JPH02116795A - Supply of hydrogen gas to nuclear reactor water - Google Patents

Supply of hydrogen gas to nuclear reactor water

Info

Publication number
JPH02116795A
JPH02116795A JP1244903A JP24490389A JPH02116795A JP H02116795 A JPH02116795 A JP H02116795A JP 1244903 A JP1244903 A JP 1244903A JP 24490389 A JP24490389 A JP 24490389A JP H02116795 A JPH02116795 A JP H02116795A
Authority
JP
Japan
Prior art keywords
hydrogen gas
reactor
water
electrolysis
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1244903A
Other languages
Japanese (ja)
Inventor
P Fejes
ペーター フェイェス
E Hallden
エバ ハルデン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Electric Sweden AB
Original Assignee
ASEA Atom AB
ABB Atom AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASEA Atom AB, ABB Atom AB filed Critical ASEA Atom AB
Publication of JPH02116795A publication Critical patent/JPH02116795A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/28Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE: To solve such safety problems as the monitoring of fire, explosion, and leakage due to the storage of hydrogen gas by supplying hydrogen from an electrolysis device with a solid electrolyte due to electrolysis while operating a nuclear reactor. CONSTITUTION: An electrolysis device 18 is assembled by a cation exchange type film 20 with perhydrofluoric polymer as a base. The film 20 functions as an electrolyte and as a gas separator. Then, water supplied to the anode side of an electrolysis device 18 is decomposed at a boundary between a catalyst operation layer 22 and the film 20 and at the same time generates electrons and at the same time forms proton and oxygen gases. The proton is transmitted through the film 20 due to electrolysis and reaches a cathode side, where the proton captures electrons and at the same time forms hydrogen gas. The formed hydrogen gas is delivered at an exit that communicates with a conduit 15 with a compression machine 17.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は沸騰水型原子炉の運転方法に係る。[Detailed description of the invention] B. Industrial application field The present invention relates to a method of operating a boiling water nuclear reactor.

口、従来技術及び発明が解決しようとする課題とその解
決手段 沸騰水型原子炉の運転において、炉水中における核***
反応の影響下で水が沸騰するとき、水の若干程度の放射
線分解が生じ、従って酸素が形成される。酸素は水中で
溶解されて、水が接触する炉構成材料において粒子間応
力腐食を生じさせる。
In the operation of a boiling water nuclear reactor, when water boils under the influence of a nuclear fission reaction in the reactor water, some degree of radiolysis of the water occurs, Oxygen is thus formed. Oxygen is dissolved in the water, causing interparticle stress corrosion in the reactor components that the water comes into contact with.

従って、酸素の形成が反対作用されることと、形成され
た酸素が無害化されることとが重要である。
It is therefore important that the formation of oxygen is counteracted and that the oxygen formed is rendered harmless.

そのような結果を達成する既知方法の一つは、水が原子
炉容器内へ供給されるに先立って炉水に水素気体を供給
することである。かくして、炉水中の酸素は、就中、原
子炉容器のダウンカマー内において、即ち原子炉容器の
垂直内壁と減速材槽壁との間の環状空間内において、水
素と再結合する。
One known method of achieving such results is to supply hydrogen gas to the reactor water prior to the water being supplied into the reactor vessel. Oxygen in the reactor water thus recombines with hydrogen, inter alia, in the downcomer of the reactor vessel, ie in the annular space between the vertical inner wall of the reactor vessel and the moderator tank wall.

再結合は炉心からのγ−放射線によって誘起される。Recombination is induced by gamma radiation from the core.

水素は水循環系の成る点で水に供給され、水循環系にお
いて、原子炉容器内で発生された蒸気は蒸気タービンへ
導かれ、そこからさらに復水器へ導かれ、そしてその内
部で形成された復水は、普通は浄化及び予備加熱の後、
原子炉容器へ戻される。通常、水素の供給は水循環系に
おいて復水器と原子炉容器との間に位置される一点で、
そしてそこにおいて2個のポンプ、即ち復水ポンプと給
水ポンプ、の間の一点においてそれぞれ行われる。
Hydrogen is supplied to the water at points in the water cycle, in which the steam generated in the reactor vessel is led to a steam turbine, from there further to a condenser, and the hydrogen formed inside it. After the condensate is purified and preheated,
Returned to the reactor vessel. Typically, the hydrogen supply is at one point in the water circulation system, located between the condenser and the reactor vessel.
There each takes place at a point between the two pumps, namely the condensate pump and the feedwater pump.

