JPH0440534B2 - - Google Patents

Info

Publication number
JPH0440534B2
JPH0440534B2 JP59040682A JP4068284A JPH0440534B2 JP H0440534 B2 JPH0440534 B2 JP H0440534B2 JP 59040682 A JP59040682 A JP 59040682A JP 4068284 A JP4068284 A JP 4068284A JP H0440534 B2 JPH0440534 B2 JP H0440534B2
Authority
JP
Japan
Prior art keywords
engine
intake
switching valve
communication passage
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59040682A
Other languages
Japanese (ja)
Other versions
JPS60198325A (en
Inventor
Taisuke Okazaki
Yutaka Ooizumi
Masashi Kozuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59040682A priority Critical patent/JPS60198325A/en
Publication of JPS60198325A publication Critical patent/JPS60198325A/en
Publication of JPH0440534B2 publication Critical patent/JPH0440534B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/021Resonance charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、エンジンの吸気装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intake system for an engine.

〔従来技術〕[Prior art]

一般にエンジンの吸気装置は、エンジンに吸気
を効率よく供給しようとするものである。ところ
でエンジンに対する吸気の供給方式としては、従
来より種々の方式があるが、その1例として、吸
気通路の形状等によつて決まる固有振動数でもつ
て吸気が共振して吸気の圧力変動が生じることか
ら、この現象を利用して吸気をその動的効果によ
つて効率よく気筒内に押し込み、充填効率を向上
させるようにしたものである。
Generally, an engine intake device is designed to efficiently supply intake air to the engine. By the way, there have been various methods for supplying intake air to the engine.One example is that the intake air resonates at a natural frequency determined by the shape of the intake passage, etc., causing intake pressure fluctuations. Therefore, this phenomenon is utilized to efficiently push intake air into the cylinder due to its dynamic effect, thereby improving charging efficiency.

そして上述の動的効果のなかの共鳴効果によつ
て過給する共鳴過給方式を採用したエンジンの吸
気装置として、従来、特開昭56−115818号公報に
示されるように、点火順序の連続しない気筒群毎
に吸気が集合し、各気筒に吸気を分配する吸気分
配室であるサージタンクを設けるとともに、該サ
ージタンク間を各々連通する第1、第2連通路を
設け、該第1、第2連通路の通路長さ及び断面積
をそれぞれ設定回転以下、設定回転以上の領域で
吸気の共振が得られるように設定し、第2連通路
内に設けられた切換弁をエンジン回転数が設定値
以下か以上かに応じて開閉して、エンジンの広い
回転域で共鳴過給を行なうようにしたものがあつ
た。
As shown in Japanese Patent Application Laid-Open No. 115818/1984, conventional intake systems for engines employing the resonance supercharging method that uses the resonance effect among the dynamic effects mentioned above have conventionally adopted a continuous ignition order. A surge tank is provided as an intake distribution chamber for collecting intake air for each cylinder group that does not operate and distributing the intake air to each cylinder, and first and second communication passages are provided that communicate between the surge tanks, and the first, second, and The passage length and cross-sectional area of the second communication passage are set so that resonance of the intake air is obtained in the ranges below the set rotation speed and above the set rotation speed, respectively, and the switching valve provided in the second communication passage is set so that the engine speed increases. There was one that opened and closed depending on whether the value was below or above a set value, and resonant supercharging was performed over a wide range of engine rotations.

