JPH09133470A - Hot isotropic pressure application device and cooling method of the device - Google Patents

Hot isotropic pressure application device and cooling method of the device

Info

Publication number
JPH09133470A
JPH09133470A JP29140695A JP29140695A JPH09133470A JP H09133470 A JPH09133470 A JP H09133470A JP 29140695 A JP29140695 A JP 29140695A JP 29140695 A JP29140695 A JP 29140695A JP H09133470 A JPH09133470 A JP H09133470A
Authority
JP
Japan
Prior art keywords
furnace chamber
insulating layer
heat insulating
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29140695A
Other languages
Japanese (ja)
Inventor
Takahiko Ishii
孝彦 石井
Tomomitsu Nakai
友充 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29140695A priority Critical patent/JPH09133470A/en
Publication of JPH09133470A publication Critical patent/JPH09133470A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To shorten an in-furnace cooling time after HIP treatment without damaging an effective volume rate. SOLUTION: A reversed cup-shaped insulating layer 5 is provided inside a high pressure vessel 2, thereby surrounding a furnace compartment 6. This device is designed to treat an article 8 based on HIP treatment in the aforesaid furnace compartment 6 surrounded with the insulating layer. Gas distribution holes 15 and 16, which communicate the inside and the outside of the furnace compartment 6, are provided in the upper part and the lower part of an inner casing 11 in the insulation layer 5 where a second valve means is provided so as to open and close freely at least one of the distribution holes 15 and 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋳造品の欠陥除去
等に用いられる熱間等方圧加圧装置(以下、HIP装置
という)及び該HIP装置における熱間等方圧加圧処理
(以下、HIP処理という)後の被処理物及び圧媒ガス
の冷却方法に関し、具体的には、冷却時間を短縮し、高
圧容器の過昇温を確実に防止することができる熱間等方
圧加圧装置及びその冷却方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot isostatic pressing device (hereinafter referred to as a HIP device) used for removing defects in a cast product and a hot isostatic pressing process (hereinafter referred to as a HIP device) in the HIP device. , HIP treatment), specifically, a hot isotropic pressurization capable of shortening the cooling time and reliably preventing an excessive temperature rise of the high-pressure container. The present invention relates to a pressure device and a cooling method thereof.

【0002】[0002]

【従来の技術】近年、高温高圧下で種々の材料の処理を
行う要求が高まり、そのための装置としてHIP装置が
注目されている。このHIP装置によれば、例えば金属
粉末あるいはセラミック粉末などの粉末材料を高圧下で
焼結でき、大気圧あるいは真空下で焼結されたものに比
し、密度が大で、強度も高い等の多くの長所を有する。
また、HIP装置は、内部に多数の微視的空孔を有した
(時には肉眼で観測可能な大きな空孔も存在する)通常
品を高温高圧処理することにより、これらの空孔を完全
に、あるいは実用上支障のない程度に微細化または減少
させることが可能であり、結果的に強度の向上も可能で
鋳造欠陥の除去、品質の向上に大きな役割を果たす。
2. Description of the Related Art In recent years, there has been an increasing demand for processing various materials under high temperature and high pressure, and as a device therefor, a HIP device has attracted attention. According to this HIP device, for example, powder materials such as metal powder or ceramic powder can be sintered under high pressure, and have higher density and higher strength as compared with those sintered under atmospheric pressure or vacuum. It has many advantages.
Further, the HIP device has a large number of microscopic pores inside (sometimes there are large pores observable with the naked eye), and by subjecting the ordinary product to high temperature and high pressure treatment, these pores are completely removed. Alternatively, it can be refined or reduced to such an extent that it does not hinder practical use, and as a result, strength can be improved, which plays a major role in removing casting defects and improving quality.

【0003】これらのHIP装置は、基本的には、高圧
ガスを気密に封入できる高圧容器の内部に設置された倒
立コップ状の断熱層と、該断熱層内の炉室内に設けられ
たヒーターとを有する。また、高圧容器には、炉室内に
アルゴンガス(以下Arガスと略記する)等の圧媒ガス
を加圧注入するためのガス供給孔が開設されている。被
処理物は、炉室内で高温高圧の圧媒ガスによりHIP処
理される。上記の構成要素のうち、HIP装置の性能を
支配する重要なものは断熱層であり、高圧下という特殊
条件下にさらされることから通常の高温炉の断熱層とは
異なった構成が要求される。すなわち、この種の装置
で、圧力媒体として用いるArガスは、例えば196.
13Mpa(2000kg/cm2 )、1450℃の条
件下では、常温常圧のときに比し粘性は3.8倍に過ぎ
ないが、容積当りの熱容量は240倍以上に達する。こ
のように、Arガスは熱容量が極めて大きいにもかかわ
らず、流動性にも富んでいるため、対流による熱伝達量
は極めて大きい。従って、断熱層としては、炉室内の高
温ガスの炉室外への流出を抑制し、熱損失を低く抑える
ようにしたものが使用されている。
[0003] These HIP devices basically include an inverted cup-shaped heat insulating layer installed inside a high-pressure container capable of hermetically sealing high-pressure gas, and a heater provided in the furnace chamber inside the heat-insulating layer. Have. Further, a gas supply hole for pressurizing and injecting a pressure medium gas such as argon gas (hereinafter abbreviated as Ar gas) into the furnace chamber is provided in the high pressure vessel. The object to be processed is HIP-processed by the pressure medium gas of high temperature and high pressure in the furnace chamber. Of the above-mentioned components, the important one that controls the performance of the HIP device is the heat insulating layer, and since it is exposed to the special condition of high pressure, a structure different from the heat insulating layer of a normal high temperature furnace is required. . That is, in this type of device, the Ar gas used as the pressure medium is, for example, 196.
Under the conditions of 13 Mpa (2000 kg / cm 2 ) and 1450 ° C., the viscosity is only 3.8 times that at room temperature and pressure, but the heat capacity per volume reaches 240 times or more. As described above, since Ar gas has a very large heat capacity, it is also rich in fluidity, and therefore the amount of heat transfer by convection is extremely large. Therefore, as the heat insulating layer, a layer that suppresses the outflow of the high temperature gas in the furnace chamber to the outside of the furnace chamber and suppresses the heat loss to a low level is used.

