electrode surface to which the phosphor will adhere, the etching conditions must be set optimally to maintain and manage the insulating film. If not, for example, when A1 is used as an electrode, wire breakage may occur due to overetching, or insulating film residue may occur due to insufficient etching. Complete adhesion becomes impossible.

また、信頼性の観点から従来より蛍光表示管に用いられ
ている絶縁層はAIなどの短冊状の陽極電極を直接覆う
ようにスクリーン印刷などの方法により形成されている
が、この絶縁層は酸化鉛を主成分とする硼硅酸鉛ガラス
で構成されているため腐食性が高く、短冊状の陽極電極
であるAlを劣化させてしまう。スクリーン印刷で塗布
された後、大気中550℃〜600℃の条件で焼成する
際や高湿な雰囲気による水の付着によりAl電極が腐食
されてしまい、腐食はAl薄膜と絶縁層との界面で生じ
ることにより、電気伝導度が著しく低下してしまうとい
う問題が生じる。
In addition, from the viewpoint of reliability, the insulating layer conventionally used in fluorescent display tubes is formed by a method such as screen printing so as to directly cover the rectangular anode electrode such as AI, but this insulating layer is not oxidized. Since it is made of lead borosilicate glass whose main component is lead, it is highly corrosive and deteriorates the Al that is the strip-shaped anode electrode. After being coated by screen printing, the Al electrode is corroded during baking at 550°C to 600°C in the air or due to adhesion of water in a high humidity atmosphere, and the corrosion occurs at the interface between the Al thin film and the insulating layer. This causes a problem in that electrical conductivity is significantly reduced.

且−一部 本発明は、上述のごとき実情に鑑みてなされたもので、
レジストによる蛍光体ドラトノ(ターンではなく、全工
程にわたって蛍光体自身に影響せず、かつ管球化後の諸
特性にもまったく影響しなしλように構成すること、ま
た、腐食しやすいA1薄膜などの金属配線と絶縁層との
間に絶縁で不純物の含まれていない層を設けて、絶縁層
との界面に生じる腐食を発生させないように構成された
蛍光面形成方法を提供することを目的としてなされたも
のである。
In addition, the present invention has been made in part in view of the above-mentioned circumstances.
Phosphor dratography (not by turning) using a resist, which does not affect the phosphor itself during the entire process and does not affect the various properties after tube formation, and the A1 thin film that is easy to corrode. The purpose of the present invention is to provide a method for forming a phosphor screen in which an insulating, impurity-free layer is provided between the metal wiring and the insulating layer, and corrosion is not caused at the interface with the insulating layer. It has been done.

璽−一」又 本発明は、上記目的を達成するために、基板上に導電性
材料力1らなる短冊状の陽極電極を少なくとも一列設け
る電極形成工程と、前記短冊状の陽極電極を含む前記基
板表面をフォトレジスト層で被覆した後、前記短冊状の
陽極電極列上で蛍光体が付着しない電極部のフォトレジ
スト層を除去して蛍光体が付着する電極部をフォトレジ
スト層で被覆させるフォトレジスト層形成工程と、前記
フォトレジスト層が形成された前記短冊状の陽極電極列
を絶縁性を有する膜で被覆する絶縁膜形成工程と、前記
蛍光体が付着する電極部を覆っているフォトレジスト層
を除去して蛍光体が付着する電極部を露出させるフォト
レジスト層除去工程と、前記短冊状の陽極電極を含む前
記基板表面に、該短冊状の陽極電極の配列方向に沿って
前記短冊状の陽極電極の一部を露出させる絶縁層を形成
してセグメント電極列を形成する絶縁層形成工程と、前
記蛍光体が付着すべき電極部分の一つ一つに蛍光体を付
着させて蛍光面を形成する蛍光面形成工程とにより、蛍
光体ドツトアレイを形成するようにしたことを特徴とし
たものである。以下、本発明の実施例に基づいて説明す
る。
In order to achieve the above object, the present invention also provides an electrode forming step of providing at least one row of rectangular anode electrodes made of conductive material 1 on a substrate, and an electrode forming process including the rectangular anode electrodes. After the surface of the substrate is coated with a photoresist layer, the photoresist layer on the electrode parts to which the phosphor does not adhere on the strip-shaped anode electrode array is removed, and the electrode parts to which the phosphor adheres are covered with the photoresist layer. a resist layer forming step, an insulating film forming step of covering the strip-shaped anode electrode array on which the photoresist layer is formed with an insulating film, and a photoresist covering the electrode portion to which the phosphor is attached. A photoresist layer removal step of removing the layer to expose the electrode portion to which the phosphor is attached; an insulating layer forming step in which an insulating layer is formed to expose a part of the anode electrode to form a segment electrode array, and a phosphor is attached to each of the electrode parts to which the phosphor is to be attached to form a phosphor screen. The method is characterized in that a phosphor dot array is formed by a phosphor screen forming step of forming a phosphor screen. Hereinafter, the present invention will be explained based on examples.