しかしながら従来の吸気装置では、単にエンジ
ンの全運転域において共鳴過給を行なうようにし
ており、エンジンの低負荷時にはエンジン出力が
それほど大きくなく、吸気の共振を得るために生
ずるポンピングロスがエンジン出力に比して大き
いことから、エンジンの出力低下が顕著になると
いう問題があつた。また吸気通路の形状等、例え
ば吸気通路内に設けられた各々のスロツトル弁の
組付誤差に起因して各気筒群への吸気分配にばら
つきがあると、気筒群間の出力差に起因するエン
ジンのトルク変動が顕著となり、不快なエンジン
振動が増大するおそれがあり、これは特に吸入空
気量の少ないエンジンの低負荷時において顕著で
あつた。また低負荷時のポンピングロスを低減す
る技術として、例えば特公昭42−27441号公報に
示されるように、吸気管の2つの集合部を連通さ
せるとともに、この連通路に開閉装置を取付け、
エンジン回転数に応じて開閉することで吸気の流
速を制御し、トルクのピークが回転数に対してず
れを生じるようにしたものがあるが、上記低負荷
時の共鳴効果に起因するポンピングロスを低減で
きるものではなかつた。
However, with conventional intake systems, resonant supercharging is simply carried out over the entire operating range of the engine, and when the engine is under low load, the engine output is not very large, and the pumping loss that occurs to obtain intake resonance does not affect the engine output. Since the engine size is larger than that of the engine, there was a problem in that the engine output was significantly reduced. In addition, if there are variations in intake air distribution to each cylinder group due to the shape of the intake passage, for example due to assembly errors of each throttle valve installed in the intake passage, the engine There is a risk that torque fluctuations in the engine will become noticeable and unpleasant engine vibrations will increase, and this is especially noticeable when the engine is under low load with a small amount of intake air. In addition, as a technique for reducing pumping loss during low loads, for example, as shown in Japanese Patent Publication No. 42-27441, two gathering parts of the intake pipe are communicated, and a switching device is attached to this communication passage.
Some systems control the intake flow rate by opening and closing according to the engine speed, so that the torque peak deviates from the engine speed, but this reduces the pumping loss caused by the resonance effect at low loads. It was not something that could be reduced.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる問題点に鑑み、エンジンの
出力低下を軽減でき、しかも吸気分配のばらつき
に起因するエンジン振動の発生を低減したエンジ
ンの吸気装置を提供せんとするものである。
SUMMARY OF THE INVENTION In view of these problems, it is an object of the present invention to provide an engine intake system that can reduce the reduction in engine output and also reduce the occurrence of engine vibrations caused by variations in intake air distribution.

〔発明の構成〕[Structure of the invention]

そこでこの発明は、エンジンの吸気装置におい
て、サージタンクを第1、第2の連通路によつて
連通するとともに、第2の連通路に切換弁を設
け、第1連通路の形状等を所定の回転域で吸気の
共振が得られるようにする一方、第2連通路はサ
ージタンク間を連通するものとし、エンジンの負
荷状態を検出し、負荷が設定値以下のときは上記
切換弁を常時開き、かつ負荷が設定値以上の、低
回転域及び高回転域では上記切換弁を閉じ、また
中回転域では上記切換弁を開くようにしたもの
で、これにより低負荷時における吸気の共鳴過給
を停止するとともに、サージタンク間で第2連通
路を介して吸気の供給を行なつて、各サージタン
ク内の吸気量を均一にし、また高負荷時にはエン
ジンの実用回転域内で複数の共鳴過給効果による
共鳴過給を行い、トルクアツプを行うようにした
ものである。
Therefore, in an engine intake system, the surge tank is communicated with the surge tank through first and second communication passages, a switching valve is provided in the second communication passage, and the shape of the first communication passage is adjusted to a predetermined shape. While ensuring intake resonance in the rotation range, the second communication passage communicates between the surge tanks, detects the engine load condition, and when the load is below a set value, the above switching valve is always open. , and the above switching valve is closed in the low speed range and high speed range where the load is above the set value, and the above mentioned switching valve is opened in the medium speed range.This allows resonance supercharging of the intake air at low loads. At the same time, intake air is supplied between the surge tanks through the second communication path to equalize the amount of intake air in each surge tank, and at high loads, multiple resonance supercharging is performed within the engine's practical rotation range. This system uses resonance supercharging to increase torque.