普通は、水循環系に対する水素気体の供給は複数の管か
ら行われ、これら管において水素気体は制御弁及び流量
計を有する導管を通じて高圧(約20MPa)に維持さ
れる。次いで、圧力は水素気体の注入に先立って、供給
点における水循環系の水圧、通常は約35MPaに達す
る、より少し高い圧力に減圧される。この方式による高
圧水素気体の供給は、必要な水素気体の保管に伴う火災
の危険、爆発の危険及び漏れの監視のごとき安全問題を
必然的に生じる。本発明は、水素気体がその必要とペー
スを合わせて発生されて原子炉容器に供給されるように
構成された固体電解質を備えた電解装置を使用すること
によって前記問題が完全に解消され得る、または、少な
くとも最小限に減じられ得るという概念に基づく。これ
によって高圧水素気体の保管に関する諸問題は除去され
従って水素気体の爆発に耐え得る特殊建造物はもはや必
要とされない。必要とペースを合わせる水素気体の発生
は、電気分解のための電流が原子炉出力に関して直接ま
たは間接に制御されるような方式で水素気体の生成を原
子炉出力に関して直接または間接に量的に制御すること
によって達成される。
Typically, the supply of hydrogen gas to the water circulation system is carried out through a plurality of pipes in which the hydrogen gas is maintained at high pressure (approximately 20 MPa) through conduits with control valves and flow meters. The pressure is then reduced to a pressure slightly higher than the water pressure of the water circuit at the feed point, typically reaching approximately 35 MPa, prior to the injection of hydrogen gas. Supplying high pressure hydrogen gas in this manner necessarily creates safety issues such as fire hazards, explosion hazards and leak monitoring associated with the storage of the necessary hydrogen gas. The present invention provides that by using an electrolysis device with a solid electrolyte configured such that hydrogen gas is generated and supplied to the reactor vessel in pace with its needs, said problem can be completely eliminated. or at least based on the concept that it can be reduced to a minimum. This eliminates the problems associated with the storage of high-pressure hydrogen gas, so that special structures capable of withstanding hydrogen gas explosions are no longer required. The generation of hydrogen gas is paced with demand by quantitatively controlling the production of hydrogen gas directly or indirectly with respect to the reactor power in such a way that the current for electrolysis is controlled directly or indirectly with respect to the reactor power. This is achieved by

本発明が特に係る方法と、それを特徴づける過程は特許
請求の範囲第1項から明らかであろう。
The method to which the invention particularly relates and the steps characterizing it will be apparent from the patent claims.

水素気体の生成は、給水の流量即ち復水器から原子炉容
器へ供給される水の流量によって原子炉出力に関して、
または、水循環系に含まれるタービンによって駆動され
る発電機の出力に関して間接に制御され得る。給水の流
量及び発電機の出力は、ともに、原子炉出力に比例する
The production of hydrogen gas depends on the reactor power depending on the flow rate of the feed water, that is, the flow rate of water supplied from the condenser to the reactor vessel.
Alternatively, it may be indirectly controlled with respect to the output of a generator driven by a turbine included in the water circulation system. Both the feed water flow rate and the generator output are proportional to the reactor power.

本発明の有利な一実施例に従えば、電解装置内で発生さ
れた水素気体は炉水循環系へ供給されるに先立って圧縮
され、そして圧縮された水素気体の圧力は原子炉出力に
関して直接または間接に制御される。
According to an advantageous embodiment of the invention, the hydrogen gas generated in the electrolyzer is compressed before being supplied to the reactor water circulation system, and the pressure of the compressed hydrogen gas is directly or indirectly related to the reactor power. Controlled indirectly.

本発明は以下において、添付図面を参照しつつ、より詳
細に説明される。
The invention will be explained in more detail below with reference to the accompanying drawings, in which: FIG.

