JPH0442202B2 - - Google Patents

Info

Publication number
JPH0442202B2
JPH0442202B2 JP60299150A JP29915085A JPH0442202B2 JP H0442202 B2 JPH0442202 B2 JP H0442202B2 JP 60299150 A JP60299150 A JP 60299150A JP 29915085 A JP29915085 A JP 29915085A JP H0442202 B2 JPH0442202 B2 JP H0442202B2
Authority
JP
Japan
Prior art keywords
valve
circuit
auxiliary circuit
refrigerant pressure
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60299150A
Other languages
Japanese (ja)
Other versions
JPS62155120A (en
Inventor
Masakazu Watanabe
Kosaku Sayo
Seigo Myamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP60299150A priority Critical patent/JPS62155120A/en
Publication of JPS62155120A publication Critical patent/JPS62155120A/en
Publication of JPH0442202B2 publication Critical patent/JPH0442202B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、自動車用空気調和装置に係り、特に
冷凍サイクルを構成する主回路に、補助空調用の
副蒸発器を並設させてなるデユアル方式の自動車
用空気調和装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an air conditioner for automobiles, and particularly to a dual type air conditioner in which a sub-evaporator for auxiliary air conditioning is installed in parallel with a main circuit constituting a refrigeration cycle. The present invention relates to an air conditioner for automobiles.

〔発明の背景〕[Background of the invention]

従来の自動車用空気調和装置には、例えば実公
昭50−12853号公報に示すように、冷凍サイクル
を構成する主回路に副蒸発器を有する補助回路を
並列に配設し、必要に応じて補助回路と主回路と
共に並列運転させるものがある。
For example, as shown in Japanese Utility Model Publication No. 50-12853, in conventional air conditioners for automobiles, an auxiliary circuit having a sub-evaporator is arranged in parallel to the main circuit constituting the refrigeration cycle, and auxiliary circuits are installed as needed. Some circuits operate in parallel with the main circuit.

この種の空調装置は、補助回路側に補助回路開
閉弁、例えば電磁弁を設け、電磁弁の開閉により
補助回路の作動を制御するものであるが、この電
磁弁は、一般に低圧用のものを使用して補助回路
の低圧側配管に配置されていた。
This type of air conditioner is equipped with an auxiliary circuit on-off valve, such as a solenoid valve, on the auxiliary circuit side, and controls the operation of the auxiliary circuit by opening and closing the solenoid valve, but this solenoid valve is generally for low pressure. It was placed in the low pressure side piping of the auxiliary circuit used.

この理由は、補助回路配管系の高圧側よりも低
圧側に電磁弁を設けた方が、電磁弁の流体出入口
にかかる閉弁時の冷媒圧力差が小さく、電磁弁の
開閉動作を円滑に行い得ると共に、弁開放時に生
じる流体衝撃が小さいので、弁内部や配管系に生
じる衝撃音、流動音、振動等を抑制できる利点を
有するためである。
The reason for this is that if the solenoid valve is installed on the low-pressure side of the auxiliary circuit piping system rather than the high-pressure side, the refrigerant pressure difference between the fluid inlet and outlet of the solenoid valve when the valve is closed is smaller, and the solenoid valve can open and close more smoothly. In addition, since the fluid shock generated when the valve is opened is small, it has the advantage of suppressing impact noise, flow noise, vibration, etc. generated inside the valve and the piping system.

しかしながら、このような弁設置方式によれ
ば、補助回路の低圧側配管系が高圧側よりも管径
が大きいので電磁弁が大型化し、また、補助回路
が車体のトランクルーム付近に配置されているの
で、低圧側の配管系の流体が外部気温の影響を受
けて圧力変動を起こし、トランクルームが高温状
態にある場合には、低圧側電磁弁の閉止時に過大
な流体圧がかかり、そのため、電磁弁にリリーフ
弁を付加する等の配慮が必要となり、コスト高に
なる問題があつた。
However, with this valve installation method, the solenoid valve becomes larger because the low-pressure side piping system of the auxiliary circuit has a larger pipe diameter than the high-pressure side, and the auxiliary circuit is located near the trunk of the vehicle. If the fluid in the low-pressure side piping system causes pressure fluctuations due to the influence of external temperature and the trunk room is in a high temperature state, excessive fluid pressure will be applied when the low-pressure side solenoid valve closes, causing the solenoid valve to Considerations such as adding a relief valve were required, which led to the problem of high costs.

このような問題を改善するためには、比較的低
コストな高圧用電磁弁を用いて補助回路の高圧配
管系に補助回路開閉弁を配設することが望まれる
が、この場合には、既述したように、補助回路の
開放時に大きな流体衝撃が発生し、また、流体衝
撃抑制を図るために弁自体を大型化すると、結
局、コスト高を回避できない問題があつた。
In order to improve this problem, it is desirable to use a relatively low-cost high-pressure solenoid valve to install an auxiliary circuit on-off valve in the high-pressure piping system of the auxiliary circuit. As described above, a large fluid shock occurs when the auxiliary circuit is opened, and if the valve itself is made larger in order to suppress the fluid shock, there is a problem in that the cost cannot be avoided.

