JPH0441126A - Wire cut discharge machining device - Google Patents

Wire cut discharge machining device

Info

Publication number
JPH0441126A
JPH0441126A JP14164190A JP14164190A JPH0441126A JP H0441126 A JPH0441126 A JP H0441126A JP 14164190 A JP14164190 A JP 14164190A JP 14164190 A JP14164190 A JP 14164190A JP H0441126 A JPH0441126 A JP H0441126A
Authority
JP
Japan
Prior art keywords
power supply
wire electrode
machining fluid
electrifier
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14164190A
Other languages
Japanese (ja)
Inventor
Yoshio Shibata
柴田 美夫
Masato Sakanishi
坂西 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14164190A priority Critical patent/JPH0441126A/en
Publication of JPH0441126A publication Critical patent/JPH0441126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To restrain heat generated in an electrifier by arranging an electrifier holding tool, formed of material with high thermal and electric conductivities, which is welded integral with the electrifier and set up to be connected in series to a discharge power supply cable and partially put in contact with machining liquid in a machining liquid jetting nozzle. CONSTITUTION:An electrifier 21 is formed of material with high electric and thermal conductivities and welded integral with an electrifier holding tool 20 which is connected in series to a discharge power supply cable 18. In this way, contact resistance is reduced and heat generated in the electrifier 21 is transferred to the electrifier holding tool 20, to perform heat exchange from the electrifier holding tool 20 to machining liquid in a machining liquid jetting nozzle 7. As a result, the whole power supply means (20, 21) are cooled, heat radiation is improved and the deterioration of the electrifier 21 is restrained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、ワイヤ電極と接触してワイヤ電極に電源を供
給する通電子の消耗を抑制し得るワイヤカット放電加工
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wire-cut electrical discharge machining device that can suppress consumption of a conductor that contacts a wire electrode and supplies power to the wire electrode.

[従来の技術] 第6図は従来のワイヤカット放電加工装置の一例を概略
的に示す構成図である。図において、(1)は供給ボビ
ン(2)から送り出されるワイヤ電極、(3)は電磁ブ
レーキ(3a)に連結されかつワイヤ電極(1)に所定
の張力を与えるブレーキローラ、(4a) 、 (4b
) 、 (4c)はそれぞれワイヤ電極(1)の走行方
向を変更させるアイドラである。また、(5a)。
[Prior Art] FIG. 6 is a block diagram schematically showing an example of a conventional wire-cut electric discharge machining apparatus. In the figure, (1) is a wire electrode sent out from a supply bobbin (2), (3) is a brake roller connected to an electromagnetic brake (3a) and applies a predetermined tension to the wire electrode (1), (4a), ( 4b
) and (4c) are idlers that change the running direction of the wire electrode (1), respectively. Also, (5a).

(5b)は上部加工液噴出ノズル(7)の内部で上下に
所定距離離して配置された上部位置決めガイド、(6a
) 、 (6b)は下部加工液噴出ノズル(8)の内部
で上下に所定距離離して配置された下部位置決めガイド
で、これらはワイヤ電極(1)が被加工物(12)に対
して所定の方向に位置するように支持する。
(5b) is an upper positioning guide disposed vertically at a predetermined distance apart inside the upper machining liquid jetting nozzle (7);
) and (6b) are lower positioning guides arranged vertically at a predetermined distance apart inside the lower machining fluid jetting nozzle (8), and these guides are used to guide the wire electrode (1) to the workpiece (12) at a predetermined distance. Support it so that it is positioned in the direction.

(9)は加工液(lO)を供給するためのポンプ、(1
1)はワイヤ電極(1)と被加工物(12)との間に放
電をおこすためのパルス電源ユニット、(13)、(1
4)はパルス電源ユニット(11)からのエネルギをワ
イヤ電極(1)に供給する上部通電子及び下部通電子で
、それぞれ上部と下部の加工液噴出ノズル(7) 、 
(8)内の各位置決めガイド(5a) 、 (5b)及
び(8a) 、(6b)間に配置されている。なお、(
15)はワイヤ送りローラである。
(9) is a pump for supplying machining fluid (lO), (1
1) is a pulse power supply unit for generating electric discharge between the wire electrode (1) and the workpiece (12), (13), (1)
4) are an upper and a lower conductor that supply energy from the pulse power supply unit (11) to the wire electrode (1), and upper and lower machining liquid spouting nozzles (7), respectively;
(8) is arranged between each positioning guide (5a), (5b) and (8a), (6b). In addition,(
15) is a wire feed roller.

第7図は上部加工液噴出ノズル部の詳細を示す縦断面図
である。位置決めガイド(5a) 、 (5b)及び通
電子(13)は、加工液噴出ノズル(7)の本体(7a
)の軸心部に穿設した孔(7b)内に先端部を遊嵌させ
た状態で後端のフランジ部(led)を複数のねじ(1
7)により本体(7a)上面に固定されたケース(16
)を介し、加工液噴出ノズル(7)に取付けられており
、パルス電源ユニット(11)からケーブル(18)に
より供給された電源は、まずノズルの本体(7a)に供
給され、本体(7a)からケース(16)を介して通電
子(13)に供給された後、ワイヤ電極(1)に供給さ
れるようになっている。したがって、本体(7a)、ケ
ース(16)、及び通電子(13)は電源供給手段を構
成する。
FIG. 7 is a longitudinal cross-sectional view showing details of the upper machining liquid jetting nozzle section. The positioning guides (5a), (5b) and the conductor (13) are connected to the main body (7a) of the machining fluid spouting nozzle (7).
) with the tip loosely fitted into the hole (7b) drilled in the axial center of the
7) fixed to the top surface of the main body (7a).
), and the power supplied from the pulse power supply unit (11) to the cable (18) is first supplied to the nozzle body (7a), and then the power is supplied to the nozzle body (7a). After being supplied to the conductor (13) through the case (16), it is supplied to the wire electrode (1). Therefore, the main body (7a), the case (16), and the power supply (13) constitute a power supply means.