〔実施例〕〔Example〕

以下、本発明の一実施例を図について説明す
る。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図ないし第4図は本発明の一実施例による
エンジンの吸気装置を示す。図において、1はサ
ージタンクで、該サージタンク1は隔壁2によつ
て第1室3と第2室4とに画成されている。上記
第1室3の底面には点火順序の連続しない第1、
第3、第5の各気筒に延びる吸気マニホールド5
a,5b,5cの上流端が接続され、上記第2室
4の底面にはこれも点火順序の連続しない第2、
第4、第6の各気筒に延びる吸気マニホールド5
d,5e,5fの上流端が接続されている。ここ
でエンジンは第1、第2、第3、第4、第5、第
6気筒の点火順序でクランク角度120°毎に点火さ
れるものとする。
1 to 4 show an engine intake system according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a surge tank, and the surge tank 1 is divided into a first chamber 3 and a second chamber 4 by a partition wall 2. At the bottom of the first chamber 3, there are first,
Intake manifold 5 extending to each of the third and fifth cylinders
A, 5b, 5c are connected to the upstream ends thereof, and the bottom of the second chamber 4 is provided with a second chamber, which also has a non-consecutive ignition order.
Intake manifold 5 extending to each of the fourth and sixth cylinders
The upstream ends of d, 5e, and 5f are connected. Here, it is assumed that the engine is ignited at every crank angle of 120° in the ignition order of the first, second, third, fourth, fifth, and sixth cylinders.

また上記サージタンク1の側面には吸気管6の
下流端が接続されている。この吸気管6の下流端
部は2つの吸気通路7,8に形成され、該両吸気
通路7,8は各々サージタンク1の第1室3及び
第2室4に接続されており、該両吸気通路7,8
はサージタンク1の第1室3と第2室4とを連通
する第1連通路9となつている。この第1連通路
9の通路長さL1及び通路断面積S1はエンジン回
転数2700rpm以下の低回転域、及び5200rpm以上
の高回転域にて気体の共振が得られるような長さ
及び断面積に設定されている。また上記両吸気通
路7,8にはそれぞれスロツトル弁11a,11
bが配設されている。
Further, a downstream end of an intake pipe 6 is connected to a side surface of the surge tank 1. The downstream end of the intake pipe 6 is formed into two intake passages 7, 8, which are connected to the first chamber 3 and second chamber 4 of the surge tank 1, respectively. Intake passage 7, 8
serves as a first communication path 9 that communicates the first chamber 3 and second chamber 4 of the surge tank 1. The passage length L1 and the passage cross-sectional area S1 of the first communication passage 9 are set to such a length and cross-sectional area that gas resonance can be obtained in a low engine speed range of 2700 rpm or less and a high engine speed range of 5200 rpm or more. It is set. Also, throttle valves 11a and 11 are provided in both the intake passages 7 and 8, respectively.
b is provided.

また上記隔壁2には開口10が開設され、該開
口10は上記第1連通路9と並列にサージタンク
1の第1室3と第2室4とを連通する第2連通路
となつており、該第2連通路の通路長さ(隔壁2
の厚さ)L2及び通路断面積(開口10の面積)
S2はエンジン回転数が2700rpm以上でかつ
5200rpm以下の中回転域にて気体の共振が得られ
る長さ及び断面積に設定されている。またこの開
口10にはこれを開閉する切換弁12が設けら
れ、該切換弁12はアクチユエータ13によつて
開閉作動されるようになつている。
Further, an opening 10 is formed in the partition wall 2, and the opening 10 serves as a second communication passage that communicates the first chamber 3 and the second chamber 4 of the surge tank 1 in parallel with the first communication passage 9. , the passage length of the second communication passage (partition wall 2
thickness) L2 and passage cross-sectional area (area of opening 10)
S2 has an engine speed of 2700rpm or more and
The length and cross-sectional area are set to obtain gas resonance in the medium rotation range of 5200 rpm or less. The opening 10 is also provided with a switching valve 12 for opening and closing the opening 10, and the switching valve 12 is opened and closed by an actuator 13.

