JPH0441689A - Hydrogen producing device - Google Patents

Hydrogen producing device

Info

Publication number
JPH0441689A
JPH0441689A JP2145325A JP14532590A JPH0441689A JP H0441689 A JPH0441689 A JP H0441689A JP 2145325 A JP2145325 A JP 2145325A JP 14532590 A JP14532590 A JP 14532590A JP H0441689 A JPH0441689 A JP H0441689A
Authority
JP
Japan
Prior art keywords
steam
hydrogen
combustor
oxygen
preheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2145325A
Other languages
Japanese (ja)
Inventor
Ryosuke Notomi
納富 良介
Seiya Yamada
山田 誠也
Masahiko Nagai
正彦 永井
Akihiro Yamashita
晃弘 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2145325A priority Critical patent/JPH0441689A/en
Publication of JPH0441689A publication Critical patent/JPH0441689A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To enable the production of hydrogen by the use of steam produced from a low-temp. heat source by using hydrogen an oxygen produced in a steam electrolysis device for heating steam. CONSTITUTION:Steam produced by a steam generator 1 is sent to a combustor 3 through a preheater 2 with a steam tube 10. In the combustor 3, steam is heated and supplied to the steam electrolysis device 4 where the high-temp. steam is electrically decomposed into gaseous hydrogen and gaseous oxygen by a power supply 5. The gaseous hydrogen is then sent as the product to other apparatus through the preheater 2 with a hydrogen tube 8, and a part of the gaseous hydrogen is sent to the combustor 3. In the preheater 2, heat exchange between the steam from the steam generator 1 and the gaseous hydrogen or gaseous oxygen is performed. On the other hand, the gaseous oxygen is split to the combustor 3 from an oxygen tube 9 and used to raise the temp. of the steam from the steam tube 10.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は原子力、火力の余剰電力利用による水素製造に
係り、特に低温蒸気を使用した水素製造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to hydrogen production by utilizing surplus electricity from nuclear power or thermal power, and particularly relates to hydrogen production using low-temperature steam.

[従来の技術] 従来、固体電解質を利用した水蒸気電解法により、水素
を生成していた。これは、電解質部に電圧を印加するこ
とにより、高温水蒸気をH2(水素)と02  (酸素
)に分離し、02は空気側へ移動させるようにした方法
である。
[Prior Art] Conventionally, hydrogen has been generated by steam electrolysis using a solid electrolyte. This is a method in which high-temperature steam is separated into H2 (hydrogen) and O2 (oxygen) by applying a voltage to the electrolyte section, and O2 is moved to the air side.

ここで、第4図を参照して固体高分子電解質の水電解に
よる水素ガス発生の原理について簡単に説明する。第4
図に示すように、固体高分子電解質セル20は、カチオ
ン交換膜である固体高分子電解質膜23の両面に触媒電
極、つまり陽極24と陰極22とを接合し、その両側に
多孔性の給電体21.25、さらにその両側に通電用の
端子板26.27を設けて、固体高分子電解質11!2
3で仕切られた陽極室28および陰極室29で形成され
る。
Here, the principle of hydrogen gas generation by water electrolysis of a solid polymer electrolyte will be briefly explained with reference to FIG. Fourth
As shown in the figure, the solid polymer electrolyte cell 20 has catalyst electrodes, that is, an anode 24 and a cathode 22, bonded to both sides of a solid polymer electrolyte membrane 23, which is a cation exchange membrane, and a porous power supply material on both sides. 21.25, and terminal plates 26.27 for electricity are provided on both sides of the solid polymer electrolyte 11!2.
It is formed of an anode chamber 28 and a cathode chamber 29 which are partitioned by 3.

このような構成において、入口30より蒸気を供給し、
セルに直流電圧をかけると、蒸気の電気分解が起こり、
陽極室28では酸素ガスが生成され、このとき生成され
た水素イオンH÷が、固体高分子電解質膜23中を水和
水を伴って陰極室29側へ移動する。そして、陰極室2
9の陰極22において、水素イオンH+は電子を受は取
り、水素ガスH2になる。このため、陰極22側へ蒸気
に供給する必要はない。なお、図中31は水素ガスの出
口、32は酸素ガスの出口である。
In such a configuration, steam is supplied from the inlet 30,
When a DC voltage is applied to the cell, electrolysis of the steam occurs,
Oxygen gas is generated in the anode chamber 28, and the hydrogen ions H÷ generated at this time move through the solid polymer electrolyte membrane 23 to the cathode chamber 29 along with hydration water. And cathode chamber 2
At the cathode 22 of No. 9, the hydrogen ions H+ accept and take electrons and become hydrogen gas H2. Therefore, there is no need to supply steam to the cathode 22 side. In the figure, 31 is a hydrogen gas outlet, and 32 is an oxygen gas outlet.