ケース(16)は、加工液噴出ノズル(7〉の孔(7b
)内に位置する第1の筒部(16a)及び第2の筒部(
L8b)と、フランジ部(led)を有する第3の筒部
(16c)とから形成され、かつ第1筒部(lea)か
ら第3筒部(lf3c)にかけて順次内外径が大きくな
るように設定されるとともに、第3の筒部(16c)の
外径寸法が加工液噴出ノズル(7)の孔(7b)と密嵌
合できる寸法に設定されている。また、第1筒部(le
a)の軸心部には加工液噴出ノズル(7)の下部にてワ
イヤ電極(1)を支持する位置決めガイド(5a〉が設
けられるとともに、第3の筒部(16c)の内周面に雌
ねじ(16e)が形成され、雌ねじ(IBe)部に、こ
れと螺合可能な雄ねじ(19a)を有する筒部材(19
)が取付けられており、筒部材(19)の軸心部に加工
液噴出ノズル(7)の上部にてワイヤ電極(1)を支持
する位置決めガイド(5b)が設置されている。
The case (16) has a hole (7b) of the machining fluid jet nozzle (7).
) The first cylindrical part (16a) and the second cylindrical part (
L8b) and a third cylinder part (16c) having a flange part (LED), and the inner and outer diameters are set to gradually increase from the first cylinder part (lea) to the third cylinder part (lf3c). At the same time, the outer diameter of the third cylindrical portion (16c) is set to a size that allows it to fit tightly into the hole (7b) of the machining fluid jetting nozzle (7). In addition, the first cylindrical portion (le
A positioning guide (5a) that supports the wire electrode (1) at the lower part of the machining fluid jetting nozzle (7) is provided at the axial center of a), and a positioning guide (5a) is provided on the inner circumferential surface of the third cylindrical portion (16c). A cylindrical member (19) is formed with a female thread (16e) and has a male thread (19a) in the female thread (IBe) portion that can be screwed thereto.
) is attached, and a positioning guide (5b) that supports the wire electrode (1) above the machining fluid jet nozzle (7) is installed at the axial center of the cylindrical member (19).

通電子(13)は、超硬合金から成り、ケース(16)
の第2筒部(18b)内に着脱自在に挿入され、第7゜
8図に示す如く、ワイヤ電極(1)を−側より押し付け
た状態で配置されて両者が確実に摺動できるようになっ
ているとともに、その上方に配置された筒部材(19)
にてケース(16)内からの脱落が防止されるようにな
っている。
The conductor (13) is made of cemented carbide and the case (16)
It is removably inserted into the second cylindrical part (18b) of the wire electrode (1), and is placed with the wire electrode (1) pressed from the negative side, as shown in Fig. 7-8, so that the two can surely slide. and a cylindrical member (19) arranged above it.
This prevents it from falling out of the case (16).

したがって、ワイヤ電極(1)は加工液噴出ノズル(7
)内の上下に配置した位置決めガイド(5b)。
Therefore, the wire electrode (1) is connected to the machining fluid jet nozzle (7).
) positioning guides (5b) placed above and below.

(5a)によって被加工物上方での位置決めがなされ、
かつ両ガイド(5b) 、(5a)の中間に配置した通
電子(13)を介して電源が供給されるようになってい
る。
Positioning above the workpiece is performed by (5a),
In addition, power is supplied through a conductor (13) placed between the guides (5b) and (5a).

なお、下部加工液噴出ノズル部の構成は上述した上部加
工液噴出ノズル部の構成と同一であるので、その説明は
省略する。
The configuration of the lower machining fluid jetting nozzle section is the same as that of the above-mentioned upper machining fluid jetting nozzle section, so a description thereof will be omitted.

次に、第6図により上述構成を有する従来装置の動作に
ついて説明する。まず、ポンプ(9)を作動して加工液
噴出ノズル(7)、(8)より加工液(10)を噴出し
つつ、ワイヤ電極(])と被加工物(12)間にパルス
電圧を加える。しかして、ワイヤ電極(1)と被加工物
(12)との対向した微少間隙では、加工液(10)の
気化爆発に伴う放電時の熱エネルギによって被加工物(
12)を溶融飛散させる。また、対向する微少間隙を一
定に保ち、放電を継続的に行うためのワイヤ電極(1)
と被加工物(12)との相対移動は、図示しないX−Y
クロステーブルを数値制御する方法により通常行われる
。このようにして放電を繰り返し、X−Yクロステーブ
ルを制御することにより、加工溝が連続的に形成され、
任意の形状に被加工物(12)を加工することができる
Next, the operation of the conventional device having the above configuration will be explained with reference to FIG. First, while operating the pump (9) and spouting the machining fluid (10) from the machining fluid jetting nozzles (7) and (8), a pulse voltage is applied between the wire electrode (]) and the workpiece (12). . Therefore, in the minute gap between the wire electrode (1) and the workpiece (12), the workpiece (
12) is melted and scattered. In addition, wire electrodes (1) are used to keep the opposing micro-gap constant and perform discharge continuously.
The relative movement between the workpiece (12) and the workpiece (12) is
This is usually done by numerically controlling the cross table. By repeating the discharge in this way and controlling the X-Y cross table, the machined groove is continuously formed.
The workpiece (12) can be processed into any shape.