また図中、14はエンジン回転数を検出する回
転数センサ、15はスロツトル下流の吸気負圧を
検出する負圧センサ(負荷センサ)、16はエン
ジン回転数と吸気負圧とをパラメータとする切換
弁制御マツプを有し、上記両センサ14,15の
出力を受けて開信号又は閉信号を読み出し、それ
をアクチユエータ13に加える制御回路である。
ここで上記切換弁制御マツプには、第4図に示す
ように、吸気負圧が設定値−100mmHg以下の低負
荷時にはエンジン回転数に関係なく全て開信号が
格納され、又吸気負圧が設定値−100mmHg以上の
高負荷時にはエンジン回転数が2700rpm以下の低
回転域、及び5200rpm以上の高回転域において閉
信号、エンジン回転数が2700rpm以上で5200rpm
以下の中回転域において開信号が格納されてい
る。
In the figure, 14 is a rotational speed sensor that detects the engine rotational speed, 15 is a negative pressure sensor (load sensor) that detects the intake negative pressure downstream of the throttle, and 16 is a switch that uses the engine rotational speed and intake negative pressure as parameters. This is a control circuit that has a valve control map, receives the outputs of both the sensors 14 and 15, reads out an open signal or a close signal, and applies it to the actuator 13.
Here, as shown in Fig. 4, the switching valve control map stores all open signals regardless of the engine speed at low loads when the intake negative pressure is less than the set value -100 mmHg, and the intake negative pressure is also set. When the load is high (value - 100mmHg or more), the signal is closed in the low rotation range of 2700 rpm or less and the high rotation range of 5200 rpm or more, and the signal is closed at 5200 rpm when the engine rotation speed is 2700 rpm or higher.
The open signal is stored in the following medium rotation range.

次に動作について説明する。 Next, the operation will be explained.

エンジンが作動すると、回転数センサ14及び
負圧センサ15の両出力は制御回路16に加えら
れ、該回路16ではエンジンの負荷状態と回転状
態とに応じて切換制御マツプ(第4図参照)から
開信号又は閉信号が読み出され、それがアクチユ
エータ13に加えられて切換弁12が開閉され
る。
When the engine starts operating, the outputs of both the rotational speed sensor 14 and the negative pressure sensor 15 are applied to the control circuit 16, and the circuit 16 uses a switching control map (see FIG. 4) according to the engine load condition and rotational condition. An open signal or a close signal is read out and applied to the actuator 13 to open and close the switching valve 12.

するとエンジンの高負荷低回転域においては、
切換弁12は閉じて、サージタンク1内の吸気は
第1連通路9の形状等によつて決まる1次固有振
動数で1次共振し、各気筒には効率よく共鳴過給
が行なわれる。またエンジンの高負荷中回転域に
おいては、切換弁12は開き、サージタンク1内
の吸気は今度は第2連通路10の形状等によつて
決まる1次固有振動数で1次共振し、この場合も
各気筒には効率よく共鳴過給が行なわれることと
なる。さらにエンジンの高負荷高回転域において
は、低回転域の場合と同様に、切換弁12は閉じ
るが、この場合の吸気は上記第1連通路9の形状
等によつて決まる2次固有振動数で2次共振する
ため、この場合も各気筒には効率よく共鳴過給が
行なわれることとなる。
Then, in the high load and low speed range of the engine,
The switching valve 12 is closed, and the intake air in the surge tank 1 resonates first at the first natural frequency determined by the shape of the first communication passage 9, etc., and each cylinder is efficiently resonantly supercharged. In addition, in the high-load and medium-speed range of the engine, the switching valve 12 opens, and the intake air in the surge tank 1 resonates first at the first natural frequency determined by the shape of the second communication passage 10. In this case, resonance supercharging will be performed efficiently in each cylinder. Furthermore, in the high-load, high-speed range of the engine, the switching valve 12 is closed as in the low-speed range, but in this case, the intake air has a secondary natural frequency determined by the shape of the first communication passage 9, etc. Since secondary resonance occurs in this case, each cylinder is efficiently resonantly supercharged.

