JPH0442719Y2 - - Google Patents

Info

Publication number
JPH0442719Y2
JPH0442719Y2 JP1362287U JP1362287U JPH0442719Y2 JP H0442719 Y2 JPH0442719 Y2 JP H0442719Y2 JP 1362287 U JP1362287 U JP 1362287U JP 1362287 U JP1362287 U JP 1362287U JP H0442719 Y2 JPH0442719 Y2 JP H0442719Y2
Authority
JP
Japan
Prior art keywords
gas
heat insulating
insulating layer
furnace chamber
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1362287U
Other languages
Japanese (ja)
Other versions
JPS63123999U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1362287U priority Critical patent/JPH0442719Y2/ja
Publication of JPS63123999U publication Critical patent/JPS63123999U/ja
Application granted granted Critical
Publication of JPH0442719Y2 publication Critical patent/JPH0442719Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は熱間静水圧加圧(以下、HIPと略称す
る。)装置に関し、詳細にはHIP処理後の冷却工
程において、その冷却時間を短縮してなお、被処
理体を均等に冷却し得、もつて稼動率の向上と被
処理体の品質安定化とを併せ可能とするHIP装置
に関するものである。
[Detailed description of the invention] [Field of industrial application] The present invention relates to a hot isostatic pressing (hereinafter abbreviated as HIP) device. In short, the present invention relates to a HIP apparatus that can uniformly cool objects to be processed, thereby improving the operating rate and stabilizing the quality of objects to be processed.

〔従来の技術〕[Conventional technology]

従来、HIP装置は、高圧容器と、高圧容器内の
高圧室に断熱層と、その内側にヒータを配し、ヒ
ータに囲繞された処理空間、すなわち炉室にて被
処理体を高温・高圧処理することを基本構成とさ
れており、断熱性能、均熱性の重要なことより、
これらに関し種々の改良が提案されている。
Conventionally, HIP equipment consists of a high-pressure container, a high-pressure chamber inside the high-pressure container, a heat insulating layer, and a heater inside the heat insulating layer, and the object to be processed is subjected to high-temperature and high-pressure processing in a processing space surrounded by the heater, that is, a furnace chamber. Due to the importance of insulation performance and heat uniformity,
Various improvements have been proposed regarding these.

一方、このHIP処理は1サイクルに要する時間
が長時間に及ぶ難点があり、その重要な一因子と
して冷却工程がある。
On the other hand, this HIP process has the disadvantage that one cycle takes a long time, and one of the important factors is the cooling process.

このことは、HIP装置の基本的な構成、すなわ
ちHIP処理に要する高温なる熱から高圧容器の構
成部材を保護するため、断熱層にて被処理体を含
む炉室を被包し厳重に熱遮閉した構成に起因する
もので、その冷却工程において断熱層に被包され
た炉室内の熱は、断熱層の熱遮断効果により、外
部に放散することを妨げられるからである。
This is due to the basic structure of the HIP equipment, in which the furnace chamber containing the object to be processed is covered with a heat insulating layer to protect the components of the high-pressure vessel from the high-temperature heat required for HIP processing. This is due to the closed configuration, and the heat within the furnace chamber enclosed by the heat insulating layer during the cooling process is prevented from dissipating to the outside due to the heat blocking effect of the heat insulating layer.

そのため、断熱層と被処理体を含む炉室とを一
体的に高圧容器より取り出し、その冷却工程を
HIP装置外に設けた装置に賦課させてHIP装置の
稼働率を高めるシステム、所謂モジユラー型HIP
システム等が開発されると共に、HIP装置内の構
成や構成部材等に種々の工夫を加え、その冷却速
度を高めんとする試みがなされている。
Therefore, the heat insulating layer and the furnace chamber containing the object to be processed are taken out of the high-pressure container and the cooling process is carried out.
A system that increases the operating rate of HIP equipment by imposing charges on equipment installed outside the HIP equipment, so-called modular HIP
As systems and the like have been developed, attempts have been made to increase the cooling rate by making various improvements to the configuration and components within the HIP device.

一般に、熱伝達方式には対流、輻射、伝導の3
つの形態があることは周知であるが、HIP装置の
圧媒ガスを介した高温・高圧下では特に対流が熱
伝達の主体となる。
Generally, there are three heat transfer methods: convection, radiation, and conduction.
Although it is well known that there are two types of heat transfer, convection is the main form of heat transfer especially under high temperature and high pressure via the pressure medium gas of the HIP device.

従つて、HIP装置において冷却時間の短縮を図
るためには対流する圧媒ガスの流れ、あるいはま
た強制的に形成した圧媒ガスの流れを利用するの
が有効である。
Therefore, in order to shorten the cooling time in a HIP device, it is effective to utilize a convective flow of pressure medium gas or a forced flow of pressure medium gas.

これら、高圧装置内の圧媒ガスの流れを利用
し、その冷却速度を高めるものとしては、例え
ば、第5図に示す特開昭59−87032号、および第
6図に示す実開昭60−33195号公報に開示された
ものがある。
Examples of methods that utilize the flow of pressurized gas in a high-pressure device to increase the cooling rate include JP-A No. 59-87032 shown in FIG. There is one disclosed in Publication No. 33195.

上記前者の従来技術(特開昭59−87032号の提
案)になる装置の主要部を示す第5図において、
51は高圧容器であつて、内部に高圧室60を有
する気密構造体である。
In FIG. 5, which shows the main parts of the device which is the former prior art (proposed in Japanese Patent Application Laid-Open No. 59-87032),
51 is a high pressure container, which is an airtight structure having a high pressure chamber 60 inside.

54は断熱層であつて、該断熱層54の上部に
は、その内外を連通するガス通路62を有し、か
つ大きな表面積をもつ質量体からなるヒートシン
グ室55が設けてある。
54 is a heat insulating layer, and a heat sink chamber 55 is provided above the heat insulating layer 54 and is made of a mass body having a large surface area and has a gas passage 62 communicating between the inside and the outside.

56は熱遮断筒であつて、該熱遮断筒56は、
その内部に被処理体57を収容する空間すなわち
炉室61を備えると共に、炉室61下方に設けら
れ図外の給電手段にて通電可能なヒータ58を内
包し、該ヒータ58から直接外側に向う熱放射を
遮断するものである。
56 is a heat shield cylinder, and the heat shield cylinder 56 is
It is provided with a space, that is, a furnace chamber 61, in which the object to be processed 57 is accommodated, and also includes a heater 58 that is provided below the furnace chamber 61 and can be energized by a power supply means (not shown), and directly faces the outside from the heater 58. It blocks heat radiation.

52はダンパ環であつて、該ダンパ環52は断
熱層54の下部外周に上下動可能に周設してあつ
て、その外側に周設されたそらせ板53と断熱層
54間において上下動することで、排出穴64と
戻り穴63間のガス流通と、断熱層54外側の高
圧室60と戻り穴63間のガス流通とを交互に開
閉するものである。
Reference numeral 52 denotes a damper ring, and the damper ring 52 is provided around the lower outer periphery of the heat insulating layer 54 so as to be movable up and down, and is movable up and down between the deflector plate 53 and the heat insulating layer 54 provided around the outside thereof. This alternately opens and closes the gas flow between the discharge hole 64 and the return hole 63 and the gas flow between the high pressure chamber 60 outside the heat insulating layer 54 and the return hole 63.

59は羽根車であつて、該羽根車59は図外の
駆動手段にて回転し、前記戻り穴63よりのガス
を前記炉室61側に強制環流させるものである。
Reference numeral 59 denotes an impeller, which is rotated by a drive means (not shown) to forcibly recirculate the gas from the return hole 63 to the furnace chamber 61 side.

この前者の従来技術になる装置は上記構成に
て、加圧熱処理中においては第5図の左側の矢印
Aで示す環流、すなわち熱遮断筒56内側で上昇
し、外側で下降する環流を形成させてヒータ58
の熱を被処理体57に伝えるものである。
The former prior art device has the above-mentioned configuration, and during pressurized heat treatment, forms a reflux flow shown by arrow A on the left side of FIG. heater 58
This heat is transferred to the object 57 to be processed.