第9図(a)は通電子(13)が消耗する前の状態を、
また第9図(b)は通電子(13)が消耗してワイヤ電
極(1)が通電子(13)の中に入り込んでいる状態を
、それぞれ示している。第9図(b)の状態では通電子
(13)のワイヤ電極(])への押し付は圧力は低下し
ている。
Figure 9(a) shows the state before the conductor (13) is consumed.
Further, FIG. 9(b) shows a state in which the conductor (13) is consumed and the wire electrode (1) has entered the conductor (13). In the state shown in FIG. 9(b), the pressure of the current-carrying current (13) against the wire electrode (]) is decreasing.

[発明が解決しようとする課題] 従来のワイヤカット放電加工装置は、以上のように、電
源供給手段がノズルの本体(7a)、ケース(16)、
及び通電子(13)から成り、分離構成されているとと
もに、通電子(13)がワイヤ電極(1)との摺動によ
る摩耗を抑制するために硬度の高い材料で形成されてい
るので、電源供給手段を構成する各部材間の境界部(A
) 、 (B)で接触抵抗が大きく、また固有抵抗が大
きく、ジュール熱による自己発熱も大きいという難点が
あった。
[Problems to be Solved by the Invention] As described above, in the conventional wire-cut electric discharge machining apparatus, the power supply means includes the nozzle main body (7a), the case (16),
and a conductor (13), which are constructed separately, and the conductor (13) is made of a hard material to suppress wear caused by sliding with the wire electrode (1). The boundary between each member constituting the supply means (A
) and (B) had the drawbacks of high contact resistance, high specific resistance, and high self-heating due to Joule heat.

また、ワイヤ電極(1)に対して通電子(13)を強く
押し付けて摺動させることにより、通電子(13)の消
耗時にワイヤ電極(1)が通電子(13)と確実に摺動
できずに離れてしまうという不具合を抑えているので、
近年のように加工速度の向上に伴い、ワイヤ電極(1)
に供給される電力が大きくなってくると、通電子(13
)の発熱も増大し、通電子(13)の消耗が一層促進さ
れるという問題点があった。
In addition, by strongly pressing and sliding the conductor (13) against the wire electrode (1), the wire electrode (1) can reliably slide against the conductor (13) when the conductor (13) is consumed. This prevents the problem of the device leaving the device without being connected.
With the improvement of processing speed in recent years, wire electrode (1)
As the power supplied to the
) also increases heat generation, which further accelerates consumption of the conductor (13).

本発明は叙上の点に鑑み、通電子そのものの自己発熱を
抑え、電源供給手段全体の放熱性を高め、接触抵抗を低
減させ、消耗を抑制することの可能なワイヤカット放電
加工装置を得ることを目的とする。
In view of the above points, the present invention provides a wire-cut electric discharge machining device that can suppress self-heating of the conductor itself, improve heat dissipation of the entire power supply means, reduce contact resistance, and suppress wear and tear. The purpose is to

[課題を解決するための手段] 本発明に係るワイヤカット放電加工装置は、軸心部にワ
イヤ電極を案内するガイドを有するとともに該ワイヤ電
極と被加工物の対向する微小間隙に加工液を供給する加
工液噴出ノズルと、上記ワイヤ電極に電源を供給する電
源供給手段とを備え、該電源供給手段を、上記加工液噴
出ノズル内で上記ワイヤ電極と接触可能に配置された硬
度の高い材料から成る通電子と、この通電子と溶接によ
り一体化されるとともに放電電力供給用ケーブルに直接
接続されかつ一部が加工液噴出ノズル内の加工液と接触
可能となるように設置された電気伝導性及び熱伝導性の
高い材料から成る通電子保持具とから構成したものであ
る。
[Means for Solving the Problems] A wire-cut electric discharge machining apparatus according to the present invention has a guide for guiding a wire electrode in an axial center portion, and supplies machining fluid to a minute gap where the wire electrode and a workpiece face each other. and a power supply means for supplying power to the wire electrode, the power supply means being made of a highly hard material disposed in the machining fluid jet nozzle so as to be able to come into contact with the wire electrode. An electric conductor that is integrated with the conductor by welding, is directly connected to the discharge power supply cable, and is installed so that a part thereof can come into contact with the machining fluid in the machining fluid spouting nozzle. and a conductive holder made of a material with high thermal conductivity.

[作用] 本発明においては、通電子が、電気伝導性及び熱伝導性
の高い材料から形成されて放電電力供給用ケーブルに直
接接続された通電子保持具と溶接により一体化されてい
るので、接触抵抗が低減されるとともに、通電子の発熱
は通電子保持具に伝えられ、通電子保持具から加工液噴
出ノズル内の加工液と熱交換される。その結果、電源供
給手段全体が冷却され、その放熱性が向上し、通電子の
消耗が抑制される。
[Function] In the present invention, the conductor is integrated by welding with the conductor holder, which is formed from a material with high electrical conductivity and high thermal conductivity and is directly connected to the discharge power supply cable. The contact resistance is reduced, and the heat generated by the energization is transmitted to the energization holder, and heat is exchanged from the energization holder with the machining fluid in the machining fluid spouting nozzle. As a result, the entire power supply means is cooled, its heat dissipation properties are improved, and consumption of electrical current is suppressed.