第1図及び第2図は、本発明による蛍光体ドツトアレイ
管の蛍光面形成方法の一実施例を説明するための工程図
で、図中、1は基板、2は短冊状のアルミ(A1)陽極
電極、3は絶縁層、4はフォトレジスト、5はマスクの
透過部、6はマスクの遮断部、7は蛍光体ドツト、】3
は絶縁膜である。
1 and 2 are process diagrams for explaining one embodiment of the method for forming a phosphor screen of a phosphor dot array tube according to the present invention. In the figures, 1 is a substrate, 2 is a strip of aluminum (A1). Anode electrode, 3 is an insulating layer, 4 is a photoresist, 5 is a transparent part of a mask, 6 is a blocking part of a mask, 7 is a phosphor dot,] 3
is an insulating film.

以下、蛍光面形成工程に従って順に説明する。Hereinafter, the steps for forming the phosphor screen will be explained in order.

図(、)の工程;電極形成工程においては、まずA1な
どの導電性材料をスパッタなどの方法により基板1上に
形成させ、通常のフォトリソグラフィ工程により短冊状
のA1配線パターンの陽極電極2を形成する。
Steps in Figures (,); In the electrode forming step, first a conductive material such as A1 is formed on the substrate 1 by a method such as sputtering, and an anode electrode 2 having a rectangular A1 wiring pattern is formed by a normal photolithography process. Form.

図(b)〜(d)の工程;次に、フォトレジスト4を短
冊状のA1配線パターンの陽極電極2が形成された基板
上にスピンナーなどの方法により塗布し、蛍光体が付着
する部分にのみレジスト4を残すようなマスク5,6を
用いてレジストのパターニングを行なう。
Steps in Figures (b) to (d): Next, photoresist 4 is applied onto the substrate on which the rectangular A1 wiring pattern anode electrode 2 is formed using a method such as a spinner, and the photoresist 4 is applied to the part where the phosphor will adhere. The resist is patterned using masks 5 and 6 that leave only the resist 4.

図(e)の工程;フォトレジストはポジ型でもネガ型で
もよい。その膜厚は後工程のことを考えれば、パターニ
ング精度を損なわない範囲で、できるだけ厚いほうがよ
い。最低でも1μm程度は必要である。基板1上の水分
を十分に除去した後に絶縁膜13を形成する。絶縁膜1
3としては、例えば5in2膜などがあり、5in2被
膜形成用塗布液を用いる。プラズマCVDによる製膜も
考えられるが、高温における長時間処理になるのでフォ
トレジストの耐久性に問題がある。
Step (e): The photoresist may be of positive type or negative type. Considering the subsequent process, the film should be as thick as possible without impairing patterning accuracy. A minimum thickness of about 1 μm is required. After sufficiently removing moisture on the substrate 1, an insulating film 13 is formed. Insulating film 1
3 includes, for example, a 5in2 film, and a coating liquid for forming a 5in2 film is used. Film formation by plasma CVD is also considered, but since the process is performed at high temperatures for a long time, there is a problem with the durability of the photoresist.