〔発明の目的〕[Purpose of the invention]

本発明は、以上の点に鑑みてなされたものであ
り、その目的とするところは、空気調和装置の円
滑な運転を行い得ると共に、主回路運転から主回
路と補助回路の並列運転に移行する時の騒音発生
を抑制し、且つ低コスト化を図り得る自動車用空
気調和装置を提供することにある。
The present invention has been made in view of the above points, and its purpose is to enable smooth operation of an air conditioner and to shift from main circuit operation to parallel operation of the main circuit and auxiliary circuit. An object of the present invention is to provide an air conditioner for an automobile that can suppress noise generation during operation and reduce costs.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、圧縮
機、主蒸発器等を有する主回路と、副蒸発器を有
する補助回路とを具備する自動車用空気調和装置
において、前記補助回路の高圧側配管に補助回路
の開閉を行なう補助回路開閉弁を設け、更に、前
記主回路及び補助回路を運転制御する制御系に
は、前記主回路のみの単独運転から前記補助回路
を付加した並列運転を開始するに際して、前記補
助回路開閉弁にかかる冷媒圧力差をこの補助回路
開閉弁の開放前に前記主回路の単独運転時よりも
一時的に小さくする冷媒圧力制御手段を設け、こ
の冷媒圧力制御により前記補助回路開閉弁の弁開
時に生じる流体衝撃を抑制するようにしたもので
ある。
In order to achieve the above object, the present invention provides an air conditioner for an automobile comprising a main circuit having a compressor, a main evaporator, etc., and an auxiliary circuit having a sub-evaporator. An auxiliary circuit opening/closing valve is provided for opening and closing the auxiliary circuit, and a control system for controlling the operation of the main circuit and the auxiliary circuit is configured to start parallel operation with the auxiliary circuit added from an independent operation of only the main circuit. At this time, a refrigerant pressure control means is provided to temporarily make the refrigerant pressure difference applied to the auxiliary circuit on-off valve smaller than when the main circuit is operated alone before the auxiliary circuit on-off valve is opened, and by this refrigerant pressure control, the refrigerant pressure difference applied to the auxiliary circuit on-off valve is This is designed to suppress the fluid shock that occurs when the circuit opening/closing valve is opened.

このような構成よりなる本発明によれば、主回
路と補助回路を並列運転させると、並列運転制御
の開始前に予め冷媒圧力制御手段が補助回路開閉
弁の流体出入口にかかる冷媒圧力差を主回路の単
独運転時よりも小さく制御するので、弁開時に生
じる流体衝撃を効果的に抑制し、その後正常な並
列運転を行うことができる。
According to the present invention having such a configuration, when the main circuit and the auxiliary circuit are operated in parallel, the refrigerant pressure control means controls the refrigerant pressure difference applied to the fluid inlet and outlet of the auxiliary circuit on-off valve in advance before starting the parallel operation control. Since the control is made smaller than when the circuit is operated independently, the fluid shock that occurs when the valve is opened can be effectively suppressed, and normal parallel operation can then be performed.

特に、主回路と補助回路の並列運転を開始する
状況時には、通常、車室内の温度が上昇し、主回
路の単独運転時の負荷が大きくなり、補助回路開
閉弁にかかる冷媒圧力差が比較的大きくなつてい
るが、本発明によれば、このような場合にも補助
回路開閉弁の開放時に生じる流体衝撃を効果的に
抑制することができる。
In particular, when parallel operation of the main circuit and auxiliary circuit is started, the temperature inside the vehicle usually rises, the load when the main circuit is operating independently becomes large, and the difference in refrigerant pressure applied to the auxiliary circuit on-off valve becomes relatively large. However, according to the present invention, even in such a case, the fluid shock that occurs when the auxiliary circuit on-off valve is opened can be effectively suppressed.

従つて、空調装置の単独運転から並列運転に移
行する際に生じる流体衝撃による衝撃音、流動
音、配管共鳴現象等を効果的に低減させ、騒音の
ない快適な空調運転を行い得る。
Therefore, it is possible to effectively reduce impact noise caused by fluid impact, flow noise, pipe resonance phenomenon, etc. that occur when the air conditioner shifts from independent operation to parallel operation, and to perform noise-free and comfortable air conditioning operation.

なお、本発明による冷媒圧力制御は、主回路の
単独運転から補助回路を付加する並列運転の移行
時に、常に行なうか、または、必要に応じて冷媒
圧力制御を行つてもよく、いずれにおいても、流
動衝撃の抑制を図り得るものである。
In addition, the refrigerant pressure control according to the present invention may be performed all the time during the transition from the independent operation of the main circuit to the parallel operation with the addition of an auxiliary circuit, or the refrigerant pressure control may be performed as necessary, and in either case, This makes it possible to suppress flow shock.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図ないし第4図に基づ
いて説明する。
An embodiment of the present invention will be described based on FIGS. 1 to 4.

第1図は、本発明の一実施例を示す自動車用空
気調和装置のシステム図である。
FIG. 1 is a system diagram of an air conditioner for an automobile showing an embodiment of the present invention.

同図において、1は空気調和装置の主回路で、
圧縮機2、凝縮機3、受液器4、主膨張弁5、主
蒸発器6、蒸発圧力制御弁7により構成されてい
る。
In the figure, 1 is the main circuit of the air conditioner;
It is composed of a compressor 2, a condenser 3, a liquid receiver 4, a main expansion valve 5, a main evaporator 6, and an evaporation pressure control valve 7.

8は補助回路であり、主回路1の受液器4と主
膨張弁5との間から分岐し、主蒸発器6と蒸発圧
力制御弁7との間に接続して、主回路1に対して
並列に接続してなり、補助回路8の高圧配管側に
補助回路開閉弁となる電磁弁9を設置すると共
に、副膨張弁10、副蒸発器11を順次配設して
ある。
8 is an auxiliary circuit, which branches from between the liquid receiver 4 and the main expansion valve 5 of the main circuit 1, is connected between the main evaporator 6 and the evaporation pressure control valve 7, and is connected to the main circuit 1. A solenoid valve 9 serving as an auxiliary circuit opening/closing valve is installed on the high-pressure piping side of the auxiliary circuit 8, and a sub-expansion valve 10 and a sub-evaporator 11 are sequentially provided.

補助回路8に設けた電磁弁9は、第4図に電磁
弁の縦断面図に示すように、流入口9aと流出口
9bとの間に、プランジヤ22に取付けた弁23
が装着され、励磁コイル17の通電時に、磁極2
4を介してプランジヤ22が電磁吸引されて弁2
3が開くようにしてある。
The solenoid valve 9 provided in the auxiliary circuit 8 has a valve 23 attached to the plunger 22 between the inlet 9a and the outlet 9b, as shown in the vertical cross-sectional view of the solenoid valve in FIG.
is installed, and when the excitation coil 17 is energized, the magnetic pole 2
4, the plunger 22 is electromagnetically attracted to the valve 2.
3 is open.