一方、エンジンの低負荷域においては、切換弁
12は常時開状態に保持されるため、サージタン
ク1の第1室3と第2室4との間で第2連通路1
0を介して吸気の供給が行なわれ、第1室3の圧
力と第2室4の圧力とがほぼ等しくなるため、各
気筒にはほぼ等しい量の吸気が供給されることと
なる。
On the other hand, in the low engine load range, the switching valve 12 is always kept open, so the second communication passage 1 is connected between the first chamber 3 and the second chamber 4 of the surge tank 1.
Since the intake air is supplied through the cylinder 0 and the pressure in the first chamber 3 and the pressure in the second chamber 4 are approximately equal, approximately the same amount of intake air is supplied to each cylinder.

以上のような本実施例の装置では、吸気の2次
共振を利用してエンジン高回転域における共鳴過
給を行なうようにしたので、従来装置に比して何
ら構造を複雑にすることなくより広い回転域で共
鳴過給を実現でき、その結果第5図の実線aで示
すようにエンジン出力、特に高回転域におけるエ
ンジン出力を向上できる。なお第5図において、
1点鎖線c及び破線bは各々第1、第2連通路
9,10によつて決まる吸気の共振を利用した場
合において得られるエンジン出力の変化を示す。
In the device of this embodiment as described above, the secondary resonance of the intake air is used to perform resonant supercharging in the engine high speed range, so it is more efficient than the conventional device without complicating the structure. Resonant supercharging can be achieved in a wide rotation range, and as a result, the engine output, particularly in the high rotation range, can be improved as shown by the solid line a in FIG. In addition, in Figure 5,
A dashed line c and a broken line b indicate changes in engine output obtained when the resonance of the intake air determined by the first and second communication passages 9 and 10 is utilized, respectively.

また本装置では、エンジンの低回転域および高
回転域の低負荷時には切換弁12を開いて共鳴過
給をほとんど行なわないようにしたので、従来装
置のようにポンピングロスによつてエンジン出力
が大幅に低下するということはなく、又第2連通
路を介して第1室3と第2室4との間で吸気量の
補正を行なうようにしたので、たとえば吸気通路
で吸気分配のばらつきが生じても不快なエンジン
振動が増大することはない。また、エンジン中回
転域の低負荷時には、共鳴効果によつて生じるポ
ンピングロスの低減のため切換弁12を閉状態に
した方が好ましいが、吸入空気量の少ない低負荷
時には上記吸気分配のばらつきの方を対策した方
がエンジンの安定性の面から好ましく、本装置で
は切換分12が開状態としている。
In addition, with this device, the switching valve 12 is opened during low loads in the low and high engine speed ranges, so that almost no resonance supercharging is performed, so unlike conventional devices, the engine output is significantly reduced due to pumping loss. Since the intake air amount is corrected between the first chamber 3 and the second chamber 4 via the second communication passage, for example, variations in intake air distribution may occur in the intake passage. However, unpleasant engine vibrations will not increase. In addition, at low loads in the engine speed range, it is preferable to close the switching valve 12 in order to reduce pumping loss caused by resonance effects, but at low loads with a small amount of intake air, the above-mentioned variation in intake air distribution It is preferable to take measures against this problem from the viewpoint of engine stability, and in this device, the switching section 12 is kept in an open state.

なお上記実施例ではサージタンク内を隔壁によ
つて第1室と第2室とに画成したが、本発明は勿
論サージタンクを別々に形成してもよい。またサ
ージタンクの数は2個以外の複数個であつてもよ
い。またさらにエンジンの高負荷時における切換
弁の開閉制御は上記実施例と異なる方法で行なつ
てもよい。
In the above embodiment, the inside of the surge tank is divided into the first chamber and the second chamber by the partition wall, but the surge tank may of course be formed separately in the present invention. Further, the number of surge tanks may be more than two. Furthermore, the opening/closing control of the switching valve when the engine is under high load may be performed using a method different from that of the above embodiment.