ハ、実施例 第1図に示される沸騰水型原子炉は原子炉容器1を有し
、原子炉容器1は、就中、燃料要素を含む炉心2)制御
棒(図示せず)、環状空間即ちダウンカマー3及びその
一つが図面に示される主循環系4を配置されている。各
主循環系4はポンプ5を有する。これらポンプ5は原子
炉の炉心、2が十分に冷却されるように働く。原子炉容
器1は水循環系6の一部であり、水循環系6はさらに蒸
気タービン7、復水器8、復水器フィルタ9、ポンプ1
0.14及び予備加熱器11を有する。炉心2内で発生
された蒸気は、そのエネルギを蒸気タービン7の回転子
へ伝達しそして蒸気タービン7を通過した後、ポンプ1
3を含む冷却水回路12を有する復水器8内において復
水される。復水器8からの復水は復水ポンプ14によっ
て運搬されて復水を浄化する復水器フィルタ9に通され
、そこにおいて浄化された復水は、予備加熱器11内で
予備加熱された後、給水の形式で給水ポンプ10によっ
て原子炉容器1内へ供給される。本発明に従って発生さ
れる水素気体は、弁16と圧縮機17とを有する導管1
5を通じて供給される。
C. Embodiment The boiling water reactor shown in FIG. That is, the downcomers 3 and one of them are arranged with the main circulation system 4 shown in the drawing. Each main circulation system 4 has a pump 5. These pumps 5 work to ensure that the core 2 of the nuclear reactor is sufficiently cooled. The reactor vessel 1 is part of a water circulation system 6, which further includes a steam turbine 7, a condenser 8, a condenser filter 9, and a pump 1.
0.14 and a preheater 11. The steam generated in the core 2 transfers its energy to the rotor of the steam turbine 7 and, after passing through the steam turbine 7, is transferred to the pump 1.
The water is condensed in a condenser 8 having a cooling water circuit 12 including 3. The condensate from the condenser 8 is conveyed by a condensate pump 14 and passed through a condenser filter 9 that purifies the condensate, where the purified condensate is preheated in a preheater 11. Thereafter, water is supplied into the reactor vessel 1 by the water supply pump 10 in the form of water supply. The hydrogen gas generated according to the invention is supplied to a conduit 1 having a valve 16 and a compressor 17.
Supplied through 5.

第2a図及び第2b図に図示される固体電解質を有する
電解装置は既知のタイプ、例えば商用名メンブレル(ス
イス国、エイシャブラウンボバリ社提供)を以て知られ
ているもの、であり、参照番号18で表示される。電解
装置18は商用名すフイオン(米国、デュポン社提供)
を以て知られる過弗化ポリマーをベースとする陽イオン
交換タイプの膜20から組立てられる。膜20は電解質
として、且つ、気体分離器として機能する。膜20の側
面には、それぞれ数mの厚さを有する貴金属から成る2
個の触媒作用層21.22が配置される。2個の多孔質
の集電装置23.24であってそれぞれグラファイト−
プラスチック及び焼結チタンから成るものがそれぞれ前
記触媒作用層21.22と接触する。以上説明されたセ
ルは導電板25.26によって気密の態様に包囲されて
いる。導電板26は水のための入口27と、酸素気体及
び消費されなかった水のための出口28とを設けられ、
そして導電板25は水素気体のための出口29を設けら
れる。以上説明された形式のユニットの複数個が、要求
量の水素気体を提供するように、連続して結合され得る
。運転時、導電板26は使用電圧給源の陽極に接続され
そして導電板25は陰極に接続される。
The electrolyzer with solid electrolyte illustrated in FIGS. 2a and 2b is of a known type, such as that known under the commercial name Membrane (provided by Aisha Braun Bobari, Switzerland), reference numeral 18. is displayed. The electrolyzer 18 is commercially known as Fion (provided by DuPont, USA).
It is constructed from a membrane 20 of the cation exchange type based on perfluorinated polymers known as . Membrane 20 functions as an electrolyte and as a gas separator. On the side surfaces of the membrane 20 are two layers made of noble metal each having a thickness of several meters.
catalytic layers 21,22 are arranged. Two porous current collectors 23, 24, each made of graphite.
Composed of plastic and sintered titanium, respectively, are in contact with said catalytic layer 21,22. The cells described above are surrounded in a gas-tight manner by conductive plates 25,26. The conductive plate 26 is provided with an inlet 27 for water and an outlet 28 for oxygen gas and unconsumed water;
The conductive plate 25 is then provided with an outlet 29 for hydrogen gas. A plurality of units of the type described above may be combined in series to provide the required amount of hydrogen gas. In operation, the conductive plate 26 is connected to the anode of the working voltage supply and the conductive plate 25 is connected to the cathode.