[発明が解決しようとする課題J ところで、上記したような従来の固体電解質を利用した
水蒸気電解法では、入力源として少なくとも800℃以
上の高温水蒸気も必要とする。このため、その水蒸気供
給源としては例えば高温ガス炉や核融合炉といった高温
水蒸気を供給可能な原子炉のみが対象とされていた。
[Problem to be Solved by the Invention J] By the way, the conventional steam electrolysis method using a solid electrolyte as described above also requires high-temperature steam of at least 800° C. or higher as an input source. For this reason, only nuclear reactors capable of supplying high-temperature steam, such as high-temperature gas reactors and nuclear fusion reactors, have been targeted as steam supply sources.

本発明は上記のような点に鑑みなされたもので、例えば
軽水炉、火力発電設備等の比較的低温な熱源により発生
する水蒸気を利用しても水素を生成することのできる水
素製造装置を提供することを目的とする。
The present invention has been made in view of the above points, and provides a hydrogen production device that can generate hydrogen even by using steam generated from a relatively low-temperature heat source such as a light water reactor or thermal power generation equipment. The purpose is to

[課題を解決するための手段] すなわち、本発明に係る水素製造装置は、燃焼機によっ
て加熱された水蒸気を水蒸気電解装置で水素と酸素に電
気分解し、この水素および酸素を上記燃焼機に戻すと共
に、蒸気発生器で発生される水蒸気を上記水素あるいは
酸素との熱交換により加熱し、この加熱された水蒸気を
上記燃焼機に送るようにしたものである。
[Means for Solving the Problems] That is, the hydrogen production device according to the present invention electrolyzes steam heated by a combustor into hydrogen and oxygen using a steam electrolysis device, and returns the hydrogen and oxygen to the combustor. In addition, the steam generated by the steam generator is heated by heat exchange with the hydrogen or oxygen, and the heated steam is sent to the combustor.

〔作用〕[Effect]

上記の構成によれば、水蒸気電解装置で生成される水素
と酸素が水蒸気の加熱用に利用される。
According to the above configuration, hydrogen and oxygen generated in the steam electrolyzer are used for heating steam.

したがって、例えば軽水炉、火力発電設備等の比較的低
温な熱源により発生する水蒸気を利用しても、その水蒸
気を高温として水素を生成することができる。
Therefore, even if water vapor generated from a relatively low-temperature heat source such as a light water reactor or thermal power generation equipment is used, the water vapor can be heated to a high temperature to generate hydrogen.

[実施例] 以下、図面を参照して本発明の一実施例に係る水素製造
装置を説明する。
[Example] Hereinafter, a hydrogen production apparatus according to an example of the present invention will be described with reference to the drawings.

第1図は同実施例の軽水炉を熱源とする高温水蒸気電解
プラントシステムの構成を示す図である。
FIG. 1 is a diagram showing the configuration of a high-temperature steam electrolysis plant system using a light water reactor as a heat source according to the same embodiment.

第1図において、蒸気発生器1は、図示せぬ軽水炉を熱
源として水を蒸発させる。この水蒸気は、蒸気管]0に
より予熱器2を経て燃焼8I!3に送られる。燃焼機3
は、蒸気管10を通じて得られる水蒸気を加熱し、高温
水蒸気として水蒸気電解装置4に供給する。水蒸気電解
装置4は、電源5を備えており、この電源5の電力を用
いて上記燃焼機3にて加熱された高温水蒸気を電気的に
水素ガスと酸素ガスに分解する。
In FIG. 1, a steam generator 1 evaporates water using a light water reactor (not shown) as a heat source. This water vapor passes through the preheater 2 through the steam pipe ] 0 and is combusted 8I! Sent to 3. Combustion machine 3
heats the steam obtained through the steam pipe 10 and supplies it to the steam electrolyzer 4 as high-temperature steam. The steam electrolyzer 4 includes a power source 5, and uses the power of the power source 5 to electrically decompose high-temperature steam heated in the combustor 3 into hydrogen gas and oxygen gas.