【0004】しかし、このような断熱層を使用すると、
HIP処理後の冷却工程に時間がかかることとなるの
で、断熱層内の速やかな冷却を実現しようとした技術が
多々提案されている。その例として、特開昭59−87
032号公報に開示された技術がある。これを図7に示
す。図7におけるHIP装置は、高圧容器50の内部に
断熱層51を設置して該断熱層51内を炉室56とする
とともに、該断熱層51上部に蓄熱体58を設置し、前
記断熱層51の下方に流路開閉調節機構54を設置し、
前記炉室56内に被処理物を載置する処理台53と内筒
52及びヒーター57を配置し、該処理台53下方に圧
媒ガス攪拌用の強制攪拌手段55が設置されて構成され
ている。
However, when such a heat insulating layer is used,
Since the cooling process after the HIP process will take time, many technologies have been proposed to achieve rapid cooling in the heat insulating layer. As an example, JP-A-59-87
There is a technique disclosed in Japanese Patent No. 032. This is shown in FIG. In the HIP device shown in FIG. 7, a heat insulating layer 51 is installed inside the high-pressure vessel 50 to form a furnace chamber 56 inside the heat insulating layer 51, and a heat storage body 58 is installed above the heat insulating layer 51. A flow path opening / closing adjusting mechanism 54 is installed below the
A processing table 53 for placing an object to be processed, an inner cylinder 52, and a heater 57 are arranged in the furnace chamber 56, and a forced stirring means 55 for stirring a pressure medium gas is installed below the processing table 53. There is.

【0005】この技術(従来例の1)では、HIP処理
中は、(a)図に示すように流路開閉調節機構54を閉
じ、熱せられた圧媒ガスを炉室56から出ないようにし
ている。また、HIP処理後は炉室56内を冷却するた
め、(b)図に示すように流路開閉調節機構54を開
く。高温の圧媒ガスは断熱層51上部から蓄熱体58を
経て、断熱層51外に流出し、断熱層51と高圧容器5
0との空間を高圧容器50に抜熱されながら下降し、流
路開閉調節機構54を経て、圧媒ガス強制攪拌手段55
を経て、炉室56内に戻る。このようにして、炉室56
内の冷却を行っている。
In this technique (conventional example 1), during the HIP process, the flow path opening / closing adjusting mechanism 54 is closed as shown in FIG. 4 (a) so that the heated pressure medium gas does not come out of the furnace chamber 56. ing. Further, after the HIP process, the inside of the furnace chamber 56 is cooled, so that the flow path opening / closing adjusting mechanism 54 is opened as shown in FIG. The high-temperature pressure medium gas flows out of the heat insulating layer 51 from the upper portion of the heat insulating layer 51 through the heat storage body 58, and the heat insulating layer 51 and the high-pressure container 5
The space between 0 and 0 descends while being removed by the high-pressure container 50, passes through the flow path opening / closing adjusting mechanism 54, and the pressure medium gas forced stirring means 55.
And goes back into the furnace chamber 56. In this way, the furnace chamber 56
The inside is being cooled.

【0006】次に、また別の従来技術として特公昭62
−58770号公報に開示された技術を図8に示す。図
8におけるHIP装置は、高圧容器60の内部に断熱層
61を設置して該断熱層61内を炉室66とするととも
に、該炉室66内に内筒62とヒーター67及び第一圧
媒ガス強制攪拌手段65を設置し、前記高圧容器60の
内部下方に第二圧媒ガス強制攪拌手段68及び熱交換器
69が設置されている。
[0006] Next, as another conventional technique, Japanese Patent Publication No. 62-62
FIG. 8 shows the technique disclosed in Japanese Patent Laid-Open No. 58770. In the HIP device in FIG. 8, a heat insulating layer 61 is installed inside a high-pressure container 60 to form a furnace chamber 66 in the heat insulating layer 61, and an inner cylinder 62, a heater 67, and a first pressure medium are provided in the furnace chamber 66. A gas forced stirring means 65 is installed, and a second pressure medium gas forced stirring means 68 and a heat exchanger 69 are installed below the inside of the high pressure vessel 60.

【0007】この技術(従来例の2)では、HIP処理
後は、炉室66内を冷却するため、第1圧媒ガス強制攪
拌手段65及び第二圧媒ガス強制攪拌手段68を作動さ
せる。高温の圧媒ガスは、作業スペース63を上方から
下方に下降し、第一圧媒ガス強制攪拌手段65を経て、
内筒62の下方より断熱層61と内筒62との空間を上
昇する第一循環流と、断熱層61と内筒62との空間を
上昇し、断熱層61と高圧容器60との空間を高圧容器
60に抜熱されながら下降し、第二圧媒ガス強制攪拌手
段68を経て、熱交換器69を通り、断熱層61と内筒
62との空間で第一循環流と合流する第二循環流とで高
圧容器60内を循環する。このようにして、炉室66内
の冷却を行っている。
In this technique (conventional example 2), after the HIP process, the first pressure medium gas forced stirring means 65 and the second pressure medium gas forced stirring means 68 are operated in order to cool the inside of the furnace chamber 66. The high-temperature pressure medium gas descends from the working space 63 from the upper side to the lower side, passes through the first pressure medium gas forced stirring means 65, and
The first circulation flow that rises in the space between the heat insulation layer 61 and the inner cylinder 62 from below the inner cylinder 62, and the space between the heat insulation layer 61 and the inner cylinder 62 rises, and the space between the heat insulation layer 61 and the high-pressure container 60 is increased. The second pressure is lowered while being removed by the high-pressure container 60, passes through the second pressure-medium gas forced stirring means 68, passes through the heat exchanger 69, and joins with the first circulation flow in the space between the heat insulating layer 61 and the inner cylinder 62. It circulates in the high-pressure container 60 with the circulation flow. In this way, the inside of the furnace chamber 66 is cooled.