[実施例コ 以下、図示実施例により本発明を説明する。[Example code] The present invention will be explained below with reference to illustrated embodiments.

第1図は本発明の第1の実施例に係るワイヤカット放電
加工装置の要部である加工液噴出ノズル部を拡大して示
す縦断面図で、図中、従来に相当する部分には同一符号
を付しである。また、上部と下部の加工液噴出ノズル部
はいずれも同一構成を有しているので本実施例において
は上部の加工液噴出ノズル部のみ示しである。図におい
て、(7c)は加工液噴出ノズル(7)の本体(7a)
に穿設された加工液取入れ口、(16f)はケース(1
B)の第2の筒部(16b)に穿設された冷却用孔、(
16g)はケース(16)の第3の筒部(18c)の内
孔であり、第7図に示した間部の内径寸法よりも大きく
設定されかつ雌ねじは形成されていない。(16h)は
ケース(1B)のフランジ部に形成された内孔であり、
これによってフランジ部は第4の筒部(181)として
構成される。(18J)は第4の筒部(181)の一部
にその後端より切り欠いた切欠部である。
FIG. 1 is an enlarged vertical cross-sectional view showing a machining fluid jet nozzle section, which is a main part of a wire-cut electric discharge machining apparatus according to a first embodiment of the present invention. A code is attached. Furthermore, since both the upper and lower machining fluid jetting nozzle sections have the same configuration, only the upper machining fluid jetting nozzle section is shown in this embodiment. In the figure, (7c) is the main body (7a) of the machining fluid jet nozzle (7).
The machining fluid intake hole (16f) is drilled in the case (1
A cooling hole drilled in the second cylindrical portion (16b) of B), (
16g) is an inner hole of the third cylindrical portion (18c) of the case (16), which is set larger than the inner diameter of the intermediate portion shown in FIG. 7, and is not internally threaded. (16h) is an inner hole formed in the flange part of the case (1B),
As a result, the flange portion is configured as a fourth cylindrical portion (181). (18J) is a notch part cut out from the rear end of a part of the fourth cylinder part (181).

しかして、(20)は銅あるいは黄銅または丹銅もしく
は銀や錫と銅の合金等の電気伝導性及び熱伝導性の高い
材料から成る通電子保持具(以下、ホルダという)で、
ケース(16)の第2の筒部(16b)と内嵌合する小
径筒部(20a)と、ケース(16)の第3の筒部(1
6c)と内嵌合する大径筒部(20b)と、大径筒部(
20b)の後端に形成されてケース(16)の第4の筒
部(161)内に挿入されたフランジ(20c)と、フ
ランジ(20c)の一部から延出して設けられてケース
(16)の第4の筒部(16i)の切欠部(IBJ)を
貫通する端子部(20d)とを有しており、端子部(2
0d)に電源供給用のケーブル(18)が直結されてい
る。(21)はホルダ(20)の小径筒部(20a)の
内壁の一側にろう付けにより接合され一体化された硬度
の高い材料から成る通電子で、小径筒部(20a)内で
ワイヤ電極(1)を−側より押し付けてワイヤ電極(1
)を摺動させることにより電源を供給する。
Therefore, (20) is an electrically conductive holder (hereinafter referred to as holder) made of a material with high electrical conductivity and thermal conductivity such as copper, brass, red bronze, silver, or an alloy of tin and copper.
A small-diameter cylindrical portion (20a) that fits inside the second cylindrical portion (16b) of the case (16), and a third cylindrical portion (16b) of the case (16).
6c) and a large-diameter cylindrical portion (20b) that fits inside the large-diameter cylindrical portion (20b).
a flange (20c) formed at the rear end of the case (16) and inserted into the fourth cylindrical part (161) of the case (16); ), and a terminal portion (20d) that passes through the notch (IBJ) of the fourth cylindrical portion (16i) of the terminal portion (20d).
0d) is directly connected to a power supply cable (18). (21) is a conductor made of a highly hard material that is integrated by brazing on one side of the inner wall of the small diameter cylindrical portion (20a) of the holder (20), and is connected to a wire electrode within the small diameter cylindrical portion (20a). (1) from the negative side and press the wire electrode (1) from the negative side.
) to supply power by sliding it.

通電子(21)とホルダ(20)により電源供給手段が
一体構成されている。
A power supply means is integrally constituted by the conductor (21) and the holder (20).

なお、(22)はホルダ(20)の大径筒部(20b)
と内嵌合する筒部(22a) 、及び筒部(22a)後
端に形成されてケース(IB)の第4の筒部(18i)
内に挿入されたフランジ(22b)から成るガイド取付
部材で、その筒部(22a)の内周面には雌ねじ(22
C)が形成され、雌ねじ(22C)部に、位置決めガイ
ド(5b)を備えた筒部材(19)が取付けられている
。ガイド取付部材(22)、ホルダ(20)、及びケー
ス(16)は、複数のねじ(17)により加工液噴出ノ
ズル(7)の本体(7a)上面に固定され、またホルダ
(20)の端子部(20d)も端子固定ねじ(23)に
よって加工液噴出ノズル(7)の本体(7a)上面に固
定されている。
In addition, (22) is the large diameter cylinder part (20b) of the holder (20).
a cylindrical portion (22a) that is internally fitted with the cylindrical portion (22a), and a fourth cylindrical portion (18i) formed at the rear end of the cylindrical portion (22a) of the case (IB).
A guide mounting member consisting of a flange (22b) inserted into the inner circumferential surface of the cylindrical portion (22a).
C) is formed, and a cylindrical member (19) provided with a positioning guide (5b) is attached to the female thread (22C). The guide mounting member (22), holder (20), and case (16) are fixed to the upper surface of the main body (7a) of the machining fluid jet nozzle (7) with a plurality of screws (17), and the terminal of the holder (20) The part (20d) is also fixed to the upper surface of the main body (7a) of the machining fluid jetting nozzle (7) by a terminal fixing screw (23).