S i O,被膜形成用塗布液としては、例えば東京応
化社製の5in2被膜形成用塗布液(OCD)などがあ
る。塗布はスピンナーで行ない、回転数とその粘度によ
って膜厚が決ってくるが、後の管球化のことを考慮する
と、できるだけ高温に耐うるように薄くする方がよい。
Examples of the S i O coating liquid for forming a film include 5in2 coating liquid for forming a film (OCD) manufactured by Tokyo Ohka Co., Ltd. Coating is done with a spinner, and the film thickness is determined by the number of rotations and its viscosity, but in consideration of later formation into tubes, it is better to make it as thin as possible so that it can withstand high temperatures.

3000人より薄い膜厚にすれば、管球化工程における
熱処理に十分耐えることができる。
If the film thickness is less than 3000 mm, it can sufficiently withstand the heat treatment in the tube forming process.

図(f)の工程;前記絶縁膜形成後、剥離液などにより
上述したフォトレジストを完全に除去すれば、蛍光体が
付着する部分の電極面が露出されることになる。この時
、前記(b)〜(d)の工程でパターニングされたフォ
トレジストの膜厚が十分でないか、前記(e)の工程で
形成された絶縁膜の膜厚が厚すぎたりすると、フォトレ
ジスト層上の絶縁膜と周囲の絶縁膜との分離が確実に行
なわれなくなってしまい、絶縁膜のパターニング不良と
なってしまう。
Step of Figure (f): After forming the insulating film, if the photoresist described above is completely removed using a stripping solution or the like, the electrode surface where the phosphor is attached will be exposed. At this time, if the thickness of the photoresist patterned in the steps (b) to (d) above is not sufficient, or if the thickness of the insulating film formed in the step (e) is too thick, the photoresist The insulating film on the layer and the surrounding insulating film cannot be reliably separated, resulting in defective patterning of the insulating film.

図(g)の工程;次に、従来より用いられている絶縁層
3をスクリーン印刷により形成する。
Step (g): Next, the insulating layer 3, which has been conventionally used, is formed by screen printing.

図(h)の工程;その後、第5図に示すような電着装置
により蛍光体を露出しているA1電極部に付着させれば
所望の蛍光体ドツトアレイ7を得ることができる。
Step (h): Thereafter, a desired phosphor dot array 7 can be obtained by depositing phosphor on the exposed A1 electrode portion using an electrodeposition apparatus as shown in FIG.

このようにして作られた蛍光体ドツトアレイは、管球化
工程でレジストにより汚染がなく、また、エツチングな
どの余分の工程がなく、さらに、Al電極や配線と絶縁
層が直接に接していないので従来の腐食によるA1電極
や配線の断線の発生が著しく改善される。
The phosphor dot array produced in this way is free from resist contamination during the tube-making process, does not require extra steps such as etching, and has no direct contact between the Al electrodes or wiring and the insulating layer. The occurrence of disconnection of the A1 electrode and wiring due to conventional corrosion is significantly improved.

第2図は、第1図に示した蛍光面形成工程のフローを示
す図で、前述したように電極形成工程→フォトレジスト
層形成工程→絶縁膜形成工程→フォトレジスト層除去工
程→絶縁層形成工程→蛍光面形成工程を経て本発明によ
る蛍光面が形成されることになる。
FIG. 2 is a diagram showing the flow of the phosphor screen forming process shown in FIG. The phosphor screen according to the present invention is formed through the process → phosphor screen forming step.