【0008】また、図示省略するけれども、別の従来技
術として実公昭62−24238号公報に開示された技
術があり、この技術は、断熱層が気密構造の外側ケーシ
ングと内側ケーシングを含んで構成され、外側ケーシン
グ上部にはガス通路が設けられかつ該ガス通路の開閉の
ための弁が設けられたものである。この技術(従来例の
3)においては、HIP処理中は前記ガス通路を弁によ
って閉じて炉内断熱効果を保持し、HIP処理後は、ガ
ス通路を開けて外側ケーシングと内側ケーシングの間に
ガス対流を生じさせて該ガスと上蓋・容器内壁との熱交
換により断熱層の冷却を行うことで炉室内の冷却時間を
短縮しようとするものであった。
Although not shown in the drawings, as another conventional technique, there is a technique disclosed in Japanese Utility Model Publication No. 62-24238. In this technique, a heat insulating layer includes an outer casing and an inner casing having an airtight structure. A gas passage is provided in the upper portion of the outer casing, and a valve for opening and closing the gas passage is provided. In this technique (conventional example 3), during the HIP process, the gas passage is closed by a valve to maintain the heat insulation effect inside the furnace, and after the HIP treatment, the gas passage is opened to open the gas between the outer casing and the inner casing. It has been attempted to shorten the cooling time in the furnace chamber by causing convection to cool the heat insulating layer by exchanging heat between the gas and the inner wall of the upper lid / container.

【0009】[0009]

【発明が解決しようとする課題】前記従来例の1による
HIP装置では、前記蓄熱体による抜熱で圧媒ガスは循
環開始時には速やかに冷却されるが、蓄熱体の温度が上
昇し、蓄熱体の温度と圧媒ガスの温度とが平衡状態に達
した後は、もはや蓄熱体は圧媒ガスの冷却作用は行わ
ず、むしろ放熱を行うようになり、冷却速度が極端に減
少するという問題があった。
In the HIP device according to the conventional example 1, the pressure medium gas is rapidly cooled at the start of circulation by heat removal by the heat storage body, but the temperature of the heat storage body rises, After the temperature of and the temperature of the pressure medium gas reach an equilibrium state, the heat storage body no longer cools the pressure medium gas, but rather radiates heat, which causes a problem that the cooling rate is extremely reduced. there were.

【0010】また、この課題を改善する技術としての従
来例の2においては圧媒ガス攪拌用の強制手段を二つ設
置していることから、装置自体の機構が複雑になるばか
りでなく、炉室内の作業容積を大幅に小さくするという
問題があった。更に、圧媒ガスの循環流路のパターンが
一種類しかないため、炉室内が平衡状態になっていくに
つれ、冷却速度が急速に低下し、効果的な炉室内の冷却
ができないという問題があった。
Further, in the conventional example 2 as a technique for improving this problem, since two forcing means for stirring the pressure medium gas are installed, not only the mechanism of the apparatus itself becomes complicated, but also the furnace There is a problem that the working volume in the room is significantly reduced. Furthermore, since there is only one pattern of the circulation path for the pressure medium gas, there is a problem that the cooling rate rapidly decreases as the furnace chamber becomes in an equilibrium state, and effective cooling of the furnace chamber cannot be performed. It was

【0011】更に、従来例の3にあっては、炉内と循環
ガス流との熱交換が少なくとも内側ケーシングを介して
の間接的熱交換となるため、特に冷却工程後半では冷却
効果が著しく減衰するという問題があった。そこで、本
発明は、有効炉内容積率を確保しつつ炉室内の急速かつ
効果的な冷却を可能ならしめたHIP装置及びその冷却
方法を提供することを目的とする。
Further, in the conventional example 3, the heat exchange between the inside of the furnace and the circulating gas flow is an indirect heat exchange through at least the inner casing, so that the cooling effect is significantly attenuated particularly in the latter half of the cooling process. There was a problem of doing. Therefore, it is an object of the present invention to provide a HIP device and a cooling method thereof, which enables rapid and effective cooling of a furnace chamber while ensuring an effective furnace interior volume ratio.

【0012】[0012]

【課題を解決するための手段】本発明は、高圧容器2の
内部に倒立コップ状で上部に通孔10を有し少なくとも
内外ケーシング11,12と該両ケーシング11,12
間で下部から上部に向かってガス流通可能とした断熱層
5を備えて該断熱層5内が炉室6とされ、前記通孔10
を開閉自在とする第1弁手段14を備え、前記炉室6内
の被処理物8に高温高圧の圧媒ガスを作用させる熱間等
方圧加圧装置において、前述の目的を達成するために、
次の技術的手段を講じた。
According to the present invention, at least the inner and outer casings 11 and 12 and the both casings 11 and 12 have an inverted cup shape inside the high-pressure container 2 and have a through hole 10 in the upper portion.
Between the lower part and the upper part, a heat insulating layer 5 that allows gas to flow is provided, and the inside of the heat insulating layer 5 serves as a furnace chamber 6, and the through hole 10
In order to achieve the above-mentioned object, a hot isotropic pressure pressurizing device is provided with a first valve means (14) for opening and closing, and applying a high-temperature and high-pressure pressure medium gas to an object (8) in the furnace chamber (6). To
The following technical measures were taken.