電解装置18の陽極側へ供給される水は、触媒作用層2
2と膜20との間の境界において分解されるとともに電
子を発生しそして同時に陽子と酸素気体を形成する。陽
子は電界によって膜20を透過して陰極側へ達し、そこ
において、陽子は電子を捕捉し同時に水素気体を形成す
る。形成された水素気体は圧縮機17を有する導管15
(第1図)に連通ずる出口において排出される。
Water supplied to the anode side of the electrolyzer 18 is fed to the catalytic layer 2
2 and the membrane 20, generating electrons and simultaneously forming protons and oxygen gas. The protons pass through the membrane 20 due to the electric field and reach the cathode side, where they capture electrons and simultaneously form hydrogen gas. The hydrogen gas formed is passed through a conduit 15 with a compressor 17
(FIG. 1).

電解装置18へ供給される水は、水循環系6における炉
水の部分流であることが有利である。しかし代替的に〈
0.1μS/cm/25℃の導電率を有する外部からの
水を使用することも可能である。
Advantageously, the water fed to the electrolyzer 18 is a partial stream of the reactor water in the water circulation system 6. But alternatively
It is also possible to use external water with a conductivity of 0.1 μS/cm/25° C.

第3図から明らかであるように、水素気体の生成は制御
系を介して制御される。制御系は水素気体の生成が炉出
力に関し一定の関係を保って行われることを保証する。
As is clear from FIG. 3, the production of hydrogen gas is controlled via a control system. The control system ensures that the production of hydrogen gas remains constant with respect to the reactor power.

所望制御値は従って炉出力または炉出力に比例する任意
のその他の量、例えば、給水流量または発電機出力、に
比例する信号から構成され得る。
The desired control value may therefore consist of a signal that is proportional to the furnace power or any other quantity that is proportional to the furnace power, such as feed water flow rate or generator power.

電解装置18が生成する水素気体は静的整流器31を介
して電解装置18へ供給される電流Iに正比例するから
、この電流は生成水素気体の実際の値及び測定単位とし
て使用され得る。生成水素気体は速度制御される圧縮機
17を有する導管15を通じて炉水のために水循環系6
へ供給される。
Since the hydrogen gas produced by the electrolyzer 18 is directly proportional to the current I supplied to the electrolyzer 18 via the static rectifier 31, this current can be used as the actual value and unit of measurement for the hydrogen gas produced. The produced hydrogen gas is passed through a conduit 15 with a speed-controlled compressor 17 to a water circulation system 6 for reactor water.
supplied to