そしてまた、加圧熱処理後の冷却工程において
は、ダンパ環52を下方にセツトし、第5図の右
側の矢印Bで示す環流、すなわち熱遮断筒56内
を上昇し、ヒートシング室55を経て、遮断層5
4外側と高圧容器51間を降下し、低温なる高圧
容器51内壁と接触して熱交換し温度低下した
後、戻り穴63を経て炉室61に至る強制環流を
形成させて炉室61内を冷却するものである。こ
の装置は上記後者のB環流にて炉室61内の被処
理体57を急速冷却するものである。
In the cooling step after the pressurized heat treatment, the damper ring 52 is set downward, and the reflux flow shown by arrow B on the right side of FIG. , barrier layer 5
4 descends between the outside and the high-pressure vessel 51, contacts the low-temperature inner wall of the high-pressure vessel 51, exchanges heat, and lowers the temperature, and then forms a forced circulation that reaches the furnace chamber 61 through the return hole 63 and flows inside the furnace chamber 61. It is for cooling. This device rapidly cools the object 57 in the furnace chamber 61 using the latter B reflux.

前記後者の従来技術(実開昭60−33195号の提
案)になる装置の主要部を示す第6図において、
74は断熱層であつて、該断熱層74は高圧筒7
1と上蓋72、下蓋73にて画成された高圧室7
6内に配設されてある。
In FIG. 6 showing the main parts of the device of the latter prior art (proposed in Utility Model Application No. 60-33195),
74 is a heat insulating layer, and the heat insulating layer 74 is the high pressure cylinder 7.
1, an upper lid 72, and a lower lid 73.
It is located within 6.

75はヒータであつて、該ヒータ75は断熱層
74内側に周設され、図外の給電手段にて通電可
能であり、その内側に被処理体77を収容する処
理空間、すなわち炉室80が設けてある。
Reference numeral 75 denotes a heater, which is disposed around the inside of the heat insulating layer 74 and can be energized by a power supply means (not shown). It is provided.

なお前記断熱層74は金属製気密構造の外側ケ
ーシング78と気密構造の内側ケーシング79と
を含んで構成され、外側ケーシング78上部には
ガス通路81が設けてあり、また内外ケーシング
78,79の下端部を含む断熱層74下部にはガ
ス通路82が設けてある。83は弁であつて、該
弁83は上蓋72に装設された駆動手段84によ
り上下運動可能とされ、前記断熱層74の外側ケ
ーシング78上部のガス通路81を閉塞および開
放するものである。
The heat insulating layer 74 includes an outer casing 78 made of metal with an airtight structure and an inner casing 79 with an airtight structure, and a gas passage 81 is provided in the upper part of the outer casing 78, and the lower ends of the inner and outer casings 78, 79 A gas passage 82 is provided at the lower part of the heat insulating layer 74 including the upper part. Reference numeral 83 denotes a valve, which is movable up and down by a driving means 84 mounted on the upper lid 72, and is used to close and open the gas passage 81 above the outer casing 78 of the heat insulating layer 74.

この後者の従来技術になる装置は上記構成に
て、HIP処理中においては断熱層74の外側ケー
シング78上部のガス通路81を閉塞し、断熱層
74内のガス対流を抑制して該断熱層74にその
断熱性能を果たせ、そしてHIP処理後の冷却工程
においては開放し、第6図中の矢印で示す断熱層
74内部と外側とを経るガス環流路を形成して、
該環流路を経る圧媒ガスの対流にて、低温なる上
蓋72、高圧筒71内壁と接触熱交換させて断熱
層74を冷却し、もつて内包する炉室80の冷却
時間を短縮するものである。
This latter prior art device has the above-mentioned configuration, and during the HIP process, the gas passage 81 above the outer casing 78 of the heat insulating layer 74 is closed, gas convection within the heat insulating layer 74 is suppressed, and the heat insulating layer 74 is The heat insulating layer 74 is opened during the cooling process after the HIP treatment to form a gas circulation path passing through the inside and outside of the heat insulating layer 74 as indicated by the arrow in FIG.
The convection of the pressure medium gas passing through the circulation path causes contact heat exchange with the low-temperature upper lid 72 and the inner wall of the high-pressure cylinder 71 to cool the heat insulating layer 74, thereby shortening the cooling time of the furnace chamber 80 contained therein. be.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

述上の従来技術にかかる装置は両者共に、冷却
工程において装置内の低温部を経る圧媒ガス環流
(強制環流または自然対流)を形成させ、もつて
その冷却時間の短縮を図るものであるが、これら
装置について検討を行つたところ、冷却時間の短
縮という点では両者共に優れた効果が認められる
ものの、冷却過程において被処理体上下に温度の
不均一を免れない欠点があることが判明した。
Both of the devices according to the above-mentioned prior art form a pressurized gas circulation (forced circulation or natural convection) through a low-temperature section in the device during the cooling process, thereby shortening the cooling time. When these devices were studied, it was found that although both devices were found to have an excellent effect in terms of shortening the cooling time, they had the disadvantage of unavoidable temperature non-uniformity above and below the object to be processed during the cooling process.

すなわち、前者の従来技術的においては、熱交
換して温度低下した後炉室下方より流入するガス
は被処理体を含む高温な炉室部から熱を奪い、温
度上昇しながら上方へ抜ける。
That is, in the former prior art, after the temperature has been lowered through heat exchange, the gas flowing from the lower part of the furnace chamber absorbs heat from the high-temperature furnace chamber containing the object to be processed, and escapes upward while the temperature rises.

従つて、炉室内を流れるガスは下方で低く、上
方で温度上昇して冷却能が低下しており、該ガス
流にて冷却される被処理体は下部が早く、上部が
遅れて冷却れることになる。
Therefore, the temperature of the gas flowing inside the furnace chamber is low in the lower part, and the temperature rises in the upper part, reducing the cooling ability.The object to be processed is cooled by the gas flow faster in the lower part and later in the upper part. become.

また、圧媒ガスを介して加圧熱処理する装置の
高圧室内は、加圧熱処理中にといて上方が高く、
下方が低温なる熱バランスにあることは免がれ
ず、その冷却過程においても全体的に下方より冷
却が進展するので、前述のような強制環流にてそ
の冷却速度を早めるとき、その下方先行冷却の傾
向がますます助長されることになる。
In addition, the inside of the high-pressure chamber of a device that performs pressurized heat treatment via pressurized gas is high at the top during pressurized heat treatment.
It is unavoidable that there is a heat balance in which the lower part is colder, and in the cooling process, cooling progresses from the lower part as a whole, so when the cooling rate is accelerated by forced circulation as described above, it is necessary to prevent the downward preliminary cooling. This trend will be further encouraged.

そして、後者の従来技術においては、まず断熱
層を冷却し、もつて断熱層内の炉室を冷却するも
のであるが、この冷却過程において炉室内の圧媒
ガスに自然対流が起こり、この圧媒ガスの自然対
流にて炉室内の熱は上方へと搬送され、このため
冷却中の炉室内には上下に大きな温度差が生じ
る。
In the latter conventional technology, the heat insulating layer is first cooled, and then the furnace chamber inside the heat insulating layer is cooled. During this cooling process, natural convection occurs in the pressure medium gas in the furnace chamber, and this pressure The heat inside the furnace chamber is transported upward by the natural convection of the medium gas, and therefore a large temperature difference occurs between the top and bottom inside the furnace chamber during cooling.

従つて、該炉室内の圧媒ガスにて冷却される被
処理体は、その上下に大きな温度差をもつて冷却
されることになる。
Therefore, the object to be processed, which is cooled by the pressure medium gas in the furnace chamber, is cooled with a large temperature difference between the upper and lower sides.

述上の従来装置の冷却過程における炉室内圧媒
ガスの上下温度差は、被処理体の上下不均一冷却
を誘起し、またこの不均一冷却は被処理体に歪を
発生させ、例えば薄物品のような場合には処理後
の被処理体が歪によつて使用に耐えなくなると
か、また、被処理体上下の冷却速度差により内部
組織に差を生じさせ、目的とする製品特性が部分
的にしか得られなくなる等の品質低下を招来す
る。
The temperature difference between the top and bottom of the pressurized gas in the furnace chamber during the cooling process of the conventional apparatus described above induces non-uniform cooling of the object to be processed in the top and bottom, and this non-uniform cooling causes distortion in the object to be processed, such as thin objects. In such cases, the processed object may become unusable due to distortion, or the difference in cooling rate between the upper and lower parts of the processed object may cause differences in internal structure, resulting in partial loss of desired product characteristics. This results in a decline in quality, such as being only available in the market.

そして、上記欠点は被処理体が大型であるほ
ど、その高さが高いほど助長され顕著となる。
The above-mentioned drawbacks become more pronounced and more pronounced as the object to be processed becomes larger and taller.