【0013】すなわち、本発明では、前記断熱層5にお
ける内ケーシング11の上部及び下部に、炉室6の内外
を連通するガス流通孔15,16を設け、該ガス流通孔
15,16の少なくとも一方を開閉自在とする第2弁手
段17を備えていることを特徴とするものであり、この
ように構成することによって、炉内が比較的高温状態で
ある冷却初期段階では、第2弁手段17は閉じた状態で
第1弁手段14のみを開にすることによって、圧媒ガス
を断熱層5内部を上昇させて断熱層5と高圧容器2との
間の空間を下降する流れで循環させて冷却を行う。
That is, in the present invention, gas passage holes 15 and 16 for communicating the inside and outside of the furnace chamber 6 are provided in the upper and lower portions of the inner casing 11 in the heat insulating layer 5, and at least one of the gas passage holes 15 and 16 is provided. Is provided with a second valve means 17 that can be opened and closed. With this configuration, the second valve means 17 is provided in the initial stage of cooling when the inside of the furnace is in a relatively high temperature state. By opening only the first valve means 14 in the closed state, the pressure medium gas is circulated in a flow of raising the inside of the heat insulating layer 5 and lowering the space between the heat insulating layer 5 and the high pressure container 2. Cool down.

【0014】この冷却初期段階では、炉内温度が充分に
高いうちであり、このときは、冷却速度も相応に大き
く、一方、高圧容器2の内壁と熱交換する循環ガス流
は、炉内ガス温度に比べれば低いので容器2の過昇温は
防止できるのであり、一方、冷却が進行し、炉内ガス温
がある程度低下して冷却処理後半では、第1弁手段14
だけでなく、第2弁手段17も開にすることによって、
炉内のガスそのものを循環させて冷却を加速するのであ
る(請求項1)。
In this initial stage of cooling, the temperature in the furnace is sufficiently high, and at this time, the cooling rate is also correspondingly high, while the circulating gas flow for heat exchange with the inner wall of the high-pressure vessel 2 is the gas in the furnace. Since the temperature is lower than the temperature, it is possible to prevent the temperature of the container 2 from rising excessively.
Not only by opening the second valve means 17,
The gas itself in the furnace is circulated to accelerate the cooling (Claim 1).

【0015】また、本発明では、前記第1弁手段14と
前記炉室6との間に、第1弁手段14に対する輻射熱遮
断手段20を設けたことを特徴とするものであり、この
ように構成することによって、第1弁手段14に対する
炉内高温部からの輻射熱をカットし、該弁の変形を防止
して耐久性を約束する(請求項2)。更に、本発明で
は、前記炉室6の下部に炉室均熱手段19を設けたこと
を特徴とするものであり、このように構成したことによ
り、急速冷却のときに上下温度差による被処理物の割
れ、組織不均一等を確実に防止する(請求項3)。
Further, the present invention is characterized in that radiant heat blocking means 20 for the first valve means 14 is provided between the first valve means 14 and the furnace chamber 6, and as described above. With this structure, the radiant heat from the high temperature part in the furnace to the first valve means 14 is cut, the deformation of the valve is prevented, and the durability is ensured (claim 2). Further, the present invention is characterized in that the furnace chamber soaking means 19 is provided in the lower part of the furnace chamber 6, and with such a configuration, the treatment target due to the temperature difference between the upper and lower sides during rapid cooling is provided. Definitely prevent cracking of the object, nonuniformity of the structure, etc. (Claim 3).

【0016】また、本発明による冷却方法では、冷却処
理前半では、前記圧媒ガスを断熱層5内部を上昇して断
熱層5と高圧容器2との間の空間を下降する流れで循環
させ、冷却処理後半では、前記圧媒ガスを炉室6内を上
昇して断熱層5と高圧容器2との間の空間を下降する流
れで循環させることを特徴とするものであり、このよう
に、冷却モードを2つにすることによって、冷却工程前
半だけでなく、炉室6内が平衡状態に近づいた後におい
ても、炉室6内の急速かつ効率的な冷却が実現でき、こ
れにより、作業サイクルの短縮が可能となり、総じて作
業効率の向上が実現されるだけでなく炉室有効容積率を
充分に確保できる(請求項4)。
In the cooling method according to the present invention, in the first half of the cooling process, the pressure medium gas is circulated in a flow that rises in the heat insulating layer 5 and descends in the space between the heat insulating layer 5 and the high pressure container 2, In the latter half of the cooling process, the pressure medium gas is circulated in a flow of rising in the furnace chamber 6 and descending in the space between the heat insulating layer 5 and the high-pressure container 2, as described above. By using two cooling modes, rapid and efficient cooling of the furnace chamber 6 can be realized not only in the first half of the cooling process but also after the furnace chamber 6 approaches the equilibrium state. The cycle can be shortened, the work efficiency can be improved as a whole, and the furnace chamber effective volume ratio can be sufficiently secured (claim 4).

【0017】更に、本発明による冷却方法では、冷却処
理前半及び後半を通じて、更に前記圧媒ガスを炉室6内
で対流する流れでも循環させることを特徴とするもので
あり、このように構成したことにより、被処理物の割れ
等を確実に防止しての急速冷却を確保する(請求項
5)。
Further, the cooling method according to the present invention is characterized in that the pressure medium gas is further circulated in the convection flow in the furnace chamber 6 throughout the first half and the second half of the cooling process. This ensures rapid cooling by reliably preventing cracks and the like in the object to be treated (Claim 5).

【0018】[0018]

【発明の実施の形態】図を参照して本発明の好ましい実
施の形態につき説明すると、図1及び図2は本発明の第
1の形態であり、図1は冷却処理前半のモードを示し、
図2は冷却処理後半のモードを示している。この図1及
び図2において、熱間等方圧加圧装置1は、円筒形の高
圧容器2の上・下開口に上蓋3及び下蓋4がそれぞれ図
外のシール手段を介して気密に嵌合されている。
BEST MODE FOR CARRYING OUT THE INVENTION A preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 and FIG. 2 show a first embodiment of the present invention, and FIG.
FIG. 2 shows the second half of the cooling process. 1 and 2, in a hot isotropic pressure pressurizing device 1, an upper lid 3 and a lower lid 4 are airtightly fitted into upper and lower openings of a cylindrical high-pressure container 2 through sealing means (not shown). Have been combined.