この水蒸気電解装置4によって電気分解された水素ガス
と酸素ガスのうち、水素ガスは水素管8により予熱器2
を経た後、製品として他の使用機器に送られると共に、
その一部が水素管8の途中から分岐して、燃焼機3に送
られる。ここで、予熱器2は、蒸気発生器1からの水蒸
気と、この水素ガスあるいは酸素ガスとの熱交換を行う
。一方、酸素ガスも水素ガスと同様に、酸素管9の途中
から分岐して、燃焼機3に送られる。これにより、水素
ガスおよび酸素ガスが共に燃焼機3にフィードバックさ
れ、同燃焼機3にて燃焼され、蒸気管10からの水蒸気
をさらに高温とする。また、水素ガスおよび酸素ガスの
それぞれ分岐管には、調節弁7.6が取り付けられてお
り、燃焼機3にフィードバックする水素ガスおよび酸素
ガスの瓜を調節できるようになっている。
Of the hydrogen gas and oxygen gas electrolyzed by this steam electrolysis device 4, the hydrogen gas is transferred to the preheater 2 through a hydrogen pipe 8.
After passing through this process, it is sent as a product to other equipment used, and
A part of it branches off from the middle of the hydrogen pipe 8 and is sent to the combustor 3. Here, the preheater 2 performs heat exchange between the steam from the steam generator 1 and this hydrogen gas or oxygen gas. On the other hand, like hydrogen gas, oxygen gas is also branched from the middle of oxygen pipe 9 and sent to combustor 3 . As a result, both hydrogen gas and oxygen gas are fed back to the combustor 3, where they are combusted, thereby making the steam from the steam pipe 10 even hotter. Further, a control valve 7.6 is attached to each of the hydrogen gas and oxygen gas branch pipes, so that the amount of hydrogen gas and oxygen gas fed back to the combustor 3 can be adjusted.

第2図及び第3図は上記水蒸気電解装置4のセル構成を
説明するための図であり、第2図はその概念図、第3図
はその断面図である。第2図及び第3図において、図中
11は導体管であり、その一方より高温水蒸気を管内に
通し、有効変換部にて分解された水素ガスを他方より出
し、酸素ガスをその外周部より発生させている。
FIGS. 2 and 3 are diagrams for explaining the cell structure of the steam electrolyzer 4, with FIG. 2 being a conceptual diagram thereof and FIG. 3 being a sectional view thereof. In Figures 2 and 3, numeral 11 in the figure is a conductor tube, high-temperature steam is passed through the tube from one side, hydrogen gas decomposed in the effective conversion section is released from the other side, and oxygen gas is released from the outer circumference of the tube. It is occurring.

この導体管11の外周には、陰極12が一定間隔で配置
され、その上部に電解質13、さらにその上部に陽極1
4が多層に配置されている。まt:、電解質13はイン
クコネクタ15によって連結されていて、上層の陽極1
4はその継部を保護膜16によって被われている。
On the outer periphery of this conductor tube 11, cathodes 12 are arranged at regular intervals, an electrolyte 13 is placed above the cathodes 12, and an anode 1 is placed above the cathodes 12.
4 are arranged in multiple layers. The electrolyte 13 is connected to the upper layer anode 1 by an ink connector 15.
4 has its joint portion covered with a protective film 16.

次に、同実施例の作用について説明する。Next, the operation of this embodiment will be explained.

第1図に示すシステムにおいて、蒸気発生器1て発生さ
れた例えば約280℃、52ata。
In the system shown in FIG. 1, the steam generator 1 generates, for example, about 280°C and 52ata.

16t/hの水蒸気は、予熱器2で約570℃まで加熱
され、さらに燃焼機3にて800℃まで加熱される。水
蒸気電解装置4では、67MWの電気入力と固体電解質
のジュール熱の発熱により発生する水素は950℃まで
昇温する。この950℃まで昇温された水素は、予熱器
2にて水蒸気を加熱する一方、この予熱器2の熱交換作
用により自身は300℃まで冷却される。その後、生産
量の約5%の水素が燃焼機3に分流され、同しく燃焼機
3に分流される生産量の約5%の酸素と共に、燃焼機3
にて燃焼される。これにより、この燃焼機3に入ってく
る水蒸気がさらに加熱される。
16 t/h of steam is heated to about 570°C in the preheater 2, and further heated to 800°C in the combustor 3. In the steam electrolyzer 4, hydrogen generated by 67 MW of electric input and Joule heat generated by the solid electrolyte is heated to 950°C. The hydrogen heated to 950°C heats the steam in the preheater 2, while being cooled to 300°C by the heat exchange action of the preheater 2. Thereafter, about 5% of the production amount of hydrogen is diverted to the combustor 3, along with about 5% of the production amount of oxygen, which is also diverted to the combustor 3.
It is burned at Thereby, the water vapor entering this combustor 3 is further heated.