本考案は上記問題点に鑑み、HIP処理後の冷却
工程において、その冷却時間を短縮してなお、被
処理体を均一に冷却し得る熱間静水圧加圧装置の
提供を目的とするものである。
In view of the above-mentioned problems, the present invention aims to provide a hot isostatic pressurizing device that can shorten the cooling time and uniformly cool the object to be processed in the cooling process after HIP processing. be.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するための本考案にかかる熱
間静水圧加圧装置は、高圧筒1と上蓋2、下蓋2
とにより画成される高圧室4内に、断熱層5と、
その内側にヒータ6を周設して炉室7となし、か
つ、前記断熱層5を気密構造の外側ケーシング8
と内側ケーシング9との少くとも2つの倒立コツ
プ状ケーシングを含んで構成し、外側ケーシング
8上部に開閉可能なガス通路21を、内側ケーシ
ング9上部にガス通路22を設けると共に、前記
内外ケーシング8,9のガス通路21,22間を
ガス流通可能に、かつ該断熱層5下端部を気密に
構成した熱間静水圧加圧装置において;その上端
と前記断熱層5間に気体流通自由な間隔を隔て、
前記ヒータ6の内側に周設された案内筒10と;
前記下蓋3に支持部材を介しており支持され、被
処理体12を支持する台板11と;その下部を前
記台板11にて区画され、前記案内筒10に囲周
されて画成され、被処理体12を収容する空間を
備えた処理室13と;前記処理室13下方に設け
られ、前記台板11を経て該処理室13と前記炉
室7とを連通するガス流路23と;前記ガス流路
23における前記台板11下方に配設され、駆動
手段にて回転される攪拌フアン24と;前記炉室
7の下部に設けられ、前記断熱層5外側の高圧室
4と該炉室7とを連通する下部ガス流路25と;
前記下部ガス流路25に配設され、駆動手段にて
回転される環流フアン26と設けたことを特徴と
するものである。
The hot isostatic pressurizing device according to the present invention to solve the above problems consists of a high pressure cylinder 1, an upper lid 2, a lower lid 2,
In the high pressure chamber 4 defined by a heat insulating layer 5 and
A heater 6 is provided around the inner side to form a furnace chamber 7, and the heat insulating layer 5 is formed into an airtight outer casing 8.
The structure includes at least two inverted cup-shaped casings, ie, an inner casing 9 and a gas passage 21 that can be opened and closed in the upper part of the outer casing 8 and a gas passage 22 in the upper part of the inner casing 9. In a hot isostatic pressurizing device in which gas can flow between the gas passages 21 and 22 of No. 9, and the lower end of the heat insulating layer 5 is configured to be airtight; Separation,
a guide cylinder 10 disposed around the inside of the heater 6;
a base plate 11 that is supported by the lower lid 3 via a support member and supports the object to be processed 12 ; , a processing chamber 13 having a space for accommodating the object to be processed 12; and a gas passage 23 provided below the processing chamber 13 and communicating the processing chamber 13 and the furnace chamber 7 via the base plate 11. ; a stirring fan 24 disposed below the base plate 11 in the gas flow path 23 and rotated by a driving means; and a lower gas passage 25 communicating with the furnace chamber 7;
The present invention is characterized in that it is provided with a circulation fan 26 disposed in the lower gas passage 25 and rotated by a driving means.

〔作用〕[Effect]

述上の構成を具備する本考案HIP装置はまず、
外側ケーシング8上部のガス通路21を閉塞し、
断熱層5内部の圧媒ガスの対流を抑制すること
で、該断熱層5にその断熱効果を果たせ得る状態
とし、既知の手法によつてHIP処理を行う。
The HIP device of the present invention having the above-mentioned configuration first has the following features:
The gas passage 21 in the upper part of the outer casing 8 is closed,
By suppressing the convection of the pressure medium gas inside the heat insulating layer 5, the heat insulating layer 5 is brought into a state where it can achieve its heat insulating effect, and HIP processing is performed using a known method.

そして、HIP処理終了後の冷却工程に移行する
と、断熱層5外側ケーシング8上部のガス通路2
1を開くと共に、攪拌フアン24および環流フア
ン26の回転を開始し、攪拌フアン24にて処理
室13内の圧媒ガスをその下方より炉室7側に送
り、環流フアン25にて断熱層5外側の高圧室4
側の圧媒ガスを炉室7側に送る。
Then, when moving to the cooling process after the HIP process, the gas passage 2 in the upper part of the heat insulating layer 5 outer casing 8
1 is opened, the rotation of the stirring fan 24 and the reflux fan 26 is started, and the stirring fan 24 sends the pressurized gas in the processing chamber 13 from below to the furnace chamber 7 side, and the reflux fan 25 feeds the heat insulating layer 5. outer hyperbaric chamber 4
The pressure medium gas on the side is sent to the furnace chamber 7 side.

このとき、高圧室4内の圧媒ガスは以下の作用
を受けると共に、炉室7を冷却する作用をなす。
At this time, the pressure medium gas in the high pressure chamber 4 is subjected to the following effects, and also has the effect of cooling the furnace chamber 7.

環流フアン26にて炉室7に強制的に送り込
まれた圧媒ガスは炉室7内を上昇し、断熱層5
の内外ケーシング8,9上部に設けられたガス
通路21,22を経て断熱層5外へ流出し、断
熱層5と上蓋2および高圧筒1間の間隙を経て
流下し、その過程にて低温なる上蓋2と高圧筒
1の内壁と接触熱交換し温度低下した後、炉室
7下部に設けられた下部ガス流路25を経て炉
室7内に環戻する。
The pressurized gas forced into the furnace chamber 7 by the circulation fan 26 rises inside the furnace chamber 7 and passes through the heat insulating layer 5.
The gas flows out of the heat insulating layer 5 through the gas passages 21 and 22 provided on the upper parts of the inner and outer casings 8 and 9, flows down through the gaps between the heat insulating layer 5, the upper lid 2, and the high-pressure cylinder 1, and becomes low temperature in the process. After contact heat exchange with the upper lid 2 and the inner wall of the high-pressure cylinder 1 to lower the temperature, the gas is returned to the furnace chamber 7 through a lower gas passage 25 provided at the lower part of the furnace chamber 7.

炉室7内は上記断熱層5外側にて熱交換し温度
低下した後、その下方より上方へ抜ける圧媒ガス
の強制環流にて熱を奪われ効率良く冷却される。
After the temperature inside the furnace chamber 7 is lowered through heat exchange outside the heat insulating layer 5, heat is removed by the forced circulation of the pressurized gas that escapes from the bottom to the top, and the furnace is efficiently cooled.

また、この冷却効果は環流フアン26の回転数
制御による流量加減にて広範囲に設定自由であ
る。
Furthermore, this cooling effect can be freely set within a wide range by adjusting the flow rate by controlling the rotation speed of the circulation fan 26.

案内筒10に囲周された処理室13内の圧媒
ガスをその下方に設けたガス流路23を経て攪
拌フアン24にて炉室7側に強制的に送り出す
と、炉室7内の圧媒ガスは案内筒10上開口部
より流入し、案内筒10と被処理体12間を流
下し、処理室13下方のガス流路23より流出
し、前記炉室7内を上昇する強制環流と合流し
て上方に導かれる。
When the pressure medium gas in the processing chamber 13 surrounded by the guide cylinder 10 is forcibly sent to the furnace chamber 7 side by the stirring fan 24 through the gas flow path 23 provided below, the pressure in the furnace chamber 7 is reduced. The medium gas flows through the upper opening of the guide cylinder 10, flows down between the guide cylinder 10 and the object to be processed 12, flows out through the gas passage 23 below the processing chamber 13, and rises in the furnace chamber 7, forming a forced circulation. They join together and lead upwards.

すなわち、炉室7上方に存して比較的高温な
る案内筒10上部より該案内筒10に流入した
圧媒ガスは被処理体12と熱交換しつつ流下し
て、台板11にて区画された処理室13下方の
ガス流路23より炉室7側に強制攪拌流として
流出し、該流出部位において前記熱交換して温
度低下した後炉室7下方より上昇する強制環流
と合流して混合・攪拌され、互に直接熱交換し
て均温化されつつ炉室7上方に上昇する。そし
てこの圧媒ガスの一部は、案内筒10上開口部
より流入し、被処理体12と熱交換しつつ流下
し、下方のガス流路23より送り出されて上記
と同じ強制攪拌流としての作用をなす。
That is, the pressure medium gas that flows into the guide tube 10 from the upper part of the guide tube 10 which is located above the furnace chamber 7 and has a relatively high temperature, flows down while exchanging heat with the object to be processed 12, and is partitioned by the base plate 11. The gas flows out from the gas passage 23 below the processing chamber 13 to the furnace chamber 7 side as a forced stirring flow, and after the temperature is lowered by the heat exchange at the outflow site, it merges with the forced reflux flow rising from below the furnace chamber 7 and mixes. - They are stirred and rise above the furnace chamber 7 while being temperature-uniformed by direct heat exchange with each other. A part of this pressure medium gas flows in from the upper opening of the guide tube 10, flows down while exchanging heat with the object to be processed 12, and is sent out from the lower gas passage 23 to form the same forced stirring flow as above. act.

