JPH0439429B2 - - Google Patents

Info

Publication number
JPH0439429B2
JPH0439429B2 JP60051711A JP5171185A JPH0439429B2 JP H0439429 B2 JPH0439429 B2 JP H0439429B2 JP 60051711 A JP60051711 A JP 60051711A JP 5171185 A JP5171185 A JP 5171185A JP H0439429 B2 JPH0439429 B2 JP H0439429B2
Authority
JP
Japan
Prior art keywords
yoke
density
core
iron
yoke core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60051711A
Other languages
Japanese (ja)
Other versions
JPS61211052A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5171185A priority Critical patent/JPS61211052A/en
Publication of JPS61211052A publication Critical patent/JPS61211052A/en
Publication of JPH0439429B2 publication Critical patent/JPH0439429B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/22Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material
    • B41J2/23Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material using print wires
    • B41J2/27Actuators for print wires

Landscapes

  • Soft Magnetic Materials (AREA)
  • Impact Printers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明の例えばドツトインパクト式プリンター
に用いられるプリンターヘツド用ヨークコアに関
する。 〔発明の技術的背景とその問題点〕 コンピユータなどに用いるドツトフリンター
は、ワイヤを駆動するためにプリンターヘツドを
使用している。このヘツドは例えば第5図および
第6図で示すようにヨークコア1、ワイヤ5を動
かす可動体2および励磁コイル3から構成されて
いる。ヨークコア1は励磁コイル3を巻装した吸
着部1Aと、吸着部1Aに連続して磁路を形成す
るヨーク部1Bを有し、ヨーク部1Bの一端が可
動体2を支点として支えている。そして、励磁コ
イル3に交流電流が通るとヨークコア1が励磁さ
れ、その吸着部1Aが可動体2に吸引力を作用し
復帰ばね4のばね力に抗して吸引するので、可動
体2が揺通してワイヤ5を動かす。なおヨークコ
ア1な複数本のワイヤ5に対応して複数個のもの
を放射状に並べてブロツク状に一体に形成しヘツ
ドを構成している。 しかしてこのヨークコア1においては、可動体
2を確実に吸着するために大きな吸着力を有し、
また鉄損(うず電流損)による発熱が小さいこと
が要求される。特にドツトプリンターではワイヤ
5の動作頻度が高いとでヨークコア1で発熱の度
合が大きい。ここでヨークコア1の各部における
特性を考察すると、吸着部1Aは可動体2は直接
吸着するので大きい吸着力を有することが必要で
あり、ヨーク部1Bは可動体2を直接吸着しない
ので、鉄損による発熱が小さいことが必要である
といえる。このようにヨークコア1では各部分に
必要な特性を重点的にもたせることが重要であ
る。 従来、ドツドプリンターヘツド用ヨークコア
は、鉄−けい素合金を材料として使用し、且つブ
ロツク状の複雑な形状をなすので鋳造品を加工す
るか、あるいはロストワツクス鋳造法により製造
している。 しかしながらこのように鋳造法によりヨークコ
アを製造すると、ヨークコア全体にわたり材料組
成および内部組織が単一で単一の磁気および電気
的特性を有することになるので、ヨークコアの各
部分に異なつた特性をもたせることができない。
このようなことから従来はヨークコアの吸着部お
よびヨーク部に各々適切な特性を重点的にもたせ
ることは考慮されていなかつた。 〔発明の目的〕 本発明は前記事情に基づいてなされたもので、
各部分に適切な特性を重点的に備えた優れたプリ
ンターヘツド用ヨークコアを提供することを目的
とする。 〔発明の概要〕 本発明のヨークコアは、吸着部を有し、全体が
電極石材料からなるプリンターヘツド用ヨークコ
アにおいて、前記吸着部はけい素10重量%以下、
残部実質的に鉄からなり磁束度が14000ガウス以
上であり、吸着部以外の部分はけい素1〜10重量
%、残部実質的に鉄からなり比抵抗が50μΩ・cm
以上であつて、前記吸着部と前記吸着部以外の部
分とが一体に形成されており、且つ前記吸着部の
密度が前記吸着部以外の部分の密度より大きいこ
とを特徴とするものである。 すなわち、ヨークコアにおける吸着部の磁束密
度を高めることにより、吸着力が大きいことを要
求される吸着部の吸着力を増大し、またヨーク部
の比抵抗を高めて鉄損を減少させることにより、
鉄損による発熱が小さいことを要求されるヨーク
部の発熱を抑制したものである。これにより吸着
部およびいヨーク部に各々適切な特性を重点的に
与えたヨークコアを得ることができる。 本発明のヨークコアにおいて、吸着部は吸着力
を高めるために磁束密度(B25)が14000ガウス
以上であり、ヨーク部は鉄損による発熱を減少さ
せるために比抵抗が50μΩ・cm以上である。 本発明のヨークコアにおける構成を図面を参照
して説明する。ここでは第1図および第2図で示
すようにドツトプリンター用の電磁石において複