【0019】高圧容器2の内部には倒立コップ状の断熱
層5が備えられていて、該断熱層5で取り囲まれた空間
が炉室6とされ、この炉室6には支持台7を介して被処
理物8が内装され、この被処理物8は、炉室6に導入さ
れたArガス等の圧媒ガスとヒーター9との協働による
高温高圧の圧媒ガスを作用してHIP処理が可能とされ
ている。
Inside the high-pressure vessel 2, an inverted cup-shaped heat insulating layer 5 is provided, and a space surrounded by the heat insulating layer 5 is a furnace chamber 6, and a support base 7 is interposed in the furnace chamber 6. The object 8 to be processed is installed inside, and the object 8 to be processed is subjected to the HIP process by operating the pressure medium gas such as Ar gas introduced into the furnace chamber 6 and the pressure medium gas of high temperature and high pressure in cooperation with the heater 9. Is possible.

【0020】断熱層5は、上部に通孔10を有し少なく
とも内外ケーシング11,12と該両ケーシング11,
12間で下部から上部に向かってガスを流通可能とした
ものであり、本実施の形態では、外側ケーシング12は
原則的に金属製であって気密構造であるとともに、一方
内側ケーシング11は気密構造であり、例えば温度条件
に応じてステンレス、ニッケル合金、モリブデン、グラ
ファイト等で作られており、内外ケーシング11,12
間には、黒鉛質材料、セラミックスファイバー等の断熱
材13を充填することにより必要な断熱性能が確保され
ている。
The heat insulating layer 5 has a through hole 10 in the upper portion thereof, and at least the inner and outer casings 11 and 12 and the both casings 11 and 12.
Gas is allowed to flow from the lower part to the upper part between the outer casings 12. In the present embodiment, the outer casing 12 is made of metal in principle and has an airtight structure, while the inner casing 11 has an airtight structure. The inner and outer casings 11, 12 are made of stainless steel, nickel alloy, molybdenum, graphite, etc. according to the temperature conditions.
A necessary heat insulating performance is secured by filling a heat insulating material 13 such as a graphite material or ceramic fiber in the space.

【0021】断熱層5の上部に形成した通孔10は、第
1弁手段14によって開閉自在であり、該第1弁手段1
4は、上蓋3に装着されている伸縮シリンダ14Aと、
そのピストンロッドに装着しているポペット弁14Bと
から構成されている。断熱層5における内側ケーシング
11にはその上部及び下部に、炉室6の内外を連通する
ガス流通孔15,16が形成されていて、該ガス流通孔
15,16の少なくとも一方、本実施の形態では下部の
ガス流通孔16を開閉自在とする第2弁手段17を備
え、該第2弁手段17は、電動モータ、電動シリンダ等
の駆動体17Aと弁部17Bとから構成されている。
The through hole 10 formed in the upper part of the heat insulating layer 5 can be opened and closed by the first valve means 14, and the first valve means 1
4 is a telescopic cylinder 14A attached to the upper lid 3,
It is composed of a poppet valve 14B attached to the piston rod. The inner casing 11 of the heat insulating layer 5 is formed with gas circulation holes 15 and 16 at the upper and lower portions thereof so as to communicate the inside and outside of the furnace chamber 6, and at least one of the gas circulation holes 15 and 16 is provided in the present embodiment. In addition, a second valve means 17 for opening and closing the lower gas flow hole 16 is provided, and the second valve means 17 is composed of a driving body 17A such as an electric motor and an electric cylinder and a valve portion 17B.

【0022】図1及び図2に示しているHIP装置1に
おいては、炉室6を脱気してから圧媒ガスを導入し、第
1・2弁手段14,17をともに閉じた状態で被処理物
8に高温高圧の圧媒ガスを作用させることによりHIP
処理がなされ、HIP処理後は冷却工程に移行される。
HIP処理後の冷却工程前半(冷却処理前半)における
圧媒ガスの流れを図1を用いて説明する。
In the HIP apparatus 1 shown in FIGS. 1 and 2, the furnace chamber 6 is degassed and then the pressure medium gas is introduced, and the first and second valve means 14 and 17 are both closed. HIP is made by applying a high-temperature and high-pressure pressure medium gas to the processed material 8.
After the HIP process, the cooling process is performed.
The flow of the pressure medium gas in the first half of the cooling process (first half of the cooling process) after the HIP process will be described with reference to FIG.

【0023】HIP処理後、炉室6内の冷却を開始する
際、第1弁手段14を開くと、炉室6内外の圧媒ガスの
密度差による自然対流によって断熱層5の内部を上昇し
て通孔10を介して上蓋3に接触するとともに、断熱層
5における外側ケーシング12と高圧容器2の内面との
間の空間を下降する流れで循環させ、上蓋3との接触、
高圧容器2の内面への接触等によって抜熱され、モード
Aの冷却がなされる。
After the HIP process, when the cooling of the furnace chamber 6 is started, if the first valve means 14 is opened, the inside of the heat insulating layer 5 rises due to natural convection due to the density difference of the pressure medium gas inside and outside the furnace chamber 6. Contact the upper lid 3 through the through hole 10 and circulate the space between the outer casing 12 and the inner surface of the high-pressure container 2 in the heat insulating layer 5 in a descending flow to contact the upper lid 3.
The heat is removed by contact with the inner surface of the high-pressure vessel 2 and the mode A is cooled.