被処理体12を内包する処理室13下方の上
記強制攪拌流の流出部位より上方の炉室7内
は、上記両圧媒ガス流の混合・直接熱交換によ
り、その冷却効率が高められると共に、攪拌均
温化効果により、前記強制環流による下方先行
冷却が軽減される。
The cooling efficiency of the interior of the furnace chamber 7 above the outflow portion of the forced stirring flow below the processing chamber 13 containing the object to be processed 12 is increased by mixing and direct heat exchange of the two pressure medium gas flows, and The temperature equalization effect of stirring reduces the downward preliminary cooling caused by the forced circulation.

そしてまた、これら効果は攪拌フアン24の
回転数制御による流量加減にて広範囲に設定自
由である。
Further, these effects can be set freely over a wide range by adjusting the flow rate by controlling the rotation speed of the stirring fan 24.

案内筒10に囲周された処理室13内を流下
する圧媒ガスは被処理体12と接触して熱交換
し、温度上昇しつつ降下する。従つて、全体的
に下方より冷却が進展する炉室7内において
も、上記熱を補充しつつ降下する圧媒ガスに包
まれて冷却される被処理体12は、下方先行冷
却されることが抑制されて、上下均等して冷却
される。
The pressure medium gas flowing down inside the processing chamber 13 surrounded by the guide cylinder 10 comes into contact with the object to be processed 12 to exchange heat, and descends while increasing in temperature. Therefore, even in the furnace chamber 7, where cooling progresses from below as a whole, the object to be processed 12, which is cooled while being surrounded by the descending pressure medium gas while replenishing the heat, can be pre-cooled downward. It is suppressed and cooled evenly on the top and bottom.

さらには、攪拌フアン24による流量を著し
く増大させることにより、炉室7の上下方向の
温度差をより縮めることが可能である。
Furthermore, by significantly increasing the flow rate of the stirring fan 24, it is possible to further reduce the temperature difference between the top and bottom of the furnace chamber 7.

述上のように本考案HIP装置はその冷却工程に
おいて、断熱層5内外を経る圧媒ガスの強制環
流を形成して、低温なる断熱層5外にて熱交換し
て温度低下した圧媒ガスを断熱層5内の炉室7に
環流させることで、炉室7内の冷却速度を高める
ことを得、案内筒10に囲周された処理室13
上部の比較的高温なる圧媒ガスを該案内筒10と
被処理体12間を経て、その下方より強制的に流
出させ、該強制ガス流と前記強制環流とを合流さ
せて互に混合・攪拌することで、該合流部上の炉
室7内の圧媒ガスについて、混合・直接熱交換に
てその冷却効率を高めると共に、攪拌・均温化す
る効果を得、被処理体12の熱を奪い、熱を補
充しつつ降下する圧媒ガス流にて被処理体12を
冷却することで、被処理体の上下不均等冷却を抑
制することを得、これら効果の相乗にてその冷却
速度を高めてなお、被処理体を均等冷却し得るも
のである。
As mentioned above, in the cooling process, the HIP device of the present invention forms a forced circulation of the pressurized gas through the inside and outside of the heat insulating layer 5, and exchanges heat outside the heat insulating layer 5, which is at a low temperature, to reduce the temperature of the pressure medium gas. By circulating the gas into the furnace chamber 7 within the heat insulating layer 5, the cooling rate within the furnace chamber 7 can be increased, and the processing chamber 13 surrounded by the guide tube 10
The relatively high temperature pressure medium gas in the upper part is forced to flow out from below through between the guide tube 10 and the object to be treated 12, and the forced gas flow and the forced reflux flow are combined and mixed and stirred together. By doing so, the cooling efficiency of the pressure medium gas in the furnace chamber 7 above the merging section is increased through mixing and direct heat exchange, and the effect of stirring and temperature equalization is obtained, thereby reducing the heat of the object to be processed 12. By cooling the object to be processed 12 with the descending pressure medium gas flow while removing heat and replenishing heat, uneven cooling of the object to be processed in the upper and lower sides can be suppressed, and the synergistic effect of these effects increases the cooling rate. Even if the temperature is increased, the object to be processed can be cooled uniformly.

〔実施例〕〔Example〕

以下、図面を参照して本考案HIP装置の実施例
について説明する。
Hereinafter, embodiments of the HIP device of the present invention will be described with reference to the drawings.

第1図は本考案装置の第1実施例であつて、第
1図において、1は高圧筒、2は上蓋、3は下蓋
であつて、これら各部材にて高圧室4が画成さ
れ、この内部に断熱層5およびその内側にヒータ
6を周設することで炉室7を形成してHIP装置の
主要部が構成されており、被処理体12を下蓋3
上の下部断熱部36aを備えた支持部材36に支
持れた台板11上に載置してHIP処理が行われ
る。
FIG. 1 shows a first embodiment of the device of the present invention. In FIG. 1, 1 is a high-pressure cylinder, 2 is an upper cover, and 3 is a lower cover, and a high-pressure chamber 4 is defined by each of these members. A heat insulating layer 5 and a heater 6 are provided inside the heat insulating layer 5 to form a furnace chamber 7, which constitutes the main part of the HIP apparatus.
The HIP process is performed by placing it on the base plate 11 supported by the support member 36 having the upper lower heat insulating part 36a.

そして、上記断熱層5は倒立コツプ状の内外ケ
ーシング8,9を含んで、その下端部において金
属リング32aと溶接等により気密に結合するこ
とによつて構成されており、内外ケーシング8,
9間には断熱材が充填されてある。
The heat insulating layer 5 includes inverted cup-shaped inner and outer casings 8 and 9, which are airtightly connected to a metal ring 32a by welding or the like at the lower end thereof.
The spaces between the holes are filled with insulation material.

なお、上記内外ケーシング8,9は金属製の気
密な構成のものであつて、その上部にガス通路2
1,22がそれぞれ設けられ、また内外ケーシン
グ8,9のガス通路21,22間はガス流通可能
とされてあり、かつ外側ケーシング8上部のガス
通路21は上蓋2に装設されたシリンダ31の上
下動自由なピストン軸下端に取付けられた弁30
にて開閉される。
The inner and outer casings 8 and 9 are made of metal and have an airtight structure, and a gas passage 2 is provided in the upper part of the inner and outer casings 8, 9.
1 and 22 are provided respectively, and gas can flow between the gas passages 21 and 22 of the inner and outer casings 8 and 9, and the gas passage 21 in the upper part of the outer casing 8 is connected to the cylinder 31 installed in the upper lid 2. Valve 30 attached to the lower end of the piston shaft that can move freely up and down
It will be opened and closed at

また、上記金属リング32aはその下端を下蓋
3に取付けられ断熱層5を支持すると共に、その
内側にリング状に張出したリブと、リブ下方にガ
ス通路とを設け、断熱層5外側の高圧室4と炉室
7側とを連通する下部ガス流路25の一部を形成
するものである。
The lower end of the metal ring 32a is attached to the lower lid 3 to support the heat insulating layer 5, and a ring-shaped rib is provided inside the metal ring 32a, and a gas passage is provided below the rib to prevent high pressure outside the heat insulating layer 5. It forms a part of the lower gas passage 25 that communicates the chamber 4 and the furnace chamber 7 side.

なお、下蓋3は互に気密にかつ挿脱可能な内下
蓋3aと外下蓋3bとにより構成されてあつて、
前記台板11の支持部材36は内下蓋3aに、前
記断熱層5を支持する金属リング32aは外下蓋
3aにそれぞれ取付けられている。
The lower lid 3 is composed of an inner lower lid 3a and an outer lower lid 3b that can be inserted into and removed from each other airtightly.
The support member 36 of the base plate 11 is attached to the inner lower cover 3a, and the metal ring 32a supporting the heat insulating layer 5 is attached to the outer lower cover 3a.