上述した構成を有する本実施例のワイヤカット放電加工
装置において、ポンプから加工液噴出ノズル(7)に供
給される加工液(10)は、第1図に矢印で示す如く、
まず加工液取入れ口(7C)より本体(7a)の孔(7
b)内に進入し、その後、孔(7b)内を下方へ流れ、
ノズル先端よりワイヤ電極(1)に沿って被加工物に向
は噴出される。この加工液(lO)の流れの過程におい
て、加工液(10)の一部は、ケース(16)の冷却用
孔(16f)内に進入して、熱伝導性良好なホルダ(2
0)の小径筒部(20a)外周面と接触し、ホルダ(2
0)との間で熱交換を行なってホルダ(20)を冷却す
る。その結果、通電子(21)を含む電源供給手段全体
が冷却され、その放熱性が向上し、通電子の消耗が抑制
される。
In the wire-cut electrical discharge machining apparatus of this embodiment having the above-described configuration, the machining fluid (10) supplied from the pump to the machining fluid jetting nozzle (7) is as shown by the arrow in FIG.
First, enter the hole (7) of the main body (7a) from the machining fluid intake (7C).
b) and then flowing downwardly within the hole (7b);
The liquid is ejected from the nozzle tip to the workpiece along the wire electrode (1). During the flow of the machining fluid (lO), a part of the machining fluid (10) enters the cooling hole (16f) of the case (16) and enters the holder (2) with good thermal conductivity.
contact with the outer peripheral surface of the small diameter cylindrical part (20a) of the holder (2
0) to cool the holder (20). As a result, the entire power supply means including the conductor (21) is cooled, its heat dissipation is improved, and consumption of the conductor is suppressed.

パルス電源ユニットからケーブル(18)により供給さ
れた電源は、電気伝導性良好なホルダ(20)に直接供
給され、ホルダ(20)からこれとろう付けにより一体
化された通電子(21)に供給された後、ワイヤ電極(
1)に供給される。このように、通電子(21)とホル
ダ(20)を一体化し、ホルダ(20)をケーブル(1
8)と直接接続したことにより、接触抵抗が低減し、接
合部のジュール損が減少する。
The power supplied from the pulse power supply unit through the cable (18) is directly supplied to a holder (20) with good electrical conductivity, and from the holder (20) is supplied to an electrical conductor (21) that is integrated with this by brazing. After the wire electrode (
1). In this way, the conductor (21) and the holder (20) are integrated, and the holder (20) is attached to the cable (1).
8), the contact resistance is reduced and the Joule loss at the joint is reduced.

第2図は本発明の第2の実施例に係るワイヤカット放電
加工装置の要部である加工液噴出ノズル部を拡大して示
す縦断面図である。この実施例のものは、ケース(1B
)の第2の筒部(18b)の一部にに、冷却用孔(16
f)と電源供給手段挿入孔(16K)を穿設するととも
に、加工液噴出ノズル(7)の本体(7a)に、横方向
に貫通する電源供給手段挿着孔(7d)を形成し、先端
に通電子(21)をろう付けした電気伝導性及び熱伝導
性良好なポペット状のホルダ(24)を、本体(7a)
及びケース(16)の真横から挿着して、ホルダ(24
)の頭部(24a)を複数のねじ(25)により本体(
7a)に固定するようにした点が上述の第1実施例のも
のと異なっている。
FIG. 2 is an enlarged longitudinal cross-sectional view showing a machining fluid jetting nozzle section, which is a main part of a wire-cut electric discharge machining apparatus according to a second embodiment of the present invention. This example has a case (1B
) is provided with cooling holes (16
f) and a power supply means insertion hole (16K), and a power supply means insertion hole (7d) that passes through the main body (7a) of the machining fluid jet nozzle (7) in the lateral direction. A poppet-shaped holder (24) with good electrical and thermal conductivity, in which a conductor (21) is brazed to the main body (7a), is attached to the main body (7a).
and insert it from the side of the case (16) and attach it to the holder (24).
) is attached to the main body (
7a) is different from that of the first embodiment described above.

これを更に詳述すると、ホルダ(24)は、第1図示し
たホルダ(20)と同様の材質から形成されている。そ
して、ケース(1B)の冷却用孔(16f)から第2の
筒部(16b)内に加工液(10)が流入できるように
して、ホルダ(24)のみならず、通電子(21)をも
加工液(10)にて直冷できるようにしている。
To explain this in more detail, the holder (24) is made of the same material as the holder (20) shown in FIG. Then, the machining fluid (10) is allowed to flow into the second cylindrical portion (16b) from the cooling hole (16f) of the case (1B), so that not only the holder (24) but also the electrical conductor (21) is heated. It is also possible to directly cool it with the machining fluid (10).

これにより、第1実施例のものと同様の作用効果が得ら
れるとともに、ホルダ(24)及び通電子(21)から
成る電源供給手段全体の冷却効果を更に高めることがで
きるという利点がある。
Thereby, the same effects as those of the first embodiment can be obtained, and there is an advantage that the cooling effect of the entire power supply means consisting of the holder (24) and the conductor (21) can be further enhanced.