【0024】このモードAにおいては、炉内温度が高い
内は冷却速度も相応に大きく、一方、上蓋3及び高圧容
器2と熱交換する循環ガス流A1は、炉内ガス温に比べ
て低いことから容器2等が過昇温されることはない。し
かし、時間が経ち冷却が進行するにつれて炉室6の内外
は平衡状態に近づき、冷却速度は低下してしまい、モー
ドAだけによる冷却では図3に実線B1による冷却とな
って冷却時間は長くなる。
In this mode A, the cooling rate is correspondingly high while the temperature in the furnace is high, while the circulating gas flow A1 that exchanges heat with the upper lid 3 and the high-pressure vessel 2 is lower than the gas temperature in the furnace. Therefore, the container 2 and the like are not overheated. However, as the cooling progresses over time, the inside and outside of the furnace chamber 6 approaches an equilibrium state, and the cooling rate decreases. Cooling in mode A alone results in cooling in accordance with the solid line B1 in FIG. 3 and the cooling time becomes longer. .

【0025】そこで、圧媒ガスの流れを変化させて冷却
速度の低下を防止する。すなわち、図2に示すように炉
室6内外が平衡状態に近づく冷却過程後半(冷却処理後
半)において、今まで閉じられていた第2弁手段17を
開にすると、圧媒ガスは炉室6内を上昇して断熱層5と
高圧容器2内面との間の空間を下降する流れで循環され
るモードB(循環ガス流A2)となり、図3の破線Bに
示すように冷却速度が加速されるのである。
Therefore, the flow of the pressure medium gas is changed to prevent the cooling rate from decreasing. That is, as shown in FIG. 2, in the latter half of the cooling process (the latter half of the cooling process) in which the inside and outside of the furnace chamber 6 approach the equilibrium state, when the second valve means 17, which has been closed until now, is opened, the pressure medium gas is transferred to the furnace chamber 6 Mode B (circulating gas flow A2) is circulated by a flow that rises inside and descends the space between the heat insulating layer 5 and the inner surface of the high-pressure container 2, and the cooling rate is accelerated as shown by the broken line B in FIG. It is.

【0026】図4及び図5は本発明の第2の実施の形態
を示すものであり、冷却処理前半及び後半を通じて圧媒
ガスを炉室6内で強制対流させるガス流れCによって循
環するようにしたものであり、基本構成は既述の実施の
形態(図1及び図2)と共通するので共通部分が共通符
号を示し、以下、相違点につき説明する。支持台7には
図示省略した多数の通孔が上下方向に形成されていると
ともに、該支持台7上には被処理物(図では省略)を取
り囲んで内筒18が設けられている。
4 and 5 show a second embodiment of the present invention, in which the pressure medium gas is circulated by a gas flow C forcibly convection in the furnace chamber 6 in the first half and the second half of the cooling process. Since the basic configuration is the same as that of the above-described embodiment (FIGS. 1 and 2), common parts are denoted by common reference numerals, and differences will be described below. A large number of not-illustrated through holes are formed in the support base 7 in the vertical direction, and an inner cylinder 18 is provided on the support base 7 so as to surround an object to be processed (not shown).

【0027】更に、炉室6下部における支持台7の下方
には、炉室均熱手段19が設けられており、該手段19
は電動モータ19Aとこれによって回転されるファン1
9Bより構成されている。また、断熱層5は、内側断熱
層5Aと外側断熱層5Bとからなり、内側断熱層5Aは
下蓋4におけるリング体4Aに支持されており、外側断
熱層5Bは上蓋3に吊具3Aを介して支持されており、
両断熱層5A,5B間にガス流路5Cが形成されてい
る。
Further, a furnace chamber soaking means 19 is provided below the supporting table 7 in the lower part of the furnace chamber 6, and the means 19 is provided.
Is an electric motor 19A and a fan 1 rotated by the electric motor 19A
It is composed of 9B. The heat insulating layer 5 includes an inner heat insulating layer 5A and an outer heat insulating layer 5B. The inner heat insulating layer 5A is supported by the ring body 4A of the lower lid 4, and the outer heat insulating layer 5B attaches the hanger 3A to the upper lid 3. Is supported through
A gas flow path 5C is formed between both heat insulating layers 5A and 5B.

【0028】図4及び図5に示したHIP装置において
は、HIP処理後の冷却処理前半において、図4に示す
如く第1弁手段14を開くとともに、炉室均熱手段19
を作動することにより、循環ガス流A1とともに炉室6
内で対流させるガス流れA3が生じて上下温度差に起因
する被処理物の割れ、組織不均一等が解消されるのであ
り、冷却処理後半においてもガス流れA3を続行してい
るのである。
In the HIP device shown in FIGS. 4 and 5, in the first half of the cooling process after the HIP process, the first valve means 14 is opened as shown in FIG.
By operating the circulating gas flow A1
Since a gas flow A3 for convection is generated in the inside, cracks in the object to be processed, nonuniformity of the structure and the like caused by the temperature difference between the upper and lower sides are eliminated, and the gas flow A3 is continued even in the latter half of the cooling process.

【0029】図6は本発明の他の実施形態であり、図4
及び図5で示したHIP装置1において、第1弁手段1
4に対する輻射熱を遮断する手段20を設けて第1弁手
段14の熱変形を防止し、部品の長寿命化を図ったもの
であり、HIP処理後の冷却工程については、第2の実
施の形態と同じである。なお、輻射熱遮断手段20は、
倒立皿状の耐熱材料よりなる板材20Aを、支持具20
Bを介して内側断熱層5Aに装着している。
FIG. 6 shows another embodiment of the present invention, which is shown in FIG.
And in the HIP device 1 shown in FIG. 5, the first valve means 1
It is intended to prevent the thermal deformation of the first valve means 14 by prolonging the service life of the parts by providing the means 20 for shutting off the radiant heat to the No. 4 and the cooling step after the HIP treatment in the second embodiment. Is the same as. The radiant heat blocking means 20 is
The plate member 20A made of a heat-resistant material in the shape of an inverted dish is attached to the support tool 20.
It is attached to the inner heat insulating layer 5A via B.