10は案内筒であつて、該案内筒10はその上
端と断熱層5間に間隔を隔て、ヒータ6内側に配
設され、その内部に被処理体12を収容する処理
室13を備えた金属製筒で、下端をその中央部に
ガス流通孔33を設けた台板11と気密に接続・
支持されている。
Reference numeral 10 denotes a guide tube, and the guide tube 10 is a metal tube disposed inside the heater 6 with a gap between its upper end and the heat insulating layer 5, and has a processing chamber 13 therein for accommodating the object to be processed 12. It is made of a cylinder, and its lower end is airtightly connected to the base plate 11 having a gas flow hole 33 in its center.
Supported.

なお、本実施例においては、案内筒10と台板
11とをステンレス鋼(SUS310)製とし、かつ
互の接続部に嵌合部を設け分離可能に接続した
が、これらは気体抵透過性で耐圧・耐熱性のある
部材であれば、適宜、温度条件等を考慮の上、他
の部材が選択されてもよく、また互の接続方法つ
いては熔接等で一体的に接続されてもよいが、被
処理体の装脱を容易とするため分離可能であるこ
とが望ましい。
In this example, the guide cylinder 10 and the base plate 11 are made of stainless steel (SUS310), and a fitting part is provided at the mutual connection part to connect them so that they can be separated. Other members may be selected as long as they are pressure-resistant and heat-resistant, taking into account temperature conditions, etc., and may be integrally connected by welding or the like. It is desirable that it be separable in order to facilitate loading and unloading of the object to be processed.

そしてまた、台板11には中央部に単一の貫通
孔を設けてガス流路33とするものとしたが、こ
れは被処理体12の支持の妨げにならない限り、
その上下を貫通する多数のガス孔であつてもよ
い、ただし被処理体12下面に接触するガス流が
形成されるよう構成されることが望ましい。
Furthermore, a single through hole is provided in the center of the base plate 11 to serve as a gas flow path 33, but as long as this does not interfere with the support of the object to be processed 12,
There may be a large number of gas holes passing through the upper and lower sides of the gas hole, but it is preferable that the gas flow is formed so as to come into contact with the lower surface of the object to be processed 12 .

24は攪拌フアンであつて、該攪拌フアン24
は台板11下面と支持部材36の断熱部36aと
の間に設けた空間、すなわち台板11中央ガス流
通孔33を介して処理室13と連通し、かつ炉室
7側とガス流通自由としたガス流路23内に配設
されたシロツコフアンで、その回転により台板1
1中央部ガス通路33を介し処理室13の圧媒ガ
スを外周方向、すなわち炉室13側に送り出すも
のである。
24 is a stirring fan;
is a space provided between the lower surface of the base plate 11 and the heat insulating part 36a of the support member 36, that is, a space that communicates with the processing chamber 13 via the central gas flow hole 33 of the base plate 11, and is free to communicate gas with the furnace chamber 7 side. The rotation of the Sirotskov fan disposed in the gas flow path 23 causes the base plate 1 to
1, the pressurized gas in the processing chamber 13 is sent out toward the outer circumference, that is, toward the furnace chamber 13 through the central gas passage 33.

32bはガス流路板であつて、該ガス流路板3
2bは台板11の支持部材36の断熱部36a下
面と下蓋3との間に設けた空間に、その上下にガ
ス流通自由な間隔を隔てて配設され、その中央に
ガス流通穴を備え、かつその外周において前記断
熱層5を支持する金属リング32aのリブ内径と
嵌合するものである。該ガス流路板32bは上記
台板11の支持部材に取付られてあつて、前記金
属リング32aと嵌合することで、炉室7下部に
おいて断熱層5外側の高圧室4と、その中央ガス
流通穴を経て炉室7へ連通する下部ガス流路25
を構成するものである。
32b is a gas flow path plate, and the gas flow path plate 3
2b is arranged in a space provided between the lower surface of the heat insulating part 36a of the support member 36 of the base plate 11 and the lower lid 3, with a space between the upper and lower sides allowing free gas flow, and is provided with a gas flow hole in the center. , and its outer periphery fits into the inner diameter of the rib of the metal ring 32a that supports the heat insulating layer 5. The gas passage plate 32b is attached to the support member of the base plate 11, and by fitting with the metal ring 32a, the gas passage plate 32b connects the high pressure chamber 4 outside the heat insulating layer 5 at the lower part of the furnace chamber 7 and the central gas A lower gas flow path 25 communicating with the furnace chamber 7 through the communication hole
It constitutes.

26は環流フアンであつて、該環流フアン26
は上記ガス流路板32bの中央ガス流通穴部に配
設され、その回転により圧媒ガスを上方向、すな
わち断熱層5外側の高圧室4側の圧媒ガスを炉室
7側に送るものである。
26 is a reflux fan, and the reflux fan 26
is disposed in the central gas flow hole of the gas flow path plate 32b, and its rotation sends the pressure medium gas upward, that is, the pressure medium gas on the high pressure chamber 4 side outside the heat insulating layer 5 to the furnace chamber 7 side. It is.

35は回転軸であつて、該回転軸35はそ下端
を下蓋3に装設された可変速モータ34と連結
し、台板11の支持部材36の断熱部36aに設
けられた貫通穴を経て上方のガス流路23内に達
するよう配設され、その上端部において攪拌フア
ン24と連結し、かつ下部において環流フアン2
6と連結してあり、可変速モータ34の回数を攪
拌フアン24と環流フアン26とに伝えると共
に、両フアン24,26を支持するものである。
Reference numeral 35 denotes a rotating shaft, the lower end of which is connected to a variable speed motor 34 installed in the lower cover 3, and is connected to a through hole provided in a heat insulating portion 36a of a support member 36 of the base plate 11. The gas flow path 23 is connected to the stirring fan 24 at its upper end, and the reflux fan 2 at its lower end.
6, which transmits the frequency of the variable speed motor 34 to the stirring fan 24 and the circulation fan 26, and supports both the fans 24, 26.

なお、本実施例においては攪拌フアン24、環
流フアン26および回転軸をNi基耐熱合金
(Inconel713C)よりなるものとしたが、これら
は温度条件を考慮した他の耐熱部材であつてもよ
い。
In this embodiment, the stirring fan 24, the circulation fan 26, and the rotating shaft are made of a Ni-based heat-resistant alloy (Inconel 713C), but they may be made of other heat-resistant members in consideration of temperature conditions.

また本実施例においては攪拌フアン24と環流
フアン26を1つのモータによる同軸回転のもの
としたが、これはコンパクトでかつシンプルな構
成となる利点を得んがためであつて、2つの駆動
手段を設け、それぞれの回転数を異なつて選択
し、それぞれ最適流量を得るべく加減速させる構
成とすることも好まし例であろう。
Further, in this embodiment, the stirring fan 24 and the circulation fan 26 are coaxially rotated by one motor, but this is done in order to obtain the advantage of a compact and simple configuration. It would also be a preferable example to provide a configuration in which the rotational speeds of each are selected differently and the respective speeds are accelerated and decelerated to obtain the optimum flow rate.

そして、攪拌フアン24と環流フアン26と
は、それぞれのガス流路23,25内に配設さ
れ、圧媒ガスの流れの方向がそれぞれ炉室7方向
である限り、その配設位置は選択自由であるが、
いずれにしても炉室7内の各同一円周上において
均等的な圧媒ガス流が得られるよう構成すること
が望ましい。
The stirring fan 24 and the reflux fan 26 are arranged in the respective gas passages 23 and 25, and as long as the flow direction of the pressure medium gas is in the direction of the furnace chamber 7, the arrangement positions thereof can be freely selected. In Although,
In any case, it is desirable to construct the furnace chamber 7 so that a uniform pressure gas flow can be obtained on each of the same circumferences.

述上の構成にて、HIP処理後の冷却工程におい
て、断熱層5上部のガス流路21を閉塞していた
弁30を開くと共に、モータ34にて攪拌フアン
24、環流フアン26を回転させる。
With the above-mentioned configuration, in the cooling process after the HIP process, the valve 30 that was blocking the gas flow path 21 above the heat insulating layer 5 is opened, and the stirring fan 24 and the circulation fan 26 are rotated by the motor 34.