数個の磁心を円形に並べてブロツク状に一体に形
成したヘツドコアを例にとつて説明する。 まず、第1図で示すようにコア全体が同一組成
の磁性合金からなる金属焼結体で形成され、吸着
部1Aの焼結密度がヨーク部1Bの焼結密度に比
して大きいものである。金属焼結体は優れた磁器
特性を得るために、けい素1〜10重量%、残部実
質的に鉄からなる合金を用いる。この終結合金に
おいてけい素1〜10%とするのは、低温焼結が可
能で設備面で有利であり、また良好な磁気特性が
得られるためであり、好ましくは1.5〜7%が良
い。各部の密度の設定は、吸着部1Aの密度は
7.0g/cm3以上、ヨーク部1Bの密度は7.8g/cm3
以下であつて、吸着部1Aの密度がヨーク部1B
の密度より0.1g/cm3以上大きいものとする。こ
のような構成のヨークコアの吸着部1Aは密度を
大きくすることにより磁束密度を高めることがで
き、ヨーク部1Bは密度を小さくすることにより
比抵抗を増大させることができ、ヨーク部1Bで
の発熱も減少する。 この構成のヨークコアを製造する場合には、鉄
粉と、鉄−けい素合金粉とを混合したものを原料
粉末として用いる母合金法を採用することが好ま
しい。母合金法は粉末加圧成形時の成形密度が大
きいという利点がある。またヨークコア各部に密
度差をもたせるためには、第2図で示すように粉
末成形体の成形時に分割型を用い、成形圧を部分
的に異ならせて粉末を加圧して粉末成形体を成形
する。すなわち、図中6はダイ、7は芯型、8は
上型、9A〜9Cは分割された下型、10は各型
で囲まれた部分に充填した粉末で、磁心の吸着部
1Aの成形する下型9Aの成形圧をヨーク部1B
を成形する下型9B,9Cの成形圧より大きくし
て粉末10を加圧する。これにより吸着部1Aの
密度がヨーク部1Bの密度より大きくなる。 ヨークコアの他の構造は、例えば第3図で示す
ように鉄からなる溶解材で形成した吸着部材11
Aと、けい素1〜10重量%、残部実質的に鉄から
なる焼結体で形成したヨーク部材11とを一体に
接合したものである。吸着部材11Aは大きな磁
束密度を得るために純鉄を用いる。吸着部材11
Aを溶解材で形成すると大きな磁束密度を得るこ
とができる。ヨーク部材11Bは大きな比抵抗と
優れた磁気特性を得るために前記の鉄−けい素合
金からなる焼結体で形成する。なお、ヨーク部材
11Bを形成する焼結体の焼結密度は、比抵抗を
大きくするために7.1g/cm3とする。吸着部材1
1Aとヨーク部材11Bとを接合する構成として
は、例えば吸着部材11Aに凸部11Aaを形成
し、ヨーク部材11Bに凹部11Baを形成して、
両者を係合固定する。このように構成したヨーク
コアは、吸着部材11Aすなわち吸着部の磁束密
度が大きく、ヨーク部材11Bすなわちヨーク部
の比抵抗が小さいものである。 この構造のヨークコア製造する場合には、機械
加工により吸着部の形状に形成した吸着部材11
Aとヨーク部の形状に成形したヨーク部材11B
の粉末成形体とを組合せて焼結する。この焼結に
よりヨーク部材11Bの凹部11Baが収縮して、
この凹部11Baに係合した吸着部材11Aの凸
部11Aaを固定できる。 また、第4図で示すように鉄からなる焼結体で
形成した吸着部材21Aと、けい素10重量%、残
部実質的に鉄からなる焼結体で形成したヨーク部
材21Bとを一体に接合したものも適用できる。
吸着部材21Aは前記の溶解材からなる吸着部材
11Aに代るものであり、純鉄からなるものを用
いる。ヨーク部材21Bは前記のヨーク部材11
B同じものであり、焼結密度を7.4g/cm3以下と
する。吸着部材21Aとヨーク部材21Bとは例
えば拡散接合により接合される。このように構成
したヨークコアは、鉄の焼結体からなる吸着部材
21Aすなわち吸着部の磁束密度が大であり、鉄
−けい素合金焼結体からなるヨーク部材21Bす
なわちヨーク部の比抵抗が大である。 この構造のヨークコアを製造する場合には、吸
着部材21Aおよびヨーク部材21Bの粉末成形
体を組合せて焼結し、その後に拡散接合を行い両
部材21A,21Bを接合する。 さらに、ドツトプリンター用ヘツドは、第6図
で示すようにヨーク部1Aの端部に可動体2が接
触して動作するので、ヨーク部1Bの端部が摩耗
する。このためヨーク部1Bにおける可動体2が
接触する端部の耐摩耗性を向上させることが好ま
しい。これらの構造のヨーク部は鉄−けい素合金
の焼結体で形成される。そこでヨーク部に水蒸気
処理を施して、ヨーク部の表面および焼結空孔に
鉄の酸化物を生成させ、耐摩耗性表面層を形成す
る。これによりヨーク部の硬度が大きくなり耐摩
耗性が向上する。この場合ヨーク部に充分な耐摩
耗性をもたせるために硬度はHRB80以上とするこ
とが好ましい。 〔発明の実施例〕 次に本発明の実施例について説明する。この実
施例は前述したドツトプリンタ用ヘツドヨークコ
アの各構造に適用したものである。 (1) アトマイズ鉄粉と鉄−けい素粉末を混合して
鉄−けい素3重量%の原料粉末を得、この粉末
を分割型を用いて成形圧4〜7トン/cm2(吸着
部7トン/cm2、吸着部以外の部分4トン/cm2
で加圧成形した後に温度1170℃、2時間の条件
で焼結して第1図で示すヨークコアを製造し
た。このヨークコアの吸着部の焼結密度は7.3
g/cm3、ヨーク部の焼結密度は7.1g/cm3であ
つた。得られたヨークコアに水蒸気処理を施こ
した。 (2) 鉄の溶解材を機械加工して吸着磁心の吸着部
の形状をなす部材を形成する。アトマイズ鉄粉
と鉄−けい素粉末とを混合してなる鉄−けい素
3重量%粉末を成形圧3〜6トン/cm2で加圧し
て磁心のヨーク部の形状をなす粉末成形体を成
形した。吸着部材と粉末成形体とを組合せ、粉
末成形体を焼結して第3図で示す構造のヨーク
コアを製造した。なお、ヨーク部の焼結密度は
7.1g/cm3であつた。 (3) アトマイズ鉄粉を成形圧5〜10トン/cm2で加
圧して吸着部の形状をなす粉末成形体を成形し
た。またアトマイズ鉄粉と鉄−けい素粉末を混
合してなる鉄−けい素3重量%粉末を加圧し
て、磁心のヨーク部を形作る粉末成形体を成形
した。両方の粉末成形体を組合せて焼結を行
い、その後に拡散接合を行つて第4図で示す構