圧縮機17の速度制御装置によって、炉水へ供給される
水素気体の圧力は、炉出力に耐しまたは炉出力に比例す
る他の量に対し比例状態になり、そして炉出力によって
または炉出力に比例する他の量によって制御されること
が可能にされる。好適には実圧力値(p)は電解装置1
8から直接に入手され得る。実施例においては、速度制
御装置は周波数変換器32を介して制御される交流モー
タ33を有する。電解装置18へ給水するための導管は
破線34によって概略的に示される。
By means of the speed control device of the compressor 17, the pressure of the hydrogen gas supplied to the reactor water is made proportional to the reactor power or to some other quantity proportional to the reactor power, and by or to the reactor power. Allows to be controlled by other proportional quantities. Preferably, the actual pressure value (p) is
It can be obtained directly from 8. In the exemplary embodiment, the speed control device comprises an alternating current motor 33 controlled via a frequency converter 32. The conduit for supplying water to the electrolyzer 18 is indicated schematically by a dashed line 34.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原子力発電プラントのための沸騰水型原子炉を
その水循環系と共に概略的に示す図面、第2a図及び第
2b図は固体電解質を有する電解装置を概略的に示す図
面、第3図は水素気体の生成を制御しそして炉水循環系
に供給される圧縮水素気体の圧力を制御する装置を概略
的に示す図面である。 図面上、1・・・原子炉容器、6・・・水循環系、7・
・・蒸気タービン、8・・・復水管、15・・・導管、
17・・・圧縮機、18・・・電解装置、20・・・膜
、21゜22・・・触媒作用層、23.24・・・集電
装置、25゜26・・・導電板。
FIG. 1 is a diagram schematically showing a boiling water reactor for a nuclear power plant together with its water circulation system, FIGS. 2a and 2b are diagrams schematically showing an electrolyzer having a solid electrolyte, and FIG. 1 is a diagram schematically showing a device for controlling the production of hydrogen gas and controlling the pressure of compressed hydrogen gas supplied to the reactor water circulation system. On the drawing, 1... Reactor vessel, 6... Water circulation system, 7.
... steam turbine, 8 ... condensate pipe, 15 ... conduit,
17... Compressor, 18... Electrolyzer, 20... Membrane, 21° 22... Catalytic layer, 23.24... Current collector, 25° 26... Conductive plate.

Claims (2)

【特許請求の範囲】[Claims] (1)沸騰水型原子炉の運転中に、原子炉の原子炉容器
(1)内で形成された蒸気が蒸気タービン(7)へ導か
れ、そこから復水器(8)へ導かれ、そしてそこで形成
された復水が原子炉容器(1)へ戻される様式の循環系
(6)内で循環される水、原子炉水、に対して水素気体
を供給する方法において、水素気体が固体電解質を備え
た電解装置(18)から供給され、前記水素気体は原子
炉の運転間電気分解によつて前記電解装置(18)内で
発生されることと、電気分解のための電流を原子炉出力
に関して直接または間接に制御することによつて水素気
体の発生及び供給が原子炉出力に関して直接または間接
に量的に制御されることとを特徴とする水、原子炉水、
に水素気体を供給する方法。
(1) During the operation of a boiling water reactor, the steam formed in the reactor vessel (1) of the nuclear reactor is led to a steam turbine (7) and from there to a condenser (8); In a method of supplying hydrogen gas to water, reactor water, which is circulated in a circulation system (6) in which the condensate formed there is returned to the reactor vessel (1), the hydrogen gas is solid. The hydrogen gas is supplied from an electrolyzer (18) comprising an electrolyte, and the hydrogen gas is generated in the electrolyzer (18) by electrolysis during operation of the reactor, and the electric current for electrolysis is supplied to the reactor. Water, nuclear reactor water, characterized in that the generation and supply of hydrogen gas is quantitatively controlled directly or indirectly with respect to the reactor power by directly or indirectly controlling the power.
A method of supplying hydrogen gas to
(2)特許請求の範囲第1項記載の方法において、電解
装置(18)内で発生された水素気体が原子炉水のため
の循環系(6)に供給される前に圧縮されることと、圧
縮された水素気体の圧力が原子炉出力に関して直接また
は間接に制御されることとを特徴とする水、原子炉水、
に水素気体を供給する方法。
(2) In the method according to claim 1, the hydrogen gas generated in the electrolyzer (18) is compressed before being supplied to the circulation system (6) for reactor water. , water, reactor water, characterized in that the pressure of the compressed hydrogen gas is controlled directly or indirectly with respect to the reactor power;
A method of supplying hydrogen gas to
JP1244903A 1988-09-23 1989-09-20 Supply of hydrogen gas to nuclear reactor water Pending JPH02116795A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8803375A SE461818B (en) 1988-09-23 1988-09-23 SETTING TO ADD WATER GAS TO THE REACTOR WATER WHEN OPERATING A COOK WATER REACTOR
SE8803375-8 1988-09-23

Publications (1)

Publication Number Publication Date
JPH02116795A true JPH02116795A (en) 1990-05-01