【0030】本発明の図示した実施の形態は以上の通り
であるが、本発明においては、下記のような設計変更は
可能である。 上部ガス流通孔15においても第2弁手段17を設け
て開閉自在にすること。このときは、下部ガス流通孔1
6に第2弁手段17を設けるか否かは自由である。
Although the illustrated embodiment of the present invention is as described above, the following design changes are possible in the present invention. A second valve means 17 is also provided in the upper gas flow hole 15 so that it can be opened and closed. At this time, the lower gas flow hole 1
Whether or not to provide the second valve means 17 in 6 is arbitrary.

【0031】既述した第1の実施の形態(図1及び図
2)において、均熱手段19又は輻射熱遮断手段20を
設けること。 小型の高圧容器の場合は、該容器を有底筒状の本体と
その開口部を塞ぐ蓋とで構成すること。 高圧容器の外周壁に水冷ジャケットを設けて圧媒ガス
の冷却速度をさらに速め、作業効率を上げること。
In the above-described first embodiment (FIGS. 1 and 2), the soaking means 19 or the radiant heat blocking means 20 is provided. In the case of a small high-pressure container, the container should be composed of a bottomed cylindrical main body and a lid that closes the opening. Provide a water cooling jacket on the outer wall of the high-pressure container to further increase the cooling speed of the pressure medium gas and improve work efficiency.

【0032】ファンの回転数を変化させたりする流量
制御手段を設けること。等々である。
Providing flow rate control means for changing the rotation speed of the fan. And so on.

【0033】[0033]

【発明の効果】以上詳述した通り本発明によれば、有効
容積率を充分に確保しつつ冷却時間を短縮できて生産性
を向上することができる。
As described in detail above, according to the present invention, the cooling time can be shortened and the productivity can be improved while sufficiently securing the effective volume ratio.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示し、冷却処理前
半の立断面図である。
FIG. 1 is a vertical sectional view of a first half of a cooling process according to the first embodiment of the present invention.

【図2】本発明の第1の実施の形態を示し、冷却処理後
半の立断面図である。
FIG. 2 is a vertical cross-sectional view showing the first embodiment of the present invention in the latter half of the cooling process.

【図3】従来例と本発明との冷却時間の対比グラフであ
る。
FIG. 3 is a comparison graph of cooling time between a conventional example and the present invention.

【図4】本発明の第2の実施の形態を示し、冷却処理前
半の立断面図である。
FIG. 4 is a vertical cross-sectional view of the first half of the cooling process according to the second embodiment of the present invention.

【図5】本発明の第2の実施の形態を示し、冷却処理後
半の立断面図である。
FIG. 5 is a vertical cross-sectional view showing the second embodiment of the present invention in the latter half of the cooling process.

【図6】本発明の第3の実施の形態を示し、HIP処理
時の立断面図である。
FIG. 6 shows a third embodiment of the present invention and is a vertical cross-sectional view during HIP processing.

【図7】従来例の1の概念図である。FIG. 7 is a conceptual diagram of a conventional example 1.

【図8】従来例の2の概念図である。FIG. 8 is a second conceptual diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 熱間等方圧加圧装置 2 高圧容器 5 断熱層 6 炉室 10 通孔 14 第1弁手段 15 ガス流通孔 16 ガス流通孔 17 第2弁手段 1 Hot Isostatic Pressurizing Device 2 High Pressure Container 5 Heat Insulation Layer 6 Furnace Chamber 10 Through Hole 14 First Valve Means 15 Gas Flow Hole 16 Gas Flow Hole 17 Second Valve Means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高圧容器(2)の内部に倒立コップ状で
上部に通孔(10)を有し少なくとも内外ケーシング
(11)(12)と該両ケーシング(11)(12)間
で下部から上部に向かってガス流通可能とした断熱層
(5)を備えて該断熱層(5)内が炉室(6)とされ、
前記通孔(10)を開閉自在とする第1弁手段(14)
を備え、前記炉室(6)内の被処理物(8)に高温高圧
の圧媒ガスを作用させる熱間等方圧加圧装置において、 前記断熱層(5)における内ケーシング(11)の上部
及び下部に、炉室(6)の内外を連通するガス流通孔
(15)(16)を設け、該ガス流通孔(15)(1
6)の少なくとも一方を開閉自在とする第2弁手段(1
7)を備えていることを特徴とする熱間等方圧加圧装
置。
1. A high-pressure vessel (2) having an inverted cup shape and a through-hole (10) in the upper part, and at least between the inner and outer casings (11, 12) and the both casings (11, 12) from the lower part. A heat insulating layer (5) that allows gas to flow toward the upper part is provided, and the inside of the heat insulating layer (5) is a furnace chamber (6),
First valve means (14) for opening and closing the through hole (10)
A hot isostatic pressurization device that applies a high-temperature and high-pressure pressure medium gas to an object to be treated (8) in the furnace chamber (6), the inner casing (11) of the heat insulating layer (5) Gas flow holes (15) and (16) communicating with the inside and outside of the furnace chamber (6) are provided in the upper and lower parts, and the gas flow holes (15) and (1) are provided.
Second valve means (1) for opening and closing at least one of (6)
7) A hot isostatic pressurizing device comprising:
【請求項2】 前記第1弁手段(14)と前記炉室
(6)との間に、第1弁手段(14)に対する輻射熱遮
断手段(20)を設けたことを特徴とする請求項1に記
載の熱間等方圧加圧装置。
2. Radiant heat blocking means (20) for the first valve means (14) is provided between the first valve means (14) and the furnace chamber (6). The hot isostatic pressurizing device described in.
【請求項3】 前記炉室(6)の下部に炉室均熱手段
(19)を設けたことを特徴とする請求項1又は2に記
載の熱間等方圧加圧装置。
3. The hot isostatic pressing device according to claim 1, wherein a furnace chamber soaking means (19) is provided in a lower portion of the furnace chamber (6).
【請求項4】 層内部がガス流通可能に構成された断熱
層(5)が高圧容器(2)内に設けられ、該断熱層
(5)が取り囲む空間が炉室(6)とされた熱間等方圧
加圧装置(1)によって、炉室(6)内の被処理物
(8)に対して高温高圧の圧媒ガスを作用させて熱間等
方圧加圧処理を行った後、前記圧媒ガスを前記高圧容器
(2)内で循環させて前記炉室(6)内を冷却する熱間
等方圧加圧装置(1)の冷却方法において、冷却処理前
半では、前記圧媒ガスを断熱層(5)内部を上昇して断
熱層(5)と高圧容器(2)との間の空間を下降する流
れで循環させ、冷却処理後半では、前記圧媒ガスを炉室
(6)内を上昇して断熱層(5)と高圧容器(2)との
間の空間を下降する流れで循環させることを特徴とする
熱間等方圧加圧装置の冷却方法。
4. A heat insulating layer (5) having a layered gas-flowable structure is provided in a high-pressure vessel (2), and a space surrounded by the heat insulating layer (5) is a furnace chamber (6). After the hot isostatic pressing process is performed by applying a high-temperature and high-pressure pressure medium gas to the object to be processed (8) in the furnace chamber (6) by the isostatic pressing device (1). In the cooling method of the hot isostatic pressurizing device (1), in which the pressure medium gas is circulated in the high pressure vessel (2) to cool the inside of the furnace chamber (6), in the first half of the cooling process, the pressure is increased. The medium gas is circulated in a flow that rises inside the heat insulating layer (5) and descends in the space between the heat insulating layer (5) and the high-pressure vessel (2), and in the latter half of the cooling process, the pressure medium gas is used in the furnace chamber ( 6) A method of cooling a hot isostatic pressurizing device, characterized in that the space between the heat insulation layer (5) and the high pressure vessel (2) is circulated in a descending flow ascending in the space. Law.
【請求項5】 冷却処理前半及び後半を通じて、更に前
記圧媒ガスを炉室(6)内で対流する流れでも循環させ
ることを特徴とする請求項4記載の熱間等方圧加圧装置
の冷却方法。
5. The hot isostatic pressurization apparatus according to claim 4, wherein the pressure medium gas is circulated in a convection flow in the furnace chamber (6) throughout the first half and the second half of the cooling process. Cooling method.
JP29140695A 1995-11-09 1995-11-09 Hot isotropic pressure application device and cooling method of the device Pending JPH09133470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29140695A JPH09133470A (en) 1995-11-09 1995-11-09 Hot isotropic pressure application device and cooling method of the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29140695A JPH09133470A (en) 1995-11-09 1995-11-09 Hot isotropic pressure application device and cooling method of the device