また、電磁弁9は、弁開放により生じる流体衝
撃の許容範囲を予め定めて、流入口9aと流出口
9bとの間にかかる冷媒圧力差ΔPvがこの許容範
囲以上の流体衝撃を発生させる冷媒圧力差になる
と、その間、冷媒圧力差ΔPvがプランジヤ22の
吸引力を上回り、開弁しないように設定されてい
る。
Further, the electromagnetic valve 9 has a predetermined permissible range of fluid impact caused by opening the valve, and the refrigerant pressure is such that the refrigerant pressure difference ΔPv applied between the inlet port 9a and the outlet port 9b generates a fluid impact exceeding this permissible range. When the difference occurs, the refrigerant pressure difference ΔPv exceeds the suction force of the plunger 22 during that time, and the valve is set not to open.

12は、主回路1及び補助回路8の運転を制御
する制御系を示すもので、電源Vccに主回路スイ
ツチ13、リレースイツチ14及び電磁クラツチ
15の励磁コイルが直列に接続されており、通常
時においては、リレースイツチ14が閉成され、
主回路スイツチ13の開閉制御により圧縮機2の
駆動用電磁クラツチ15がオン、オフ制御され、
主回路1の運転・停止が制御されるものである。
12 shows a control system that controls the operation of the main circuit 1 and the auxiliary circuit 8. The main circuit switch 13, the relay switch 14, and the excitation coil of the electromagnetic clutch 15 are connected in series to the power supply Vcc. , the relay switch 14 is closed,
The electromagnetic clutch 15 for driving the compressor 2 is controlled on and off by opening and closing control of the main circuit switch 13.
The operation/stop of the main circuit 1 is controlled.

また、主回路スイツチ13とリレースイツチ1
4の間から配線が引出されて、補助回路スイツチ
16及び電磁弁9の励磁コイル17がリレースイ
ツチ14及び電磁クラツク15に対して並列に接
続され、また励磁コイル17には、励磁コイル1
7に流れる電流の変化を検出する抵抗Rが直列に
接続されている。
In addition, main circuit switch 13 and relay switch 1
4, the auxiliary circuit switch 16 and the excitation coil 17 of the solenoid valve 9 are connected in parallel to the relay switch 14 and the electromagnetic crack 15, and the excitation coil 17 is connected to the excitation coil 1.
A resistor R is connected in series to detect a change in the current flowing through the terminal 7.

補助回路スイツチ16は、手動スイツチ或いは
車室温の温度変化に応じて自動的に開閉制御され
る自動制御スイツチのいずれかで構成されるもの
で、スイツチ16の開閉制御によつて、電磁弁9
の励磁コイル17が通電制御され、通電時に電磁
弁9が開いて補助回路8が作動するようにしてあ
る。
The auxiliary circuit switch 16 is configured with either a manual switch or an automatic control switch that is automatically controlled to open and close according to changes in the vehicle room temperature.
The excitation coil 17 is controlled to be energized, and when energized, the solenoid valve 9 is opened and the auxiliary circuit 8 is activated.

励磁コイル17は、電磁弁9の通電開始時に電
磁弁駆動用のプランジヤ22が弁開動作により吸
引されると、インダクタンスが変化してコイル電
流Ivの立上りが一時的に負の傾きになるもので、
その変化状態が電圧Rを介して検出される。そし
て、抵抗Rの検出電圧が、励磁コイル17と抵抗
Rとの間に設けたタツプを介して、後述する圧縮
機制御ユニツト18の微分回路19に入力される
ようにしてある。
In the excitation coil 17, when the plunger 22 for driving the solenoid valve is attracted by the valve opening operation when the solenoid valve 9 starts to be energized, the inductance changes and the rise of the coil current Iv temporarily becomes negative. ,
The state of change is detected via the voltage R. The detected voltage of the resistor R is inputted via a tap provided between the excitation coil 17 and the resistor R to a differentiation circuit 19 of a compressor control unit 18, which will be described later.

圧縮機制御ユニツト18は、主回路1のみの単
独運転から補助回路8を付加した並列運転を開始
するに際して、電磁弁9の流体出入口9a,9b
にかかる冷媒圧力差ΔPvが所定値(ここでは電磁
弁9開放により生じる流体衝撃の許容範囲の上限
値に相当の冷媒圧力差、換言すれば電磁弁9が開
弁動作可能の限界値となる最高作動圧力差ΔP0
以上になると、圧縮機2の運転を一時停止させ
て、その冷媒圧力差ΔPvが電磁弁9の開弁前に主
回路1の単独運転時よりも一時的に小さくする冷
媒圧力制御手段としての役割をなし、微分回路1
9、圧縮機制御回路20及びトランジスタ21を
備えて成る。
The compressor control unit 18 controls the fluid inlet/outlet ports 9a, 9b of the solenoid valve 9 when starting the parallel operation with the auxiliary circuit 8 added from the independent operation of the main circuit 1 only.
The refrigerant pressure difference ΔPv applied to is a predetermined value (here, the refrigerant pressure difference equivalent to the upper limit of the allowable range of fluid shock caused by opening the solenoid valve 9, in other words, the maximum value at which the solenoid valve 9 can open the valve). Operating pressure difference ΔP 0 )
When the above occurs, the operation of the compressor 2 is temporarily stopped and the refrigerant pressure difference ΔPv is temporarily made smaller than when the main circuit 1 is operated alone before the solenoid valve 9 is opened. , differentiator circuit 1
9, a compressor control circuit 20 and a transistor 21.