このとき、 環流フアン26にて炉室7側に強制的に送り
込まれた圧媒ガスは炉室7内を上昇し、断熱層
5上部のガス通路21,22を経て断熱層5外
に流出し、断熱層5と上蓋2および高圧筒1間
の間隙を経て流下し、その過程にて低温なる上
蓋2と高圧筒1の内壁と接触熱交換し温度低下
した後、炉室7下部の下部ガス流路25を経て
炉室7内に環戻する。そして、これを繰り返し
循環させることにより炉室7内の冷却速度は大
巾に高められる。
At this time, the pressurized gas forced into the furnace chamber 7 by the circulation fan 26 rises inside the furnace chamber 7 and flows out of the insulation layer 5 through the gas passages 21 and 22 above the insulation layer 5. , flows down through the gap between the heat insulating layer 5, the upper lid 2, and the high-pressure cylinder 1, and in the process, the lower gas in the lower part of the furnace chamber 7 It is returned to the furnace chamber 7 through the flow path 25. By repeatedly circulating this, the cooling rate within the furnace chamber 7 can be greatly increased.

攪拌フアン24にて処理室13内の圧媒ガス
をその下方より炉室7側に送り出すと、比較的
に高温なる炉室7上部の圧媒ガスが処理室13
内を経、すなわち案内筒10と被処理体12間
を流下して処理室13下方のガス流路23より
炉室7側に流出し、該部位にて前記低温部を経
て温度低下した後炉室7下方より上昇する強制
環流と合流し、互に混合熱交換し均温化されて
上昇する。そしてこの混合・均温化された圧媒
ガスの一部は案内筒10上部より流入し、被処
理体12と熱交換しつつ流下する。
When the pressure medium gas in the processing chamber 13 is sent to the furnace chamber 7 side from below by the stirring fan 24, the pressure medium gas in the upper part of the furnace chamber 7, which has a relatively high temperature, flows into the processing chamber 13.
In other words, it flows down between the guide tube 10 and the object to be processed 12 and flows out to the furnace chamber 7 side from the gas flow path 23 below the processing chamber 13, and after passing through the low temperature section at that part and decreasing the temperature, the furnace It merges with the forced reflux rising from below the chamber 7, exchanges mixing heat with each other, becomes temperature equalized, and rises. A part of this mixed and temperature-uniformed pressure medium gas flows from the upper part of the guide cylinder 10 and flows down while exchanging heat with the object to be processed 12.

このガス流は、処理室13外側の炉室7圧媒
ガスを混合・直接熱交換させ冷却効率を高める
と共に、攪拌均熱化にてその下方先行冷却を軽
減する。
This gas flow mixes and directly exchanges heat with the pressure medium gas in the furnace chamber 7 outside the processing chamber 13 to improve the cooling efficiency, and reduces the downward preliminary cooling by stirring and equalizing heat.

被処理体12は上記下降圧媒ガス流にて冷却
されるが、該圧媒ガス流は被処理体12の熱を
奪いつつ降下、すなわち熱を補充しつつ降下す
るものであつて、全体的に下方より冷却が進展
する炉室7にある被処理体12を実質的に上下
均等に冷却する効果がある。
The object to be processed 12 is cooled by the descending pressure medium gas flow, but the pressure medium gas flow descends while removing heat from the object to be processed 12, that is, it descends while replenishing heat, and the overall This has the effect of substantially uniformly cooling the object 12 located in the furnace chamber 7, where cooling progresses from below.

述上のように、本実施例のHIP装置は断熱層内
外を経る強制環流にてその冷却速度が高められ、
かつ被処理室の案内筒内外を経る強制流にて圧媒
ガスの均温化効果と下降圧媒ガス流にて被処理体
を包んで冷却する効果とにより被処理体を上下均
等的に冷却し得るものであつて、またこれら効果
は被処理体の形状、処理温度等の条件変化に対
し、可変速モータの回転数を加減して対応するこ
とでより確実なものとし得るものである。
As mentioned above, in the HIP device of this example, the cooling rate is increased by forced circulation through the inside and outside of the heat insulating layer.
In addition, the object to be processed is cooled evenly above and below by the temperature equalization effect of the pressure medium gas by the forced flow passing through the inside and outside of the guide cylinder of the processing chamber, and the effect of wrapping and cooling the object to be processed by the descending pressure medium gas flow. Furthermore, these effects can be made more reliable by adjusting the rotational speed of the variable speed motor in response to changes in conditions such as the shape of the object to be processed and the processing temperature.

第1図に示した第1実施例では断熱層5を支持
する金属リング32aにその内側にリング状に張
出したリブと該リブ下方にガス流路とを設けて、
下部ガス流路25の一部を形成するものとした例
を示したが、この金属リング32aにて下部ガス
流路25の一部を形成させることなく、他の部分
に下部ガス流路27を形成した例を第2図に示
す。
In the first embodiment shown in FIG. 1, a metal ring 32a supporting the heat insulating layer 5 is provided with a ring-shaped rib projecting inside the metal ring 32a and a gas flow path below the rib.
Although an example has been shown in which a part of the lower gas passage 25 is formed by the metal ring 32a, the lower gas passage 27 may be formed in another part without forming a part of the lower gas passage 25 with this metal ring 32a. An example of the formation is shown in FIG.

本考案の第2図実施例を示す第2図において、
28bは断熱層5の支持部材である金属リング3
2を支持する支持リングであつて、該支持リング
28bは外下蓋3b上に配設してあり、該支持リ
ング28bの内側には、内下蓋3a上に配設され
台板11の支持部材36を支持する内支持リング
28bが設けてある。
In FIG. 2 showing an embodiment of the present invention,
28b is a metal ring 3 which is a support member of the heat insulating layer 5
2, the support ring 28b is disposed on the outer lower cover 3b, and inside the support ring 28b is a support ring disposed on the inner lower cover 3a to support the base plate 11. An inner support ring 28b is provided to support member 36.

前記両支持リング28a,28bはその下面と
内外下蓋3a,3b上面間にガス流通自由な間隔
を隔てることにより断熱層5外側の高圧室4と内
支持リング28aの内径孔を経て炉室7とを連通
する下部ガス流路27を形成するものである。
Both support rings 28a and 28b are provided with a space between their lower surfaces and the upper surfaces of the inner and outer lower lids 3a and 3b to allow gas to flow freely, so that the high pressure chamber 4 on the outside of the heat insulating layer 5 and the furnace chamber 7 are connected to the furnace chamber 7 through the inner diameter hole of the inner support ring 28a. A lower gas flow path 27 is formed to communicate with the lower gas flow path 27.

なお、上記下部ガス流路27を形成する両支持
リング28a,28bはそれぞれ内外下蓋3a,
3bと一体的に設けられてもよい。
The support rings 28a and 28b forming the lower gas passage 27 are connected to the inner and outer lower lids 3a and 28b, respectively.
It may be provided integrally with 3b.

この第2実施例は前述の第1実施例と同一の冷
却効果、あるいはまた断熱層5内外を経る強制ガ
ス環流と低温なる下蓋3との接触・熱交換をも確
実なものとし、より良い冷却効果を得るものであ
る。
This second embodiment has the same cooling effect as the first embodiment described above, and also ensures contact and heat exchange between the forced gas circulation passing through the inside and outside of the heat insulating layer 5 and the lower cover 3, which is at a low temperature, and is even better. This provides a cooling effect.

第3図は本考案の第3実施例を示すものである
が、以下に記述する構成および効果以外は前述の
第1図に示す第1実施例と同一のものである。
FIG. 3 shows a third embodiment of the present invention, which is the same as the first embodiment shown in FIG. 1 above, except for the configuration and effects described below.

第3図において、10′は案内筒であつて、該
案内筒10′はその構成・配置を前述第1実施例
と同一とするものであるが、その支持方法を異と
する、すなわちその上端に気体流通自由な間隔を
隔て、断熱層5に吊下保持されたものである。
In FIG. 3, reference numeral 10' denotes a guide tube, and the guide tube 10' has the same structure and arrangement as the first embodiment described above, but its supporting method is different, that is, its upper end They are suspended from a heat insulating layer 5 with a space between them allowing free gas flow.

11′は台板であつて、該台板11′は前記案内
筒10′下端部近傍においてその内側に嵌入し、
区画するものである。そして台板11′はその中
央部にガス流通孔33を設け、支持部材36を介
して下蓋3の内下蓋3aに支持されて、被処理体
12を支持する基本構成は前述第1実施例と同一
である。
Reference numeral 11' denotes a base plate, and the base plate 11' is fitted into the inside of the guide tube 10' near the lower end thereof;
It is meant to be divided. The base plate 11' has a gas flow hole 33 in its center and is supported by the inner lower cover 3a of the lower cover 3 via a support member 36, and the basic structure for supporting the object to be processed 12 is the same as that of the first embodiment described above. Same as example.