幼−一一果 以上の説明から明らかなように、本発明によると、蛍光
体トンドアレイ管の蛍光面形成方法において、蛍光体ド
ツトにレジスト雰囲気による悪影響が及ばないようにし
ているので、蛍光体の発光効率が低下することなく十分
な発光輝度を得ることができ、蛍光面形成における信頼
性を向上させることができる。また、配線パターンが、
絶縁層や外界水分などによって、腐食されないような構
造にしているので、管球化後の蛍光体発光輝度のばらつ
きが小さくなり、経時的な配線の断線による部分的な輝
度低下なども押さえられ、光プリンタの光書き込み用と
して信頼性の高いデバイスを提供する二とができる。
As is clear from the above explanation, according to the present invention, in the method for forming a phosphor screen of a phosphor dot array tube, the phosphor dots are prevented from being adversely affected by the resist atmosphere. Sufficient luminance can be obtained without reducing luminous efficiency, and reliability in forming a phosphor screen can be improved. Also, the wiring pattern is
Since the structure is such that it will not be corroded by the insulating layer or external moisture, variations in the luminance of the phosphor after tube formation are reduced, and local brightness decreases due to wiring breaks over time are suppressed. It is possible to provide a highly reliable device for optical writing in an optical printer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による蛍光体ドツトアレイ管の蛍光面
形成方法の一実施例を説明するための工程図、第2図は
、蛍光面形成工程のフローを示す図、第3図は、蛍光体
ドツトアレイ管の従来例を示す構成図、第4図は、蛍光
体ドツトアレイ管の蛍光面形成方法の従来例を示す図、
第5図は、蛍光体を付着させる方法の一例を示す図であ
る。 1・・・基板、2・・・短冊状のアルミ(Al)陽極電
極、3・・・絶縁層、4・・・フォトレジスト、5・・
・マスクの透過部、6・・・マスクの遮断部、7・・・
蛍光体ドツト。 13・・・絶縁膜。 第 図 (b)
FIG. 1 is a process diagram for explaining an embodiment of the method for forming a phosphor screen of a phosphor dot array tube according to the present invention, FIG. 2 is a diagram showing the flow of the phosphor screen forming process, and FIG. FIG. 4 is a diagram showing a conventional example of a method for forming a phosphor screen of a phosphor dot array tube;
FIG. 5 is a diagram showing an example of a method for attaching phosphor. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Strip-shaped aluminum (Al) anode electrode, 3... Insulating layer, 4... Photoresist, 5...
- Transmissive part of the mask, 6... Blocking part of the mask, 7...
Phosphor dots. 13...Insulating film. Figure (b)

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に導電性材料からなる短冊状の陽極電極を少
なくとも一列設ける電極形成工程と、前記短冊状の陽極
電極を含む前記基板表面をフォトレジスト層で被覆した
後、前記短冊状の陽極電極列上で蛍光体が付着しない電
極部のフォトレジスト層を除去して蛍光体が付着する電
極部をフォトレジスト層で被覆させるフォトレジスト層
形成工程と、前記フォトレジスト層が形成された前記短
冊状の陽極電極列を絶縁性を有する膜で被覆する絶縁膜
形成工程と、前記蛍光体が付着する電極部を覆っている
フォトレジスト層を除去して蛍光体が付着する電極部を
露出させるフォトレジスト層除去工程と、前記短冊状の
陽極電極を含む前記基板表面に、該短冊状の陽極電極の
配列方向に沿って前記短冊状の陽極電極の一部を露出さ
せる絶縁層を形成してセグメント電極列を形成する絶縁
層形成工程と、前記蛍光体が付着すべき電極部分の一つ
一つに蛍光体を付着させて蛍光面を形成する蛍光面形成
工程とにより、蛍光体ドットアレイを形成するようにし
たことを特徴とする蛍光面形成方法。
1. An electrode forming step in which at least one row of strip-shaped anode electrodes made of a conductive material is provided on a substrate, and after the substrate surface including the strip-shaped anode electrodes is coated with a photoresist layer, the strip-shaped anode electrodes are formed on the substrate. a photoresist layer forming step of removing the photoresist layer of the electrode part on the column to which the phosphor does not adhere and covering the electrode part to which the phosphor adheres with a photoresist layer; and the step of forming the strip shape on which the photoresist layer is formed. an insulating film forming step of covering the anode electrode array with an insulating film; and a photoresist layer of removing the photoresist layer covering the electrode portion to which the phosphor is attached to expose the electrode portion to which the phosphor is attached. a layer removing step, and an insulating layer is formed on the surface of the substrate including the strip-shaped anode electrodes to expose a part of the strip-shaped anode electrodes along the arrangement direction of the strip-shaped anode electrodes, thereby forming a segment electrode. A phosphor dot array is formed by an insulating layer forming step for forming rows and a phosphor screen forming step for forming a phosphor screen by adhering the phosphor to each electrode portion to which the phosphor is to be attached. A method for forming a phosphor screen, characterized in that:
JP2150624A 1990-06-08 1990-06-08 Fluorescent surface forming method Pending JPH0443529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2150624A JPH0443529A (en) 1990-06-08 1990-06-08 Fluorescent surface forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2150624A JPH0443529A (en) 1990-06-08 1990-06-08 Fluorescent surface forming method