微分回路19と抵抗Rは、電磁弁9の出入口9
a,3bにかかる冷媒圧力差の度合を検出する冷
媒圧力差検出手段として役割をなす。
The differential circuit 19 and the resistor R are connected to the inlet/outlet 9 of the solenoid valve 9.
It serves as a refrigerant pressure difference detection means for detecting the degree of refrigerant pressure difference between a and 3b.

すなわち、微分回路19が抵抗Rの検出電圧
(立上がり電圧)を微分して励磁コイル17の電
流Ivの変化度合を判別するが、その微分値αは電
磁弁9の開弁動作制御時の作動状況を知る目安と
なり(この作動状況を知ることのできる理由は後
述の本実施例の動作説明で詳述してある)、この
作動状況(電磁弁9の弁開、弁開不能)は設定の
冷媒圧力差ΔP0によつて決定されるので、上記抵
抗R、微分回路19を用いることで電磁弁出入口
9の冷媒圧力差ΔPvの度合がΔP0より大きいか小
さいかを検出できる。
That is, the differentiating circuit 19 differentiates the detected voltage (rising voltage) of the resistor R to determine the degree of change in the current Iv of the exciting coil 17, and the differential value α is based on the operating status when controlling the opening operation of the solenoid valve 9. (The reason why this operating condition can be known is explained in detail in the explanation of the operation of this embodiment described later), and this operating condition (the solenoid valve 9 is open or cannot be opened) is determined by the refrigerant setting. Since it is determined by the pressure difference ΔP 0 , by using the resistor R and the differential circuit 19, it is possible to detect whether the degree of the refrigerant pressure difference ΔPv at the solenoid valve inlet/outlet 9 is larger or smaller than ΔP 0 .

圧縮機制御回路20は、微分値αから電磁弁9
の開弁制御時の作動状況を判定し、正常の弁開動
作していると判定した場合には、トランジスタ2
1をオフし、弁開動作を行つていないものと判定
すると、トランジスタ21をオンさせるよう設定
してある。
The compressor control circuit 20 controls the solenoid valve 9 based on the differential value α.
The operating status of the valve opening control is determined, and if it is determined that the valve is operating normally, the transistor 2
1 is turned off, and when it is determined that the valve opening operation is not performed, the transistor 21 is turned on.

トランジスタ21のコレクタ側は、補助回路ス
イツチ16を介して電源電圧Vccに接続され、エ
ミツタ側がリレースイツチ14の励磁コイルに接
続されているもので、トランジスタ21がオンす
ると、リレースイツチ14が開き、トランジス2
1がオフするとリレースイツチ14が閉じるもの
である。
The collector side of the transistor 21 is connected to the power supply voltage Vcc via the auxiliary circuit switch 16, and the emitter side is connected to the excitation coil of the relay switch 14. When the transistor 21 is turned on, the relay switch 14 opens and the transistor is turned on. 2
1 is turned off, the relay switch 14 is closed.

次に、本実施例の動作を第1図及び第2図のフ
ローチヤート、第3図の動作波形図に基づき説明
する。
Next, the operation of this embodiment will be explained based on the flowcharts shown in FIGS. 1 and 2 and the operation waveform diagram shown in FIG. 3.

Step1:主回路1の単独運転を行なう場合には、
主回路スイツチ13をオン、補助回路スイツチ
16をオフする。この場合には、圧縮機2が稼
動し、主回路1のみで冷房運転を行なう。
Step1: When operating main circuit 1 independently,
Turn on the main circuit switch 13 and turn off the auxiliary circuit switch 16. In this case, the compressor 2 is operated and only the main circuit 1 performs cooling operation.

Step2:車室内の温度状況に応じて、主回路1の
冷房運転に併用して補助回路8の補助冷房運転
を行なう場合には、主回路スイツチ13をオン
した状態で補助回路スイツチ16をオンさせ
る。
Step 2: Depending on the temperature situation inside the vehicle, if the auxiliary circuit 8 is to perform auxiliary cooling operation in conjunction with the cooling operation of the main circuit 1, turn on the auxiliary circuit switch 16 with the main circuit switch 13 turned on. .

そして、補助回路スイツチ16をオンさせる
と、電磁弁9の励磁コイル17が通電する。こ
の場合、冷凍サイクルの負荷がさ程大きくな
く、第3図aに示すように電磁弁9にかかる冷
凍サイクルの高圧側(流入側9a)と冷媒圧力
aと低圧側(流出口9b)の冷媒圧力bの差圧
ΔP1が電磁弁9の開弁可能な最高作動圧力差
ΔP0の範囲内であれば、電磁弁9のプランジヤ
22が電磁吸引され、電磁弁9が吸引され補助
回路8が主回路1と共に作動する。
When the auxiliary circuit switch 16 is turned on, the excitation coil 17 of the solenoid valve 9 is energized. In this case, the load on the refrigeration cycle is not so large, and as shown in FIG. If the differential pressure ΔP 1 of the pressure b is within the range of the maximum operating pressure difference ΔP 0 that allows the solenoid valve 9 to open, the plunger 22 of the solenoid valve 9 is electromagnetically attracted, the solenoid valve 9 is attracted, and the auxiliary circuit 8 is It operates together with the main circuit 1.