このように、本システムでは、水蒸気の昇温に要するエ
ンタルピーと水素の燃焼熱量との差により成立している
ものである。第1図の例で説明すれば、570℃、62
ataの水蒸気と800℃62ataの水蒸気のエンタ
ルピーの差は、約130k c a l / k gで
ある。一方、水素の低温燃焼の場合の発熱量は、約28
,570kcal/kgである。よって、上述したよう
に、生産量の約5%の水素燃焼で、このシステムは成立
するものである。
In this way, this system is established due to the difference between the enthalpy required to raise the temperature of water vapor and the amount of heat of combustion of hydrogen. To explain using the example in Figure 1, 570℃, 62℃
The difference in enthalpy between water vapor at ATA and water vapor at 800°C and 62ATA is approximately 130 kcal/kg. On the other hand, the calorific value of low-temperature combustion of hydrogen is approximately 28
, 570 kcal/kg. Therefore, as mentioned above, this system can be established with hydrogen combustion accounting for approximately 5% of the production amount.

[発明の効果コ 以上のように本発明によれば、水蒸気電解装置で生成さ
れる水素と酸素を水蒸気の加熱用に利用することにより
、例えば軽水炉、火力発電設備等の比較的低温な熱源に
より発生する水蒸気を利用しても、その水蒸気を高温と
して水素を生成することができるものである。
[Effects of the Invention] As described above, according to the present invention, hydrogen and oxygen produced in a steam electrolyzer are used to heat steam, and a relatively low-temperature heat source such as a light water reactor or thermal power generation equipment can be used to heat the steam. Even if the generated water vapor is used, it is possible to generate hydrogen by heating the water vapor to a high temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るプラントシステムの構
成を示す図、第2図及び第31は同実施例における水蒸
気電解装置のセル構成を説明するための図、第4図は従
来の水蒸気電解法を説明するための図である。 1・・・蒸気発生器、2・・・予熱器、3・・・燃焼機
、4・・・水蒸気電解装置、5・・・電源、6および7
・・・調節弁、8・・・水素管、9・・・酸素管、10
・・・蒸気管。 出願人代理人 弁理士 鈴江武彦 11基本管 有効変換部 第 図
FIG. 1 is a diagram showing the configuration of a plant system according to an embodiment of the present invention, FIGS. 2 and 31 are diagrams for explaining the cell configuration of a steam electrolyzer in the same embodiment, and FIG. FIG. 2 is a diagram for explaining a steam electrolysis method. DESCRIPTION OF SYMBOLS 1...Steam generator, 2...Preheater, 3...Combustor, 4...Steam electrolyzer, 5...Power source, 6 and 7
...Control valve, 8...Hydrogen pipe, 9...Oxygen pipe, 10
...Steam pipe. Applicant's agent Patent attorney Takehiko Suzue 11 Basic management effective conversion part diagram

Claims (1)

【特許請求の範囲】 水蒸気加熱用の燃焼機と、 この燃焼機によって加熱された水蒸気を水素と酸素に電
気分解する水蒸気電解装置と、 この水蒸気電解装置によって得られた水素および酸素を
上記燃焼機に戻すリターン回路と、水蒸気を発生する蒸
気発生器と、 この蒸気発生器で発生される水蒸気を上記水蒸気電解装
置によって得られた水素あるいは酸素との熱交換により
加熱する予熱器と、 この予熱器によって加熱された水蒸気を上記燃焼機に送
る蒸気管とを具備してなることを特徴とする水素製造装
置。
[Scope of Claims] A combustor for heating steam; a steam electrolyzer that electrolyzes the steam heated by the combustor into hydrogen and oxygen; and a steam electrolyzer that electrolyzes the steam heated by the combustor into hydrogen and oxygen; a return circuit for returning water to the water, a steam generator that generates steam, a preheater that heats the steam generated by this steam generator by heat exchange with hydrogen or oxygen obtained by the steam electrolyzer, and this preheater. and a steam pipe for sending steam heated by the above to the combustion machine.
JP2145325A 1990-06-05 1990-06-05 Hydrogen producing device Pending JPH0441689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2145325A JPH0441689A (en) 1990-06-05 1990-06-05 Hydrogen producing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2145325A JPH0441689A (en) 1990-06-05 1990-06-05 Hydrogen producing device