また上記実施例では第1、第2連通路の形状等
を低、高回転域及び中回転域で吸気の共振が得ら
れるように設定したが、本発明は第1連通路の形
状等については所定の回転域で吸気の共振が得ら
れるように設定し、第2連通路については単にサ
ージタンク間を連通するものであつてもよい。
In addition, in the above embodiment, the shapes of the first and second communication passages were set so as to obtain resonance of intake air in the low, high and medium rotation ranges, but the present invention does not change the shape of the first communication passages. The setting may be such that resonance of the intake air is obtained in a predetermined rotation range, and the second communication path may simply communicate between the surge tanks.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係るエンジンの吸気装置
によれば、サージタンクを第1、第2連通路によ
つて連通するとともに、第2の連通路に切換弁を
設け、第1連通路の形状等を所定の回転域で吸気
の共振が得られるようにする一方、第2連通路は
サージタンク間を連通するものとし、エンジンの
設定負荷以下の運転領域では上記切換弁を常時開
き、かつ負荷が設定値以上の、低回転域及び高回
転域では上記切換弁を閉じ、また中回転域では上
記切換弁を開き、各回転域において共鳴過給を行
うようにしたので、エンジンの出力低下を防止で
き、又吸気分配のばらつきに起因するエンジン振
動の発生を低減でき、さらに高負荷時全回転領域
において、複数の共鳴過給効果によるトルクアツ
プを行うことができるという効果がある。
As described above, according to the engine intake system according to the present invention, the surge tank is communicated with the first and second communication passages, the switching valve is provided in the second communication passage, and the shape of the first communication passage is etc., so that resonance of the intake air can be obtained in a predetermined rotation range, while the second communication passage communicates between the surge tanks, and in the operating range below the set load of the engine, the switching valve is always open and the load The switching valve is closed in the low speed range and high speed range where the speed is above the set value, and the switching valve is opened in the medium speed range to perform resonance supercharging in each speed range, thereby preventing a drop in engine output. It is possible to prevent engine vibrations caused by variations in intake air distribution, and to reduce the occurrence of engine vibrations caused by variations in intake air distribution.Furthermore, it is possible to increase torque through multiple resonant supercharging effects in the entire rotation range under high load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の一実施例
によるエンジンの吸気装置の断面平面図及び断面
側面図、第3図は上記装置の回路構成図、第4図
は上記装置における制御回路16の開閉信号を示
す図、第5図は上記実施例の効果を説明するため
の図である。 3,4……第1室、第2室(サージタンク)、
9……第1連通路、10……開口(第2連通路)、
12……切換弁、15……負圧センサ(負荷セン
サ)、16……制御回路。
1 and 2 are a cross-sectional plan view and a cross-sectional side view, respectively, of an engine intake system according to an embodiment of the present invention, FIG. 3 is a circuit diagram of the device, and FIG. 4 is a control circuit 16 in the device. FIG. 5 is a diagram for explaining the effects of the above embodiment. 3, 4...1st chamber, 2nd chamber (surge tank),
9...first communication path, 10...opening (second communication path),
12...Switching valve, 15...Negative pressure sensor (load sensor), 16...Control circuit.

Claims (1)