第3図の状態イは、この時の励磁コイル1
7に流れる電流の変化状態をとらえた抵抗Rの
検出電圧VRであり、電圧VRの立上り時におい
て、経過時間ta内に立上り電圧VRの傾きが一
時的に負になつているのは、電磁弁9のプラン
ジヤ22の動きにより励磁コイル17のインダ
クタンスが変化するためである。そして、電圧
VRの立上電圧は、微分回路19で微分され、
第3図に示すように、電圧VRに一時的な負
の傾きがあると、微分値(α=dVR/dt)がα
<0の状態になり、この微分値に基づいて、圧
縮機制御回路20が電磁弁9の開弁を判定し、
トランジスタ21をオフ制御する。その結果、
リレースイツチ14はスイツチ閉成状態を保持
し、電磁クラツチ15も通電状態を保つので、
圧縮機2が継続して運転を行い、主回路1と補
助回路8が並列運転を行うことになる。
State A in Figure 3 is the exciting coil 1 at this time.
This is the detected voltage V R of the resistor R that captures the changing state of the current flowing through the circuit 7. When the voltage V R rises, the slope of the rising voltage V R temporarily becomes negative within the elapsed time ta. This is because the inductance of the exciting coil 17 changes due to the movement of the plunger 22 of the solenoid valve 9. And the voltage
The rising voltage of V R is differentiated by a differentiating circuit 19,
As shown in Figure 3, when the voltage V R has a temporary negative slope, the differential value (α = dV R /dt) becomes α
<0, and based on this differential value, the compressor control circuit 20 determines whether the solenoid valve 9 is open,
The transistor 21 is controlled to be turned off. the result,
Since the relay switch 14 maintains the switch closed state and the electromagnetic clutch 15 also maintains the energized state,
The compressor 2 will continue to operate, and the main circuit 1 and the auxiliary circuit 8 will operate in parallel.

Step3:また、Step2と同様に補助回路8のスイ
ツチ16をオンさせて電磁弁9の励磁コイル1
7をオンさせたが、冷凍サイクルの負荷が大き
く、第3図に示すように電磁弁9の高圧側圧
力aと低圧側圧力bの冷媒圧力差ΔP2が開弁可
能な最高作動圧力差ΔP0より大きい場合には、
次の動作が行なわれる。
Step 3: Similarly to Step 2, turn on the switch 16 of the auxiliary circuit 8 and turn on the excitation coil 1 of the solenoid valve 9.
7 was turned on, but the load on the refrigeration cycle was large, and as shown in Fig. 3, the refrigerant pressure difference ΔP 2 between the high pressure side pressure a and the low pressure side pressure b of the solenoid valve 9 is the maximum operating pressure difference ΔP that can open the valve . If greater than 0 ,
The following actions take place.

先ず、電磁弁9にかかる冷媒圧力差ΔPvによ
つて、電磁開閉弁9の電磁吸引力FMよりも大
きな閉弁力FC(FC>FM)が電磁開閉弁9にかか
り、電磁弁9は開弁しない状態が生じる。
First, due to the refrigerant pressure difference ΔPv applied to the solenoid valve 9, a valve closing force F C (F C > F M ) larger than the electromagnetic attraction force F M of the solenoid valve 9 is applied to the solenoid valve 9, and the solenoid valve 9, a situation occurs where the valve does not open.

第3図の状態・ロは、この時の励磁コイル
17に流れる電流の変化状態をとらえた抵抗R
の検出電圧VRであり、経過時間ta内に電磁弁
9が開弁動作を行なわないので、プランジヤ2
2は移動せず励磁コイル17のインダクタンス
も変化せず、経過時間ta内において、検出電圧
VRには負の傾が生じない。従つて、微分回路
19における微分値(α=dVR/dt)がα>0
の状態になり、この微分値に基づき圧縮機制御
回路20が電磁弁9の開弁状態を判定してトラ
ンジスタ21をオン制御する。その結果、リレ
ースイツチ14が一時的にオフして圧縮機2を
一旦停止させる。そして、圧縮機2の停止後経
過時間tb内に電磁弁9の高圧側圧力が低下し、
低圧側圧力が上昇して、電磁弁9にかかる冷媒
圧力差ΔP2が開弁可能な最高作動圧力差ΔP0
り小さくなると、電磁弁9が開弁する。従つ
て、電磁弁9を急激に開いて、補助回路8側に
冷媒を流しても、流れる冷媒はその冷媒圧力差
ΔPvが予め主回路1の単独運転時よりも予め小
さく制御されるので、電磁弁9に発生する冷媒
衝撃音、更に配管系に発生する冷媒流動音、冷
媒衝突音、共鳴音等を充分に低減させることが
できる。
State B in Fig. 3 is the resistance R that captures the changing state of the current flowing through the exciting coil 17 at this time.
Since the solenoid valve 9 does not open within the elapsed time ta, the plunger 2
2 does not move and the inductance of the excitation coil 17 does not change, and within the elapsed time ta, the detected voltage
V R does not have a negative slope. Therefore, the differential value (α=dV R /dt) in the differentiator circuit 19 is α>0.
Based on this differential value, the compressor control circuit 20 determines the open state of the electromagnetic valve 9 and turns on the transistor 21. As a result, the relay switch 14 is temporarily turned off and the compressor 2 is temporarily stopped. Then, within the elapsed time tb after the compressor 2 stops, the high pressure side pressure of the solenoid valve 9 decreases,
When the low-pressure side pressure increases and the refrigerant pressure difference ΔP 2 applied to the solenoid valve 9 becomes smaller than the maximum operating pressure difference ΔP 0 at which the valve can be opened, the solenoid valve 9 opens. Therefore, even if the solenoid valve 9 is suddenly opened and the refrigerant flows into the auxiliary circuit 8 side, the refrigerant pressure difference ΔPv of the flowing refrigerant is controlled in advance to be smaller than when the main circuit 1 is operating alone, so the solenoid Refrigerant impact noise generated in the valve 9, as well as refrigerant flow noise, refrigerant collision noise, resonance noise, etc. generated in the piping system can be sufficiently reduced.