Publications (1)

Publication Number Publication Date
JPH0443529A true JPH0443529A (en) 1992-02-13

Family

ID=15500932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2150624A Pending JPH0443529A (en) 1990-06-08 1990-06-08 Fluorescent surface forming method

Country Status (1)

Country Link
JP (1) JPH0443529A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009381A (en) * 2010-06-28 2012-01-12 Sharp Corp Light-emitting body, light emitting device, lighting device, and vehicular headlight
US9816677B2 (en) 2010-10-29 2017-11-14 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009381A (en) * 2010-06-28 2012-01-12 Sharp Corp Light-emitting body, light emitting device, lighting device, and vehicular headlight
US9816677B2 (en) 2010-10-29 2017-11-14 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
US10281102B2 (en) 2010-10-29 2019-05-07 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
US10465873B2 (en) 2010-10-29 2019-11-05 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element

Similar Documents

Publication Publication Date Title
JP2002245928A (en) Method of manufacturing field discharge array of triode carbon nanotube
US6387600B1 (en) Protective layer during lithography and etch
JP2005340194A (en) Field emission element and field emission display element applied with it
JP2006049322A (en) Field emission element and field emission display element applying it
US7314768B2 (en) Formation method of electroconductive pattern, and production method of electron-emitting device, electron source, and image display apparatus using this
JPH09274845A (en) Electron emission element and focusing electrode for electron emission element and manufacture thereof
JPH0443529A (en) Fluorescent surface forming method
US20030184203A1 (en) Field emission cathode and process for producing the same
JP2005116500A (en) Field emission display device and its manufacturing method
EP1450387B1 (en) Method of manufacturing field emission device
JPH0398239A (en) Forming method for fluorescent face of fluorescent substance dot-array tube
JPH0417246A (en) Fluorescent dot array tube and fluorescent screen forming method
JP3664052B2 (en) Display device using thin-film electron source and manufacturing method thereof
JPH0765708A (en) Manufacture of electron emission element and image formng device
JP3062637B2 (en) Method of manufacturing fluorescent display tube
JPH04259732A (en) Method of forming fluorescent screen in phosphor dot array tube
JPH0668948B2 (en) Phosphor screen forming method in phosphor dot array tube
JPH0668949B2 (en) Phosphor screen forming method
JP3988770B2 (en) Display device using thin-film electron source and manufacturing method thereof
JP2001143602A (en) Field emission type cold cathode and method of fabricating the same
KR100186256B1 (en) Structure of fed emitter tip
KR100761139B1 (en) Appratus for Field Emission Display and Method for fabricating thereof
JPS63133426A (en) Fluorescent screen forming method for fluorescent character display tube
JPH0644450B2 (en) Method for forming fluorescent screen in fluorescent display tube
JP2005235582A (en) Cold cathode field electron emitting element and its manufacturing method