32Cはジヤバラ状にリングであつて、該ジヤ
バラ状リング32Cは炉室7下部に設けられた下
部ガス流路25において、外下蓋3b上の下部ガ
ス流路25を構成する金属リング32aの内側に
張出したリブの内径下端にその上端を取付けら
れ、内下蓋3b上の下部ガス流路25を構成する
ガス流路板32bの外周端部近傍の上面に接する
よう周設されている。
Reference numeral 32C denotes a ring shaped like a bellows, and the bellows shaped ring 32C is located inside the metal ring 32a constituting the lower gas passageway 25 on the outer lower cover 3b in the lower gas passageway 25 provided at the lower part of the furnace chamber 7. The upper end is attached to the inner diameter lower end of the rib projecting out, and the rib is provided so as to be in contact with the upper surface near the outer peripheral end of the gas passage plate 32b constituting the lower gas passage 25 on the inner lower lid 3b.

この第3実施例のHIP装置は前述第1実施例と
同等の冷却効果を有し、該構成にて、被処理体
の装・脱時において、案内筒10′を1体的に
装・脱することを不要とし、装置該における被処
理体の台板11′上への載置または取外しを容易
とする効果と、炉室7下部の下部ガス流路25
の外側・内側を構成する金属リング32aとガス
流路板32b間の気密接合を上下方向に弾性を有
するジヤバラ状リング32Cを介し行うことによ
り、冷却過程における両者の収縮変形差を補つ
て、該接合部位の気密性を確かなものとする効果
とを得るものである。
The HIP apparatus of the third embodiment has a cooling effect similar to that of the first embodiment, and with this configuration, the guide tube 10' is integrally loaded and unloaded when loading and unloading the object to be processed. This has the effect of making it easier to place or remove the object to be processed on the base plate 11' in the apparatus, and to eliminate the need for the lower gas flow path 25 in the lower part of the furnace chamber 7.
By establishing an airtight connection between the metal ring 32a and the gas flow path plate 32b, which constitute the outer and inner sides of the gas flow path plate, through the bellows-shaped ring 32C having elasticity in the vertical direction, the difference in shrinkage deformation between the two during the cooling process can be compensated for, and the This has the effect of ensuring the airtightness of the joint area.

第4図は本考案の第4実施例を示すものである
が、以下に記述する構成および効果以外は前述の
第1図に示す第1実施例と同一のものである。
FIG. 4 shows a fourth embodiment of the present invention, which is the same as the first embodiment shown in FIG. 1 above, except for the configuration and effects described below.

第4図において、41は台座であつて、該台座
41は下蓋3の内下蓋3a上に取付けられ、被処
理体12を支持するものである。
In FIG. 4, reference numeral 41 denotes a pedestal, which is attached to the inner lower lid 3a of the lower lid 3 and supports the object 12 to be processed.

42は案内筒であつて、該案内筒42はその上
端と断熱層5との間に気体流通自由な間隔を隔
て、ヒータ6内側に周設され、下端を下蓋3の外
下蓋3bに取付けられ、前記台座41を内包する
と共に、その内側に下部を台座41の上面に区画
され、被処理体12を収容する処理室13を備え
たものである。
Reference numeral 42 denotes a guide tube, and the guide tube 42 is provided around the inner side of the heater 6 with an interval allowing free gas flow between its upper end and the heat insulating layer 5, and its lower end is connected to the outer lower cover 3b of the lower cover 3. The processing chamber 13 is attached to the pedestal 41 and encloses the pedestal 41, and has a processing chamber 13 whose lower part is defined by the upper surface of the pedestal 41 and accommodates the object 12 to be processed.

前記台座41は、最上部にその上部と外周にガ
ス通路を設けた攪拌フアン24を内設する上フア
ン室43を備え、最下部にその内部を上下室に区
画され、その上下室それぞれの外周部にガス通路
を設け、その上下室の区画部に設けた環流穴部に
環流フアン26を内設する下フアン室44を備
え、かつ上フアン室43と下フアン室44との間
に断熱材を充填した断熱部45を備えたものであ
つて、前記案内筒42内に嵌合挿入されるもので
ある。
The pedestal 41 is provided with an upper fan chamber 43 at the top in which a stirring fan 24 with a gas passage is provided on the upper and outer periphery is installed, and at the lowermost part the interior is divided into upper and lower chambers, and the outer periphery of each of the upper and lower chambers is divided into upper and lower chambers. A gas passage is provided in the upper and lower chambers, and a lower fan chamber 44 is provided in which a reflux fan 26 is installed in a reflux hole provided in a partition between the upper and lower chambers, and a heat insulating material is provided between the upper and lower fan chambers 43 and 44. It is equipped with a heat insulating part 45 filled with a heat insulating part 45, and is fitted and inserted into the guide cylinder 42.

そして、前記案内筒42には、台座41の上フ
アン室43と下フアン室44外周のガス通路に対
応する位置にガス通路が設けられると共に、台座
41の下フアン室44の上下室区画部に対応する
部位の外周にて金属リング32a内側の張出しリ
ブ内径と気密に接合されている。
Gas passages are provided in the guide tube 42 at positions corresponding to the gas passages on the outer periphery of the upper fan chamber 43 and the lower fan chamber 44 of the pedestal 41, and in the upper and lower chamber division portions of the lower fan chamber 44 of the pedestal 41. The outer periphery of the corresponding portion is hermetically joined to the inner diameter of the overhanging rib inside the metal ring 32a.

なお、本実施例においては、台座41はその外
周においても全体的に案内筒42内側と嵌合する
構成としたが、適用にあたつてはこれらを挿脱を
容易とするため、全体的に遊嵌させ必要個所に軟
構造のシール部材を周設することが望ましい。
In this embodiment, the pedestal 41 is configured so that its outer periphery also fits inside the guide tube 42 as a whole, but in order to make it easy to insert and remove them in application, It is desirable to loosely fit and provide a soft sealing member around the necessary locations.

この第4実施例のHIP装置は前述第1実施例と
同等の効果を有するものであつて、特にこの装置
の構成においては、案内筒42および被処理体1
2の支持部材である台座41に高い剛性を保せ得
るものであつて、大型品を処理する大型装置に適
用して有用なものであり、また、被処理体12の
装・脱についても容易とするものである。
The HIP apparatus of the fourth embodiment has the same effect as the first embodiment, and in particular, in the configuration of this apparatus, the guide cylinder 42 and the object to be processed 1 are
The pedestal 41, which is the supporting member of the second part 2, can maintain high rigidity, and is useful when applied to large-sized equipment that processes large items. That is.

〔考案の効果〕[Effect of idea]

以上のように本考案にかかる熱間静水圧加圧装
置は、熱間静水圧加圧処理後の冷却工程におい
て、断熱層内5の炉室7下部に配設した環流フ
アン26にて断熱層5内外を経る制御可能な圧媒
ガスの強制環流を形成して、低温なる断熱層5外
側の上蓋2、高圧筒1の内壁と熱交換して温度低
下した圧媒ガスを断熱層5内の炉室7に導入・環
流させることで、炉室7内の冷却速度を高める効
果を得、案内筒10に囲周された処理室13下
方に設けたガス流路23より該流路23に配設し
た攪拌フアン24にて、比較的に高温なる炉室7
上部の圧媒ガスを案内筒10上開口部より該案内
筒10と被処理体12間を経て、炉室7側に強制
的に流出させ、該圧媒ガス流と前記断熱層5外側
の低温部にて熱交換して温度低下した後炉室7下
部より上昇する強制環流と合流させて互に混合・
攪拌することで、該合流部上の炉室7内の圧媒ガ
スを混合・直接熱交換にてその冷却効率を高める
と共に、攪拌・均温化する効果を得、被処理体
12の熱を奪い、熱を補充しつつ降下する圧媒ガ
ス流にて被処理体12を冷却することで、全体的
に下方より冷却が進展する炉室7内においてもそ
の上下不均等冷却を抑制することを得るものであ
る。
As described above, in the hot isostatic pressurizing device according to the present invention, in the cooling process after the hot isostatic pressurizing treatment, the heat insulating layer is By forming a controllable forced circulation of the pressurized gas through the inside and outside of the heat insulating layer 5 and exchanging heat with the upper lid 2 outside the low-temperature heat insulating layer 5 and the inner wall of the high-pressure cylinder 1, the pressure medium gas whose temperature has decreased is transferred to the inside of the heat insulating layer 5. By introducing and circulating the gas into the furnace chamber 7, an effect of increasing the cooling rate in the furnace chamber 7 can be obtained. The furnace chamber 7 becomes relatively hot due to the provided stirring fan 24.
The upper pressure medium gas is forced to flow out from the upper opening of the guide cylinder 10 through the space between the guide cylinder 10 and the object to be processed 12 to the furnace chamber 7 side, and the pressure medium gas flow and the low temperature outside the heat insulating layer 5 are After the temperature is lowered through heat exchange in
By stirring, the pressure medium gas in the furnace chamber 7 above the confluence part is mixed and directly heat exchanged to increase its cooling efficiency, and the effect of stirring and temperature equalization is obtained, thereby reducing the heat of the object to be processed 12. By cooling the object to be processed 12 with the descending pressure medium gas flow while removing heat and replenishing heat, it is possible to suppress uneven cooling in the vertical direction even in the furnace chamber 7 where cooling progresses from below as a whole. It's something you get.