電磁弁9の開弁後は、圧縮機制御回路20を
介してリレースイツチ14が再びオン制御さ
れ、圧縮機2が再稼動されるので、主回路1と
補助回路8に正常な冷媒供給がなされ、空気調
和装置が並列運転を行なうことになる。なお、
第3図に示すように圧縮機2をオン−オフ制
御する経過時間tbに遅延時間を設けているの
は、圧縮機2が極めて短時間にオン−オフを繰
返すのを防止して、圧縮機2の耐久性が劣化す
るのを防ぐためである。
After the solenoid valve 9 is opened, the relay switch 14 is turned on again via the compressor control circuit 20 and the compressor 2 is restarted, so that normal refrigerant is supplied to the main circuit 1 and the auxiliary circuit 8. , the air conditioners will operate in parallel. In addition,
As shown in FIG. 3, the reason why the delay time is provided in the elapsed time tb for controlling the compressor 2 on and off is to prevent the compressor 2 from repeatedly turning on and off in an extremely short period of time. This is to prevent the durability of No. 2 from deteriorating.

また、経過時間tb内にα<0が発生しない場
合には、α<0が発生するまで圧縮機2は停止
したまま待機し、α<0が発生すると電磁弁9
が前述したように開弁し、同時に圧縮機2が再
稼動する。
In addition, if α<0 does not occur within the elapsed time tb, the compressor 2 remains stopped until α<0 occurs, and when α<0 occurs, the solenoid valve 9
is opened as described above, and at the same time, the compressor 2 is restarted.

以上のような本実施例によれば、補助回路8の
高圧側に電磁弁9を設けて、空気調和装置を単独
運転から並列運転に移行させた場合にも、電磁弁
9の急激な開放による冷媒衝撃音、冷媒流動音等
の騒音の発生を充分に抑制することができるの
で、快適な空調運転を行い得る。
According to this embodiment as described above, even when the solenoid valve 9 is provided on the high pressure side of the auxiliary circuit 8 and the air conditioner is shifted from independent operation to parallel operation, the sudden opening of the solenoid valve 9 can cause Since the generation of noise such as refrigerant impact noise and refrigerant flow noise can be sufficiently suppressed, comfortable air conditioning operation can be performed.

また、高圧側に電磁弁を設ける場合には、〔発
明の背景の項〕でも述べたように、低コストの高
圧電磁弁を使用することができ、しかも、最高作
動圧力差ΔP0が低い電磁弁9を使用することがで
きるので、電磁弁9の消費電力を小さくすること
ができ、且つ電磁弁9の小型化を図り得る。
In addition, when a solenoid valve is provided on the high pressure side, a low-cost high-pressure solenoid valve can be used, as described in the Background of the Invention section, and a solenoid valve with a low maximum operating pressure difference ΔP 0 can be used. Since the valve 9 can be used, the power consumption of the solenoid valve 9 can be reduced, and the solenoid valve 9 can be made smaller.

また、電磁弁9にかかる差圧ΔPvが電磁弁9の
最高作動圧力差ΔP0より小さい時に、電磁弁9が
開弁するときには、圧縮機2を停止させずに並列
運転に移行することができるので、電磁クラツチ
15や圧縮機2の耐久性を充分に保障することが
できる。
Furthermore, when the solenoid valve 9 opens when the differential pressure ΔPv applied to the solenoid valve 9 is smaller than the maximum operating pressure difference ΔP 0 of the solenoid valve 9, it is possible to shift to parallel operation without stopping the compressor 2. Therefore, the durability of the electromagnetic clutch 15 and the compressor 2 can be sufficiently guaranteed.

第5図は、第1図の空調システムに使用する電
磁弁9の他の実施例を示すものである。同図にお
いて、第4図の電磁弁9と同一符号は同一部分を
示すものである。本実施例は、電磁弁9のプラン
ジヤ22と電極24の夫々に、弁開した時に導通
する固定接点25と可動接点26とを配設したも
のであり、既述した第1実施例のような微分信号
α=dVR/dtを検出し判定することがなく、電磁
弁9の開閉作動状況を接点25,26の導通状態
から検出して、圧縮機制御ユニツト18′で判定
し、この判定信号に基づき電磁クラツチ15を介
して圧縮機Z(図示せず)をオン、オフ制御する
ようにしたものであり、このようにしても、既述
した第1実施例と同様の効果を奏することができ
る。
FIG. 5 shows another embodiment of the solenoid valve 9 used in the air conditioning system shown in FIG. In this figure, the same reference numerals as those of the electromagnetic valve 9 in FIG. 4 indicate the same parts. In this embodiment, a fixed contact 25 and a movable contact 26 are provided on the plunger 22 and the electrode 24 of the electromagnetic valve 9, respectively, and the fixed contacts 25 and the movable contacts 26 are electrically connected when the valve is opened. Instead of detecting and making a judgment on the differential signal α=dV R /dt, the opening/closing status of the solenoid valve 9 is detected from the conduction state of the contacts 25 and 26, and the compressor control unit 18' makes a judgment, and this judgment signal Based on this, the compressor Z (not shown) is controlled on and off via the electromagnetic clutch 15, and even with this method, the same effect as the first embodiment described above can be achieved. can.