造のヨークコアを製造した。なお、ヨーク部の
焼結密度は7.4g/cm3以下とした。 しかしてこれら各実施例で製造したヨークコア
の磁束密度および比抵抗を測定した結果、吸着部
の磁束密度は14000ガウス〜16000ガウス、ヨーク
部の比抵抗は50〜60μΩ・cmであつた。 そして、前記各実施例で製造したヨークコア
と、ロストワツクス鋳造法により製造した鉄−け
い素3重量%合金からなるヨークコアを各々ドツ
トプリンターヘツドに組込み、1000Hzの印字速度
で動作させた場合における各ヨークコアの動作
性、温度上昇性および耐摩耗性について調べた。
なお、動作性は応答時間で比較し、温度上昇性は
ヨークコアの上昇温度、耐摩耗性は可動体の接触
によるヨークコアの摩耗の状態で比較したもので
ある。 以下に各磁心の各項目の評価結果を示す。
[Technical Field of the Invention] The present invention relates to a yoke core for a printer head used, for example, in a dot impact printer. [Technical background of the invention and its problems] Dot printers used in computers and the like use a printer head to drive wires. This head is composed of a yoke core 1, a movable body 2 for moving a wire 5, and an excitation coil 3, as shown in FIGS. 5 and 6, for example. The yoke core 1 has an attraction part 1A around which an excitation coil 3 is wound, and a yoke part 1B that forms a magnetic path continuous to the attraction part 1A, and one end of the yoke part 1B supports the movable body 2 as a fulcrum. When an alternating current is passed through the excitation coil 3, the yoke core 1 is excited, and its attraction portion 1A exerts an attractive force on the movable body 2 against the spring force of the return spring 4, so that the movable body 2 swings. Move wire 5 through it. In addition, a plurality of wires corresponding to the plurality of wires 5 of the yoke core 1 are arranged radially and integrally formed in a block shape to constitute the head. However, the yoke core 1 of the lever has a large adsorption force to reliably adsorb the movable body 2,
It is also required that heat generation due to iron loss (eddy current loss) be small. Particularly in dot printers, when the wire 5 is operated frequently, the yoke core 1 generates a large amount of heat. Considering the characteristics of each part of the yoke core 1, the suction part 1A directly adsorbs the movable body 2, so it is necessary to have a large suction force, and the yoke part 1B does not directly suction the movable body 2, so the iron loss It can be said that it is necessary that the heat generated by In this way, it is important to give each part of the yoke core 1 the necessary characteristics in a focused manner. Conventionally, the yoke core for a dot printer head is made of iron-silicon alloy and has a complex block shape, so it has been manufactured by processing a cast product or by a lost wax casting method. However, when the yoke core is manufactured using the casting method, the entire yoke core has a single material composition and internal structure and has the same magnetic and electrical properties, so it is difficult to make each part of the yoke core have different properties. I can't.