述上の効果の相乗にて、本考案HIP装置は、そ
の冷却時間を大巾に短縮し、稼働率の向上に大き
く寄与すると共に、被処理体を均等に冷却し得
て、製品の品質安定化も併せて可能とするもので
あり、その実用的価値を高める実益大なるもので
ある。
By combining the above-mentioned effects, the HIP device of this invention greatly shortens the cooling time, greatly contributing to improving the operating rate, and evenly cooling the object to be processed, resulting in stable product quality. It also makes it possible to transform the system, which is of great practical benefit and increases its practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の第1実施例を示す正断面図で
ある。第2図は本考案の第2実施例を示す正断面
図である。第3図は本考案の第3実施例を示す正
断面図である。第4図は本考案の第4実施例を示
す正断面図である。第5図は従来装置の正断面図
である。第6図は従来装置の正断面図である。 1……高圧筒、2……上蓋、3……下蓋、4…
…高圧室、5……断熱層、6……ヒータ、7……
炉室、8……外側ケーシング、9……内側ケーシ
ング、10……案内筒、11……台板、12……
被処理体、13……処理室、21……ガス通路、
22……ガス通路、23……ガス通路、24……
攪拌フアン、25……下部ガス流路、26……環
流フアン。
FIG. 1 is a front sectional view showing a first embodiment of the present invention. FIG. 2 is a front sectional view showing a second embodiment of the present invention. FIG. 3 is a front sectional view showing a third embodiment of the present invention. FIG. 4 is a front sectional view showing a fourth embodiment of the present invention. FIG. 5 is a front sectional view of the conventional device. FIG. 6 is a front sectional view of the conventional device. 1...High pressure cylinder, 2...Upper lid, 3...Lower cover, 4...
...High pressure chamber, 5... Heat insulation layer, 6... Heater, 7...
Furnace chamber, 8... Outer casing, 9... Inner casing, 10... Guide cylinder, 11... Base plate, 12...
Object to be processed, 13...processing chamber, 21...gas passage,
22... Gas passage, 23... Gas passage, 24...
Stirring fan, 25...lower gas passage, 26...reflux fan.

Claims (1)

【実用新案登録請求の範囲】 高圧筒1と上蓋2、下蓋3とにより画成される
高圧室4内に、断熱層5と、その内側にヒータ6
を周設して炉室7となし、かつ、前記断熱層5を
気密構造の外側ケーシング8と内側ケーシング9
との少くとも2つの倒立コツプ上ケーシングを含
んで構成し、外側ケーシング8上部に開閉可能な
ガス通路21を、内側ケーシング9上部にガス通
路22を設けると共に、前記内外ケーシング8,
9のガス通路21,22間をガス流通可能に、か
つ該断熱層5下端部を気密に構成した熱間静水圧
加圧装置において; その上端と前記断熱層5間に気体流通自由な間
隔を隔て、前記ヒータ6の内側に周設された案内
筒10と;前記下蓋3に支持部材を介して支持さ
れ、被処理体12を支持する台板11と;その下
部を前記台板11にて区画され、前記案内筒10
に囲周されて画成され、被処理体12を収容する
空間を備えた処理室13と;前記処理室13下方
に設けられ、前記台板11を経て該処理室13と
前記炉室7とを連通するガス流路23と;前記ガ
ス流路23における前記台板11下方に配設さ
れ、駆動手段にて回転される攪拌フアン24と;
前記炉室7の下部に設けられ、前記断熱層5外側
の高圧室4と該炉室7とを連通する下部ガス流路
25と;前記下部ガス流路25に配設され、駆動
手段にて回転される環流フアン26とを設けたこ
とを特徴とする熱間静水圧加圧装置。
[Claims for Utility Model Registration] In a high pressure chamber 4 defined by a high pressure cylinder 1, an upper cover 2, and a lower cover 3, there is a heat insulating layer 5 and a heater 6 inside the high pressure chamber 4.
are provided around the furnace chamber 7, and the heat insulating layer 5 is connected to an outer casing 8 and an inner casing 9 having an airtight structure.
The structure includes at least two inverted top casings, with an openable and closable gas passage 21 in the upper part of the outer casing 8 and a gas passage 22 in the upper part of the inner casing 9, and the inner and outer casings 8,
In a hot isostatic pressurizing device in which gas can flow between the gas passages 21 and 22 of No. 9, and the lower end of the heat insulating layer 5 is configured to be airtight; A guide cylinder 10 is arranged around the inner side of the heater 6; a base plate 11 is supported by the lower lid 3 via a support member and supports the object to be processed 12; and a lower part thereof is connected to the base plate 11. The guide tube 10
a processing chamber 13 which is surrounded by and defined by and has a space for accommodating the object to be processed 12 ; a gas flow path 23 communicating with; a stirring fan 24 disposed below the base plate 11 in the gas flow path 23 and rotated by a driving means;
a lower gas passage 25 which is provided at the lower part of the furnace chamber 7 and communicates the high pressure chamber 4 outside the heat insulating layer 5 with the furnace chamber 7; 1. A hot isostatic pressurizing device characterized by being provided with a rotating circulation fan 26.
JP1362287U 1987-01-30 1987-01-30 Expired JPH0442719Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1362287U JPH0442719Y2 (en) 1987-01-30 1987-01-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1362287U JPH0442719Y2 (en) 1987-01-30 1987-01-30

Publications (2)

Publication Number Publication Date
JPS63123999U JPS63123999U (en) 1988-08-12
JPH0442719Y2 true JPH0442719Y2 (en) 1992-10-08

Family

ID=30802856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1362287U Expired JPH0442719Y2 (en) 1987-01-30 1987-01-30

Country Status (1)

Country Link
JP (1) JPH0442719Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5615019B2 (en) * 2009-11-20 2014-10-29 株式会社神戸製鋼所 Hot isostatic press
CN102781656B (en) * 2010-01-07 2015-05-13 艾维尔技术公司 High-pressure press

Also Published As

Publication number Publication date
JPS63123999U (en) 1988-08-12

Similar Documents

Publication Publication Date Title
US6307184B1 (en) Thermal processing chamber for heating and cooling wafer-like objects
JP3916490B2 (en) Hot isostatic pressing apparatus and hot isostatic pressing method
US5947718A (en) Semiconductor processing furnace
US6164963A (en) Semiconductor furnace processing vessel base
JP4204253B2 (en) Hot isostatic press
WO2005001360A1 (en) Gas cooling type vacuum heat treating furnace and cooling gas direction switching device
JP2007309626A (en) Hot isotropic pressure device
CN110446900B (en) Hot isostatic pressing device
JPS6224238Y2 (en)
US4359336A (en) Isostatic method for treating articles with heat and pressure
JP4280981B2 (en) Cooling gas air path switching device for vacuum heat treatment furnace
JPH0442719Y2 (en)
JPH0357183B2 (en)
US10858738B2 (en) Wafer boat cooldown device
JPH0726787B2 (en) Hot isostatic pressurizing device and cooling operation method of the device
CN210529024U (en) Carburizing equipment
JPH0512719Y2 (en)
JPH035838Y2 (en)
JPH0514157Y2 (en)
JPH0334638Y2 (en)
JPS5987032A (en) Apparatus for treating processed goods
JPH0829069A (en) Cooling method for hot isotropic pressure device
JPH0445031Y2 (en)
JPH0334637Y2 (en)
JPH09133470A (en) Hot isotropic pressure application device and cooling method of the device