なお、既述した各実施例は、圧縮機2を停止制
御して空気調和装置の並列運転移行時の電磁弁9
にかかる冷媒圧力差ΔPvを小さくしているが、本
発明は、これに限定されるものではなく、その他
に、圧縮機2として吐出容量を変化させることが
できる可変容量型圧縮機を用いる場合には、圧縮
機2を停止させることなく、その吐出容量を一時
的に小さく可変制御する圧縮機制御回路を設け
て、電磁弁9の開弁に際しての冷媒圧力差ΔPvを
小さくしてもよい。このような方式によれば、圧
縮機を停止させることがないので、更に円滑な空
調運転を行なうことができる。
In addition, in each of the embodiments described above, the solenoid valve 9 when the compressor 2 is stopped and the air conditioner shifts to parallel operation.
Although the refrigerant pressure difference ΔPv applied to the compressor 2 is reduced, the present invention is not limited to this. Alternatively, a compressor control circuit may be provided to temporarily and variably control the discharge capacity of the compressor 2 to a small value without stopping the compressor 2, thereby reducing the refrigerant pressure difference ΔPv when the electromagnetic valve 9 is opened. According to such a system, since the compressor is not stopped, smoother air conditioning operation can be performed.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、空調装置の補
助回路の高圧配管側に運転制御用の補助回路開閉
弁を設けた場合でも、補助回路開閉弁の作動時に
弁内部や配管系に冷媒衝撃音、冷媒流動音等の騒
音が生じることを防止し、快適な空調運転を行な
い得る。しかも、安価にして小型化された高圧用
開閉弁を使用することができるので、装置全体の
低コスト化を図り得る。
As described above, according to the present invention, even when the auxiliary circuit on-off valve for operation control is provided on the high-pressure piping side of the auxiliary circuit of an air conditioner, refrigerant shock may be applied to the inside of the valve or the piping system when the auxiliary circuit on-off valve is activated. This prevents the generation of noise such as sound and refrigerant flow noise, and allows comfortable air conditioning operation. Moreover, since it is possible to use a high-pressure on-off valve that is inexpensive and compact, it is possible to reduce the cost of the entire apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すシステム図、
第2図は上記実施例の動作状態を説明するための
フローチヤート、第3図〜は上記実施例の動
作状態を示す動作波形図、第4図は上記実施例に
用いる電磁弁の縦断面図、第5図は本発明の他の
実施例を示す一部省略構成図である。 1……主回路、2……圧縮機、3……凝縮機、
5……主膨張弁、6……主蒸発器、8……補助回
路、9……補助回路開閉弁(電磁弁)、9a……
冷媒流入口、9b……冷媒流出口、11……副蒸
発器、12……運転制御系、13……主回路スイ
ツチ、16……補助回路スイツチ、17……励磁
コイル、18……冷媒圧力制御手段(圧縮機制御
ユニツト)、19……微分回路(冷媒圧力差検出
手段)、20……圧縮機制御回路、22……プラ
ンジヤ、25……固定接点、26……可動接点、
R……冷媒圧力差検出手段(抵抗)。
FIG. 1 is a system diagram showing an embodiment of the present invention;
Fig. 2 is a flowchart for explaining the operating state of the above embodiment, Figs. , and FIG. 5 are partially omitted configuration diagrams showing another embodiment of the present invention. 1... Main circuit, 2... Compressor, 3... Condenser,
5... Main expansion valve, 6... Main evaporator, 8... Auxiliary circuit, 9... Auxiliary circuit opening/closing valve (electromagnetic valve), 9a...
Refrigerant inlet, 9b... Refrigerant outlet, 11... Sub-evaporator, 12... Operation control system, 13... Main circuit switch, 16... Auxiliary circuit switch, 17... Excitation coil, 18... Refrigerant pressure Control means (compressor control unit), 19...differential circuit (refrigerant pressure difference detection means), 20...compressor control circuit, 22...plunger, 25...fixed contact, 26...movable contact,
R...Refrigerant pressure difference detection means (resistance).

Claims (1)