第3図は本発明の第3の実施例に係るワイヤカット放電
加工装置の要部である加工液噴出ノズル部を拡大して示
す縦断面図である。この実施例のものは、ホルダ(24
)に、その頭部(24a)から軸部(24b)の中心を
通り先端の通電子り21)に貫通する小孔(24c)を
形成し、小孔(24c)に接続したホース(26)より
小孔(24c)内に、氷点以下の温度を有する例えばエ
チレングリコール入りの水等の冷却流体(27)を毎分
II程度で流し、ホルダ(24)及び通電子(21)か
ら成る電源供給手段全体を内部より冷却するように構成
した点が上述の第2実施例のものと異なっている。
FIG. 3 is an enlarged longitudinal cross-sectional view showing a machining fluid jetting nozzle section, which is a main part of a wire-cut electric discharge machining apparatus according to a third embodiment of the present invention. In this example, the holder (24
) is formed with a small hole (24c) that passes through the center of the shaft (24b) from the head (24a) to the conducting hole 21) at the tip, and the hose (26) is connected to the small hole (24c). A cooling fluid (27), such as water containing ethylene glycol, having a temperature below the freezing point is flowed into the smaller hole (24c) at a rate of about II per minute, and a power supply consisting of a holder (24) and a conductor (21) is supplied. This embodiment differs from the second embodiment described above in that the entire means is configured to be cooled from the inside.

この実施例においては、エチレングリコール入すの水が
一15℃位まで温度を下げられるし、これ自体が潤滑剤
の役目をするので、電源供給手段全体の冷却と同時に、
ワイヤ電極(1)との摺動による通電子(21)の摩耗
を低減させ得る効果がある。
In this embodiment, the temperature of water containing ethylene glycol can be lowered to about 115°C, and since this itself acts as a lubricant, it cools the entire power supply means at the same time.
This has the effect of reducing wear of the conductor (21) due to sliding with the wire electrode (1).

ところで、ホルダ(24)の小孔(24c)に流す冷却
流体の温度は、加工液(10)を凍結させない範囲であ
ればできるだけ下げる方が好ましく、流量を調整すれば
液体窒素等の低温流体の利用も可能である。また、潤滑
の効果を上げるには鉱油系の冷却流体を用いれば良い。
By the way, it is preferable to lower the temperature of the cooling fluid flowing into the small hole (24c) of the holder (24) as long as it does not freeze the machining fluid (10), and by adjusting the flow rate, it is possible to reduce the temperature of the cooling fluid such as liquid nitrogen. It is also possible to use it. Furthermore, in order to improve the lubrication effect, a mineral oil-based cooling fluid may be used.

第4図はホルダ(24)の小孔(24c)に流す冷却流
体に、平均粒径数μmのグラファイトの微粉末を鉱油系
潤滑剤と練合わせて粘性の高い潤滑剤とした冷却流体(
28)を用い、これを小孔(24C)より通電子(21
)の摺接面にむかって微量づつ送り出すようにした本発
明の第4の実施例を示すもので、電源供給手段先端部の
横断面図である。
Fig. 4 shows a cooling fluid made by kneading fine graphite powder with an average particle size of several μm with a mineral oil-based lubricant to form a highly viscous lubricant, which flows into the small hole (24c) of the holder (24).
28), and conduct electricity (21) through the small hole (24C).
) is a cross-sectional view of the tip of the power supply means, showing a fourth embodiment of the present invention in which a small amount is sent out toward the sliding surface of the power supply means.

この実施例においては、潤滑性が良くなるとと同時に、
ワイヤ電極(1)と通電子(21)間の隙間が、冷却流
体(28)すなわちグラファイトの微粉末が相互に短絡
状態になっている粘性の高い潤滑剤にて埋められるので
、電気抵抗が小さくなり、摺接面での接触抵抗が下がる
という利点がある。
In this example, the lubricity is improved and at the same time
The gap between the wire electrode (1) and the conductor (21) is filled with a cooling fluid (28), that is, a highly viscous lubricant in which fine graphite powder is short-circuited with each other, resulting in low electrical resistance. This has the advantage of reducing the contact resistance on the sliding surface.

また、グラファイトは摺動性も良く、鉱油系潤滑剤と組
合わせると効果は著しく、通電子(21)の摩耗防止に
寄与する。
In addition, graphite has good sliding properties, and when combined with a mineral oil lubricant, the effect is remarkable and contributes to preventing wear of the conductor (21).

更に、導電性をもたせるためには、銅やアルミニウムの
金属粉末も良いが、潤滑性の面で劣る。
Further, metal powders such as copper and aluminum are also good for providing conductivity, but they are inferior in terms of lubricity.

電解液や界面活性剤は、第4図のようにワイヤ電極(1
)と通電子(21)間の隙間を埋めることはできないが
、連続的に送給することによりこの隙間に薄膜を形成さ
せることができ、接触抵抗が低減する。上述の界面活性
剤は、グラファイト入すの粘性の高い潤滑剤に少量入れ
ても良く、有効に作用する。
The electrolyte and surfactant are applied to the wire electrode (1) as shown in Figure 4.
) and the conductor (21), but by continuously feeding, a thin film can be formed in this gap, reducing contact resistance. The above-mentioned surfactants may be added in small amounts to highly viscous lubricants containing graphite, and will work effectively.