Publications (1)

Publication Number Publication Date
JPH09133470A true JPH09133470A (en) 1997-05-20

Family

ID=17768487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29140695A Pending JPH09133470A (en) 1995-11-09 1995-11-09 Hot isotropic pressure application device and cooling method of the device

Country Status (1)

Country Link
JP (1) JPH09133470A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309626A (en) * 2006-05-22 2007-11-29 Kobe Steel Ltd Hot isotropic pressure device
JP2011508671A (en) * 2007-12-14 2011-03-17 アブーレ・テクノロジーズ・エービー Hot isostatic press
JP2011127886A (en) * 2009-11-20 2011-06-30 Kobe Steel Ltd Hot isostatic pressing device
JP2014089041A (en) * 2013-11-28 2014-05-15 Avure Technologies Ab Hot isostatic pressing device
WO2022048739A1 (en) * 2020-09-02 2022-03-10 Quintus Technologies Ab A press apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309626A (en) * 2006-05-22 2007-11-29 Kobe Steel Ltd Hot isotropic pressure device
JP2011508671A (en) * 2007-12-14 2011-03-17 アブーレ・テクノロジーズ・エービー Hot isostatic press
US9358747B2 (en) 2007-12-14 2016-06-07 Avure Technologies Ab Hot isostatic pressing arrangement
JP2011127886A (en) * 2009-11-20 2011-06-30 Kobe Steel Ltd Hot isostatic pressing device
JP2014089041A (en) * 2013-11-28 2014-05-15 Avure Technologies Ab Hot isostatic pressing device
WO2022048739A1 (en) * 2020-09-02 2022-03-10 Quintus Technologies Ab A press apparatus

Similar Documents

Publication Publication Date Title
JP3916490B2 (en) Hot isostatic pressing apparatus and hot isostatic pressing method
US4359336A (en) Isostatic method for treating articles with heat and pressure
US4217087A (en) Isostatic apparatus for treating articles with heat and pressure
JP5615019B2 (en) Hot isostatic press
JP4204253B2 (en) Hot isostatic press
KR100862767B1 (en) Hot isostatic pressing method and apparatus
JP5894967B2 (en) Hot isostatic press
EP3608616B1 (en) Hot isostatic pressing device
JP2007309626A (en) Hot isotropic pressure device
US4349333A (en) Hot isostatic press with rapid cooling
WO2015005047A1 (en) Hot isostatic pressing device
JPH09133470A (en) Hot isotropic pressure application device and cooling method of the device
US3940245A (en) Convection shield for isostatic bonding apparatus
US4022446A (en) Quenching in hot gas isostatic pressure furnace
JPH0829069A (en) Cooling method for hot isotropic pressure device
JP5356172B2 (en) Hot isostatic pressing apparatus and hot isostatic pressing method
JP6891348B2 (en) Methods for processing articles and methods for high-pressure processing of articles
JPH0625711A (en) Hot isostatic pressing device
JPH01230984A (en) Hot static hydraulic pressurizing device and cooling operation for the same device
JP2519835B2 (en) Method and apparatus for hot isostatic pressing
JPH0512719Y2 (en)
JPS5987032A (en) Apparatus for treating processed goods
KR102437272B1 (en) Hot isostatic pressing device
KR102409112B1 (en) Hot isostatic pressing device
JPH0744953Y2 (en) Hot isotropic pressure press