【特許請求の範囲】 1 圧縮機、凝縮器、主膨張弁、主蒸発器を有す
る主回路と、前記主回路の主蒸発器と並列に配設
された副蒸発器を有する補助回路とを具備し、前
記主回路の作動時に前記補助回路を開閉制御して
前記主回路の単独運転と該主回路に補助回路を付
加した並列運転とを行なうデユアル方式の自動車
用空気調和装置において、前記補助回路の高圧側
配管に該補助回路の開閉を行なう補助回路開閉弁
を設け、更に、前記主回路及び補助回路を運転制
御する制御系には、前記主回路のみの単独運転か
ら前記補助回路を付加した並列運転を開始するに
際して、前記補助回路の開閉弁の流体出入口にか
かる冷媒圧力差を該補助回路開閉弁の開弁前に前
記主回路の単独運転時よりも一時的に小さくする
冷媒圧力制御手段を設け、この冷媒圧力制御手段
により前記補助回路開閉弁の弁開時に生じる流体
衝撃を抑制することを特徴とする自動車用空気調
和装置。 2 特許請求の範囲第1項において、前記冷媒圧
力制御手段は、前記補助回路開閉弁の流体出入口
にかかる冷媒圧力差の度合を検出する冷媒圧力差
検出手段を有し、この冷媒圧力差検出手段の検出
値に基づき前記冷媒圧力差が所定値以上に大きい
と判定した場合に前記補助回路開閉弁にかかる冷
媒圧力差を小さく制御するように設定してなる自
動車用空気調和装置。 3 特許請求の範囲第2項において、前記補助回
路開閉弁は、弁開放により生じる流体衝撃の許容
範囲を予め定めて、この許容範囲以上の流体衝撃
を発生させる冷媒圧力差が該補助回路開閉弁の流
体出入口にかかると、その間、弁開不能となるよ
うに弁作動能力を設定し、更に前記冷媒圧力差検
出手段は、前記補助回路開閉弁の弁作動の作動状
況に基づき冷媒圧力差の度合を検出するように設
定してなる自動車用空気調和装置。 4 特許請求の範囲第3項において、前記補助回
路開閉弁は、電磁弁からなり、且つ、前記冷媒圧
力差検出手段は、前記電磁弁のプランジヤ動作に
よつて変化する該電磁弁の励磁コイル電流を検出
する抵抗と、該抵抗による検出電圧値を微分して
前記励磁コイル電流の変化度合を判別する微分回
路とよりなる自動車用空気調和装置。 5 特許請求の範囲第3項において、前記補助回
路開閉弁は、電磁弁からなり、且つ、前記冷媒圧
力差検出手段は、前記電磁弁のプランジヤに配設
された可動接点と、該プランジヤを吸引する磁極
に配設された固定接点とよりなり、前記固定接点
と可動接点の通電の有無から弁の作動状況を検出
するようにした自動車用空気調和装置。 6 特許請求の範囲第1項ないし第5項のいずれ
かにおいて、前記冷媒圧力制御手段は、前記主回
路に設けた圧縮機を一時的に停止させる圧縮機制
御回路を備えた圧縮機制御ユニツトよりなる自動
車用空気調和装置。 7 特許請求の範囲第1項ないし第5項のいずれ
かにおいて、前記冷媒圧力制御手段は、前記主回
路に設けた圧縮機の吐出容量を一時的に小さくす
る圧縮機制御回路を備えた圧縮機制御ユニツトよ
りなる自動車用空気調和装置。
[Claims] 1. A main circuit having a compressor, a condenser, a main expansion valve, and a main evaporator, and an auxiliary circuit having a sub-evaporator arranged in parallel with the main evaporator of the main circuit. In the dual-type automobile air conditioning system, the auxiliary circuit is controlled to open and close when the main circuit is activated to perform independent operation of the main circuit and parallel operation in which an auxiliary circuit is added to the main circuit. An auxiliary circuit on-off valve for opening and closing the auxiliary circuit is provided in the high pressure side piping of the auxiliary circuit, and the auxiliary circuit is added to the control system for controlling the operation of the main circuit and the auxiliary circuit, instead of operating only the main circuit alone. When starting parallel operation, refrigerant pressure control means temporarily makes the refrigerant pressure difference applied to the fluid inlet and outlet of the on-off valve of the auxiliary circuit smaller than when the main circuit is operating independently before opening the auxiliary circuit on-off valve. An air conditioner for an automobile, characterized in that the refrigerant pressure control means suppresses fluid shock that occurs when the auxiliary circuit on-off valve is opened. 2. In claim 1, the refrigerant pressure control means includes refrigerant pressure difference detection means for detecting the degree of refrigerant pressure difference across the fluid inlet and outlet of the auxiliary circuit on-off valve, and the refrigerant pressure difference detection means An air conditioner for an automobile configured to control a refrigerant pressure difference applied to the auxiliary circuit opening/closing valve to be small when it is determined that the refrigerant pressure difference is larger than a predetermined value based on the detected value. 3. In claim 2, the auxiliary circuit on-off valve has a predetermined allowable range of fluid impact caused by opening the valve, and a refrigerant pressure difference that causes a fluid impact exceeding this allowable range is the auxiliary circuit on-off valve. The valve operation capacity is set so that the valve cannot be opened during that time when the fluid enters and exits the auxiliary circuit opening/closing valve. An automotive air conditioner that is configured to detect. 4. In claim 3, the auxiliary circuit opening/closing valve is composed of a solenoid valve, and the refrigerant pressure difference detection means detects an exciting coil current of the solenoid valve that changes according to a plunger operation of the solenoid valve. An air conditioner for an automobile, comprising a resistor that detects the voltage value, and a differentiation circuit that differentiates the voltage value detected by the resistor to determine the degree of change in the excitation coil current. 5. In claim 3, the auxiliary circuit opening/closing valve is composed of a solenoid valve, and the refrigerant pressure difference detection means includes a movable contact disposed on a plunger of the solenoid valve, and a movable contact disposed on a plunger of the solenoid valve. An air conditioner for an automobile, comprising a fixed contact disposed on a magnetic pole, and detects the operating status of a valve based on whether or not the fixed contact and the movable contact are energized. 6. In any one of claims 1 to 5, the refrigerant pressure control means is controlled by a compressor control unit including a compressor control circuit for temporarily stopping a compressor provided in the main circuit. An air conditioner for automobiles. 7. In any one of claims 1 to 5, the refrigerant pressure control means is a compressor equipped with a compressor control circuit that temporarily reduces the discharge capacity of the compressor provided in the main circuit. An automotive air conditioner consisting of a control unit.
JP60299150A 1985-12-27 1985-12-27 Airconditioning device for car Granted JPS62155120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60299150A JPS62155120A (en) 1985-12-27 1985-12-27 Airconditioning device for car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60299150A JPS62155120A (en) 1985-12-27 1985-12-27 Airconditioning device for car

Publications (2)

Publication Number Publication Date
JPS62155120A JPS62155120A (en) 1987-07-10
JPH0442202B2 true JPH0442202B2 (en) 1992-07-10

Family

ID=17868769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60299150A Granted JPS62155120A (en) 1985-12-27 1985-12-27 Airconditioning device for car

Country Status (1)

Country Link
JP (1) JPS62155120A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6590558B2 (en) * 2015-07-01 2019-10-16 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicles

Also Published As

Publication number Publication date
JPS62155120A (en) 1987-07-10

Similar Documents

Publication Publication Date Title
US6253561B1 (en) Refrigerator with switching valve switching flow of refrigerant to one of refrigerant passages
JPH0529830B2 (en)
JPH0442202B2 (en)
JPS5830A (en) Operation control for variable capacity compressor in cooling apparatus
JPS5832118Y2 (en) Refrigeration cycle operating equipment
JPS63204087A (en) Refrigerator
JPH08313076A (en) Refrigerating apparatus
JPS61276660A (en) Controller for capacity of air conditioner
JPH10129244A (en) Air conditioner provided with cold accumulator
JP3181418B2 (en) Air conditioner
JPS6217571A (en) Starting compensator for air conditioner
JPH07107467B2 (en) Refrigeration equipment
JP3082304B2 (en) Air conditioner
JPS63201470A (en) Refrigerator
JPH0477220B2 (en)
JP2503785B2 (en) Operation control device for air conditioner
JPH1194368A (en) Freezing cycle device
JP2000065430A (en) Vapor compression refrigeration cycle
JPH0581819B2 (en)
JPS63238366A (en) Refrigeration cycle device
JPH07285325A (en) Operation control device for refrigerating cycle
KR100733321B1 (en) Air conditioning and the controlling method
JPS6315056A (en) Four-way changeover valve for refrigerator
JP2001116384A (en) Controller for refrigerating cycle
JP2002098386A (en) Fluid control valve, control device of air conditioner, and the air conditioner