Publications (1)

Publication Number Publication Date
JPH0441689A true JPH0441689A (en) 1992-02-12

Family

ID=15382555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2145325A Pending JPH0441689A (en) 1990-06-05 1990-06-05 Hydrogen producing device

Country Status (1)

Country Link
JP (1) JPH0441689A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078159A1 (en) * 2004-02-18 2005-08-25 Ebara Corporation Method and apparatus for producing hydrogen
KR100736163B1 (en) * 2005-03-31 2007-07-06 고등기술연구원연구조합 An apparatus of producing hydrogen with high temperature electrolysis and a method of producing hydrogen using the same
JP2009001878A (en) * 2007-06-22 2009-01-08 Toshiba Corp High temperature steam electrolysis method and apparatus
JP2010265494A (en) * 2009-05-12 2010-11-25 Honda Motor Co Ltd Water electrolysis system
JP2010540771A (en) * 2007-09-25 2010-12-24 コミサリア ア レネルジー アトミーク エ オ エネルジー アルテルナティヴ High-temperature electrolytic cell with temperature equalizing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078159A1 (en) * 2004-02-18 2005-08-25 Ebara Corporation Method and apparatus for producing hydrogen
KR100736163B1 (en) * 2005-03-31 2007-07-06 고등기술연구원연구조합 An apparatus of producing hydrogen with high temperature electrolysis and a method of producing hydrogen using the same
JP2009001878A (en) * 2007-06-22 2009-01-08 Toshiba Corp High temperature steam electrolysis method and apparatus
JP2010540771A (en) * 2007-09-25 2010-12-24 コミサリア ア レネルジー アトミーク エ オ エネルジー アルテルナティヴ High-temperature electrolytic cell with temperature equalizing device
JP2010265494A (en) * 2009-05-12 2010-11-25 Honda Motor Co Ltd Water electrolysis system

Similar Documents

Publication Publication Date Title
US20080296171A1 (en) Multi-cell dual voltage electrolysis apparatus and method of using same
KR920704368A (en) Apparatus and method for incorporating electrical and mechanical energy
CN105696013A (en) High-temperature steam electrolytic hydrogen production system using medium-low-temperature heat source
Houaijia et al. Solar power tower as heat and electricity source for a solid oxide electrolyzer: a case study
JPH02183967A (en) Power generating system for fused carbonate type fuel cell
JP4121739B2 (en) Hydrogen generation system and method using nuclear reactor
NL2022045B1 (en) Method for generating heat from water electrolysis
JPH0441689A (en) Hydrogen producing device
JP2018184631A (en) Hydrogen production method and produced hydrogen supplying apparatus
JPH0693481A (en) Method for electrolyzing high temperature steam
US20080296169A1 (en) Multi-cell single voltage electrolysis apparatus and method of using same
JP7374150B2 (en) Hydrogen production system and hydrogen production method
JPH04349356A (en) Electric power storage system by hydrogen energy
US20200343573A1 (en) Assembly consisting of a stack with solid oxides of the soec/sofc type and of a clamping system integrating a heat exchange system
JP7374152B2 (en) Hydrogen production system and hydrogen production method
JP2023151906A (en) Hydrogen supply system
WO2023053546A1 (en) Hydrogen production system and hydrogen production method
JP3073377B2 (en) Methanol synthesizer
JPH10208755A (en) Electric power generating apparatus
KR102258808B1 (en) An electric power generating system
EP4365128A1 (en) High-temperature steam electrolysis device, hydrogen production method, and hydrogen production system
JP2000509549A (en) Operating method of high temperature fuel cell power generator and high temperature fuel cell power generator
JP2022157169A (en) Hydrogen production system and hydrogen production method
JPS62278103A (en) Apparatus for producing fluorine gas
JPH02116795A (en) Supply of hydrogen gas to nuclear reactor water