【特許請求の範囲】 1 各々が吸気順序の連続しない各気筒に連通す
る複数の吸気分配室と、 所定の回転域にて気体の共振が得られるよう
に、吸気通路を2分割してその通路長さ及び通路
断面積が設定されるとともに、2分割された両吸
気通路内にスロツトル弁が設けられ、上記吸気分
配室間を連通する第1連通路と、 該第1連通路と並列に上記吸気分配室間を連通
する第2連通路と、 該第2連通路を開閉する切換弁と、 エンジンの回転数を検出する回転数センサとを
備え、 エンジン回転数に応じて上記切換弁を制御して
エンジンの実用回転数域内で複数の共鳴過給効果
が得られるようにしたエンジンの吸気装置におい
て、 エンジンの負荷状態を検出する負荷センサと、 上記回転数センサと負荷センサの出力を受け、
上記切換弁を制御する制御回路とを設け、 負荷が設定値以下の時上記切換弁を常時開き、
かつ負荷が設定値以上の、低回転域及び高回転域
では上記切換弁を閉じて、また中回転域では上記
切換弁を開いて各回転域で共鳴過給を行なうよう
にしたことを特徴とするエンジンの吸気装置。
[Scope of Claims] 1. A plurality of intake distribution chambers each communicating with each cylinder in which the intake order is not consecutive, and an intake passage divided into two so as to obtain gas resonance in a predetermined rotation range. The length and cross-sectional area of the passage are set, and a throttle valve is provided in both the divided intake passages, a first communication passage that communicates between the intake distribution chambers, and a first communication passage that communicates with the first communication passage in parallel with the first communication passage. A second communication passage that communicates between the intake distribution chambers, a switching valve that opens and closes the second communication passage, and a rotational speed sensor that detects the engine rotational speed, and controls the switching valve according to the engine rotational speed. In an engine intake system that enables multiple resonant supercharging effects to be obtained within the engine's practical engine speed range, the engine includes a load sensor that detects the load state of the engine, and a load sensor that receives the outputs of the engine speed sensor and the load sensor.
A control circuit is provided to control the switching valve, and the switching valve is always open when the load is below a set value.
The switching valve is closed in the low rotation range and high rotation range where the load is above the set value, and the switching valve is opened in the medium rotation range to perform resonance supercharging in each rotation range. engine intake system.
JP59040682A 1984-03-02 1984-03-02 Intake device for engine Granted JPS60198325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59040682A JPS60198325A (en) 1984-03-02 1984-03-02 Intake device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59040682A JPS60198325A (en) 1984-03-02 1984-03-02 Intake device for engine

Publications (2)

Publication Number Publication Date
JPS60198325A JPS60198325A (en) 1985-10-07
JPH0440534B2 true JPH0440534B2 (en) 1992-07-03

Family

ID=12587303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59040682A Granted JPS60198325A (en) 1984-03-02 1984-03-02 Intake device for engine

Country Status (1)

Country Link
JP (1) JPS60198325A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362628B1 (en) * 2001-03-22 2002-11-29 기아자동차주식회사 Intake manifold of a V-type engine for a motor vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893929A (en) * 1981-11-30 1983-06-03 Hino Motors Ltd Suction device for diesel engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924822Y2 (en) * 1980-11-28 1984-07-23 日産ディ−ゼル工業株式会社 Internal combustion engine intake system
JPS57150228U (en) * 1981-03-16 1982-09-21
JPS59148425U (en) * 1983-03-24 1984-10-04 トヨタ自動車株式会社 Intake system for multi-cylinder internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893929A (en) * 1981-11-30 1983-06-03 Hino Motors Ltd Suction device for diesel engine

Also Published As

Publication number Publication date
JPS60198325A (en) 1985-10-07

Similar Documents

Publication Publication Date Title
US4630575A (en) Intake system for multicylinder engine
US5121733A (en) Air intake system for supercharged engine
JPH0656106B2 (en) Intake device for supercharged engine
JPH0440534B2 (en)
JPH0362887B2 (en)
JPS60169627A (en) Suction device of engine
US4938177A (en) Intake system of multicylinder internal combustion engine
JPS6155355A (en) Exhaust gas reflux device for multicylinder engine
JPS59165867A (en) Ignition timing control device of supercharged engine
JPH1030446A (en) Supercharger for engine
JPS63215822A (en) Intake device for v-type engine
US5542386A (en) Intake system for multiple cylinder combustion engines
JPS61116022A (en) Engine intake-air device
JPS60240822A (en) Suction system for engine
JPS62191628A (en) Intake path device for multicylinder internal combustion engine
JP2507971Y2 (en) Engine intake system
JPH0140207B2 (en)
JPH0324565B2 (en)
JPH0341648B2 (en)
JPS61218720A (en) Intake device of engine with supercharger
JPH0392534A (en) Intake device for multi-cylinder engine
JPH0361008B2 (en)
JPH04175457A (en) Intake system for engine with supercharger
JPS61247822A (en) Intake apparatus of engine
JP3404407B2 (en) Engine intake system