第5図は通電子(21)の摺接面にワイヤ電極(1)の
ズレを防止する湾曲面(21a)を形成するとともに、
小孔(24e)より湾曲面(21a)内のワイヤ電極(
1)に向けて棒または線状の金属材(29)を送給する
ようにした本発明の第5の実施例を示すもので、電源供
給手段先端部の横断面図である。
FIG. 5 shows that a curved surface (21a) is formed on the sliding contact surface of the conductor (21) to prevent the wire electrode (1) from slipping, and
The wire electrode (
1) shows a fifth embodiment of the present invention in which a rod or wire-shaped metal material (29) is fed toward the power supply means, and is a cross-sectional view of the tip of the power supply means.

この実施例において、金属材(29)はマンガン、チタ
ン、鉛、錫、亜鉛、アルミニウム等の単独あるいはこれ
らを含む低融点合金がら形成して軟らかく、摩耗し易く
し、また通電子(21)は従来同様に超硬合金に導電性
の硬質な膜をコーティングして構成した。すなわち、通
電子(21)部分では摩耗に耐えさせ、小孔(24c)
より送給する金属材(29)は摩耗する分づつ送給する
ことにより、ワイヤ電極(1)と通電子(21)の湾曲
面(21a)との面接触を良好な状態で保持させるよう
にした。
In this embodiment, the metal material (29) is formed of a low melting point alloy such as manganese, titanium, lead, tin, zinc, aluminum, etc., alone or containing these materials, to make it soft and easy to wear, and the conductive material (21) is As in the past, it was constructed by coating cemented carbide with a hard conductive film. In other words, the conductive part (21) is made to withstand wear, and the small hole (24c) is made to withstand wear.
By feeding the metal material (29) as it wears out, surface contact between the wire electrode (1) and the curved surface (21a) of the conductor (21) is maintained in a good condition. did.

この実施例においては、摺接面での接触抵抗を一層下げ
ることができるという利点がある。
This embodiment has the advantage that the contact resistance on the sliding surface can be further reduced.

[発明の効果] 以上述べたように、本発明によれば、ワイヤ電極に電源
を供給する電源供給手段を、加工液噴出ノズル内でワイ
ヤ電極と接触可能に配置された硬度の高い材料から成る
通電子と、この通電子と溶接により一体化されるととも
に放電電力供給用ケーブルに直接接続されかつ一部が加
工液噴出ノズル内の加工液と接触可能となるように設置
された電気伝導性及び熱伝導性の高い材料から成る通電
子保持具とから構成したので、接触抵抗が低減するとと
もに、通電子の発熱が抑えられ、その結果、電源供給手
段全体が冷却され、その放熱性が向上し、通電子の消耗
が抑制されるという効果がある。
[Effects of the Invention] As described above, according to the present invention, the power supply means for supplying power to the wire electrode is made of a hard material that is disposed in the machining fluid jetting nozzle so as to be able to come into contact with the wire electrode. An electric conductor and an electric conductor which are integrated with the conductor by welding, are directly connected to the discharge power supply cable, and are installed so that a part thereof can come into contact with the machining fluid in the machining fluid spouting nozzle. Since it is constructed from a conductive holder made of a material with high thermal conductivity, contact resistance is reduced and heat generated by conductive conductors is suppressed, and as a result, the entire power supply means is cooled and its heat dissipation is improved. This has the effect of suppressing the consumption of electrical current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例に係るワイヤカット放電
加工装置の要部を拡大して示す縦断面図、第2図は本発
明の第2の実施例を示す第1図相当図、第3図は本発明
の第3の実施例を示す第1図相当図、第4図は本発明の
第4の実施例に係る電源供給手段の先端部の横断面図、
第5図は本発明の第5の実施例に係る電源供給手段の先
端部を示す第4図相当図、第6図は従来のワイヤカット
放電加工装置を概略的に示す構成図、第7図はその要部
を拡大して示す第1図相当図、第8図はその通電子とワ
イヤ電極との関係を示す側面図、第9図(a)は通電子
保持具の消耗前の状態を示す第8図のIX−IX線に沿
う矢視断面図、第9図(b)は同じく消耗後の状態を示
す断面図である。 図において、(1)はワイヤ電極、(5a) 、 (5
b)は上部位置決めガイド、(6a) 、 (6b)は
下部位置決めガイド、(7)は上部加工液噴出ノズル、
(8)は下部加工液噴出ノズル、(10)は加工液、(
12)は被加工物、(I8)は電源供給用のケーブル、
(21)は通電子(電源供給手段) 、(20)、(2
4>は通電子保持具(電源供給手段)である。 なお、図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a vertical sectional view showing an enlarged main part of a wire-cut electric discharge machining apparatus according to a first embodiment of the present invention, and FIG. 2 is a view corresponding to FIG. 1 showing a second embodiment of the present invention. , FIG. 3 is a view corresponding to FIG. 1 showing a third embodiment of the present invention, and FIG. 4 is a cross-sectional view of the tip of a power supply means according to a fourth embodiment of the present invention.
5 is a view corresponding to FIG. 4 showing the tip of the power supply means according to the fifth embodiment of the present invention, FIG. 6 is a configuration diagram schematically showing a conventional wire-cut electrical discharge machining apparatus, and FIG. 7 1 is an enlarged view of the main part, FIG. 8 is a side view showing the relationship between the conductor and the wire electrode, and FIG. 9(a) shows the state of the conductor holder before it wears out. FIG. 9(b) is a sectional view taken along the line IX-IX in FIG. 8, and FIG. 9(b) is a sectional view showing the state after consumption. In the figure, (1) is a wire electrode, (5a), (5
b) is the upper positioning guide, (6a), (6b) is the lower positioning guide, (7) is the upper machining liquid jet nozzle,
(8) is the lower machining fluid jet nozzle, (10) is the machining fluid, (
12) is the workpiece, (I8) is the power supply cable,
(21) is a power supply (power supply means), (20), (2
4> is a conductive holder (power supply means). In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 軸心部にワイヤ電極を案内するガイドを有するとともに
該ワイヤ電極と被加工物の対向する微小間隙に加工液を
供給する加工液噴出ノズルと、上記ワイヤ電極に電源を
供給する電源供給手段とを備え、該電源供給手段を、上
記加工液噴出ノズル内で上記ワイヤ電極と接触可能に配
置された硬度の高い材料から成る通電子と、この通電子
と溶接により一体化されるとともに放電電力供給用ケー
ブルに直接接続されかつ一部が加工液噴出ノズル内の加
工液と接触可能となるように設置された電気伝導性及び
熱伝導性の高い材料から成る通電子保持具とから構成し
たことを特徴とするワイヤカット放電加工装置。
A machining fluid jetting nozzle having a guide for guiding a wire electrode in an axial center portion and supplying machining fluid to a micro gap where the wire electrode and a workpiece face each other, and a power supply means for supplying power to the wire electrode. The power supply means is integrated by welding with a conductor made of a hard material disposed in the machining fluid jetting nozzle so as to be able to contact the wire electrode, and is used for supplying discharge power. It is characterized by being composed of an electrically conductive holder made of a material with high electrical conductivity and thermal conductivity, which is directly connected to the cable and installed so that a part can come into contact with the machining fluid in the machining fluid jetting nozzle. Wire cut electrical discharge machining equipment.
JP14164190A 1990-06-01 1990-06-01 Wire cut discharge machining device Pending JPH0441126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14164190A JPH0441126A (en) 1990-06-01 1990-06-01 Wire cut discharge machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14164190A JPH0441126A (en) 1990-06-01 1990-06-01 Wire cut discharge machining device