Family

ID=20373426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1244903A Pending JPH02116795A (en) 1988-09-23 1989-09-20 Supply of hydrogen gas to nuclear reactor water

Country Status (3)

Country Link
JP (1) JPH02116795A (en)
ES (1) ES2021902A6 (en)
SE (1) SE461818B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796799A (en) * 1994-10-25 1998-08-18 Shinko Pantec Co., Ltd. Control apparatus for oxygen concentration of water in atomic reactor
JP2016502102A (en) * 2012-12-21 2016-01-21 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシーGe−Hitachi Nuclear Energy Americas, Llc Boiling water reactor start / stop hydrogen injection system and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19810963C1 (en) 1998-03-13 1999-11-04 Siemens Ag Nuclear power plant with a gassing device for a cooling medium
ES2265106T3 (en) * 2002-07-26 2007-02-01 Alstom Technology Ltd PROCEDURE FOR THE OPERATION OF A NUCLEAR POWER PLANT AS WELL AS DEVICE FOR THE PERFORMANCE OF THE PROCEDURE.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796799A (en) * 1994-10-25 1998-08-18 Shinko Pantec Co., Ltd. Control apparatus for oxygen concentration of water in atomic reactor
JP2016502102A (en) * 2012-12-21 2016-01-21 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシーGe−Hitachi Nuclear Energy Americas, Llc Boiling water reactor start / stop hydrogen injection system and method
US10229761B2 (en) 2012-12-21 2019-03-12 Ge-Hitachi Nuclear Energy Americas Llc Startup/shutdown hydrogen injection system for boiling water reactors (BWRS), and method thereof
US10964436B2 (en) 2012-12-21 2021-03-30 Ge-Hitachi Nuclear Energy Americas Llc System for hydrogen injection for boiling water reactors (BWRs) during startup / shutdown

Also Published As

Publication number Publication date
SE8803375A (en) 1990-03-24
SE8803375D0 (en) 1988-09-23
ES2021902A6 (en) 1991-11-16
SE461818B (en) 1990-03-26

Similar Documents

Publication Publication Date Title
JP6803903B2 (en) Methods of starting or standby mode operation of a power-to-gas unit containing multiple high temperature electrolysis (SOEC) or co-electrolysis reactors
US10900130B2 (en) Fuel preparation reaction system, peak regulation system for power generation plant and power generation plant
TW202132624A (en) Modular systems for hydrogen generation and methods of operating thereof
GB1537082A (en) Pressurized fuel cell power plant
CN110820007A (en) PBI proton exchange membrane electrolysis module and seawater electrolysis hydrogen production device
KR101314238B1 (en) Hydrogen production system using high temperature steam electrolysis connected with nuclear power plant, electrolyzer of water and fuel cell power generation system
JPH02116795A (en) Supply of hydrogen gas to nuclear reactor water
Tsotridis et al. EU harmonised terminology for low-temperature water electrolysis for energy-storage applications
US6968028B1 (en) Nuclear power station having a gas-injection device for a coolant
KR20190066857A (en) Apparatus for generating photovoltaic-hydrogen based small power and method for generating thereof
JPH1172028A (en) Electric power leveling power generation method
JP2006299323A (en) Water electrolytic device
CN115411315A (en) Combined heat and power generation system of water electrolysis hydrogen production coupled metal solid hydrogen storage fuel cell
CN215365999U (en) Megawatt power station
KR102387117B1 (en) Electric power generating system using heat and new recycled energy
JPH04115470A (en) Power storage generator
JPH04349356A (en) Electric power storage system by hydrogen energy
RU2682723C2 (en) Method for operation of npp power unit with hydrogen superstructure and high-temperature electrolyzers
US20200028401A1 (en) Rotary electric machine and turbine system
WO2023007877A1 (en) High-temperature steam electrolysis device, hydrogen production method, and hydrogen production system
KR20240038249A (en) High-temperature steam electrolysis system combinded with using electric power generation facility
EP0898790A1 (en) High-temperature fuel cell plant and process for operating the same
KR100715222B1 (en) Energy storage system of nuclear power plant
JPH0441689A (en) Hydrogen producing device
CN220224351U (en) Systematic equipment of AEM electrolysis water technique