Publications (1)

Publication Number Publication Date
JPH0441126A true JPH0441126A (en) 1992-02-12

Family

ID=15296774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14164190A Pending JPH0441126A (en) 1990-06-01 1990-06-01 Wire cut discharge machining device

Country Status (1)

Country Link
JP (1) JPH0441126A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337746A (en) * 1992-06-10 1993-12-21 Mitsubishi Electric Corp Wire electrodischarge machining unit
US5720372A (en) * 1995-07-25 1998-02-24 Honda Giken Kogyo Kabushiki Kaisha Lubricating structure of hydraulic clutch
WO2000015376A1 (en) * 1998-09-10 2000-03-23 Mitsubishi Denki Kabushiki Kaisha Wire electric spark machine
CN105798407A (en) * 2016-05-25 2016-07-27 哈尔滨理工大学 Wire-electrode cutting machine tool spray nozzle for a plurality of media

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337746A (en) * 1992-06-10 1993-12-21 Mitsubishi Electric Corp Wire electrodischarge machining unit
US5720372A (en) * 1995-07-25 1998-02-24 Honda Giken Kogyo Kabushiki Kaisha Lubricating structure of hydraulic clutch
WO2000015376A1 (en) * 1998-09-10 2000-03-23 Mitsubishi Denki Kabushiki Kaisha Wire electric spark machine
US6294749B1 (en) 1998-09-10 2001-09-25 Mitsubishi Denki Kabushiki Kaisha Wire electrical discharge machine
CN105798407A (en) * 2016-05-25 2016-07-27 哈尔滨理工大学 Wire-electrode cutting machine tool spray nozzle for a plurality of media

Similar Documents

Publication Publication Date Title
US10131013B2 (en) Non-transferred plasma arc system, conversion adapter kit, and non-transferred plasma arc torch
US6759623B2 (en) Radial tube torch head
EP2522453A1 (en) Welding torch with two contact tips
US20080169336A1 (en) Apparatus and method for deep groove welding
US5200594A (en) Electrode for use in plasma arc working torch
CA2019991C (en) Welding apparatus coated with spatter-resistant and electrically conductive film
EP2008750A1 (en) TIG welding torch
US9592567B2 (en) Welding head comprising a movable electrode and related welding method
US3502841A (en) Device for guiding and supplying current to a fusible filler wire in a shielding inert gas metal arc welding process
JPH0441126A (en) Wire cut discharge machining device
Ahmed et al. On the design and application of hybrid electrical discharge and arc machining process for enhancing drilling performance in Inconel 718
US2512705A (en) Fluid-cooled gas-blanketed arc welding torch
KR102036815B1 (en) Electrode for plasma cutting torches and use of same
KR101649423B1 (en) Apparatus for electrochemical discharge machining
EP3527049B1 (en) Consumable assembly with internal heat removal elements and associated method of cooling it
JP5031073B2 (en) Power supply device for wire cut electrical discharge machine
US4736085A (en) Current supplying apparatus for a wire-cut electric discharge machine
JP2020534160A (en) Torch body for thermal bonding
CN209773668U (en) Power supply mechanism of wire-electrode cutting discharge machining device
JP2003311534A (en) Electric discharge machining apparatus
US20140061164A1 (en) Variable length flush nozzles for wire electrical discharge machines
JP6785177B2 (en) Plasma cutting device and plasma cutting method
JPS584322A (en) Apparatus for feeding machining liquid in electric machining
DE4314097C2 (en) Arc welding or cutting torch
JPS6094221A (en) Wire electrode cooling device in wire cut electric discharge machine