For this reason, conventionally, no consideration has been given to giving each of the suction portion and the yoke portion of the yoke core appropriate characteristics. [Object of the invention] The present invention has been made based on the above circumstances, and
The purpose of the present invention is to provide an excellent yoke core for a printer head that has appropriate characteristics in each part. [Summary of the Invention] The yoke core of the present invention is a yoke core for a printer head that has an adsorption portion and is entirely made of an electrode stone material, wherein the adsorption portion contains 10% by weight or less of silicon,
The remainder is essentially iron and has a magnetic flux of 14,000 gauss or more, the portion other than the adsorption part is silicon 1 to 10% by weight, and the remainder is essentially iron and has a specific resistance of 50μΩ・cm.
The above structure is characterized in that the suction portion and the portion other than the suction portion are integrally formed, and the density of the suction portion is higher than the density of the portion other than the suction portion. That is, by increasing the magnetic flux density of the attraction part in the yoke core, the attraction force of the attraction part that is required to have a large attraction force is increased, and by increasing the specific resistance of the yoke part and reducing iron loss,
This suppresses heat generation in the yoke, which is required to have low heat generation due to iron loss. As a result, it is possible to obtain a yoke core in which the suction portion and the yoke portion are respectively given appropriate characteristics. In the yoke core of the present invention, the attraction part has a magnetic flux density (B 25 ) of 14,000 Gauss or more to increase the attraction force, and the yoke part has a specific resistance of 50 μΩ·cm or more to reduce heat generation due to iron loss. The configuration of the yoke core of the present invention will be explained with reference to the drawings. Here, as shown in FIGS. 1 and 2, a head core of an electromagnet for a dot printer in which a plurality of magnetic cores are arranged in a circle and integrally formed into a block will be explained. First, as shown in FIG. 1, the entire core is formed of a metal sintered body made of a magnetic alloy of the same composition, and the sintered density of the adsorption part 1A is larger than that of the yoke part 1B. . In order to obtain excellent porcelain properties, the metal sintered body is made of an alloy containing 1 to 10% by weight of silicon and the remainder substantially iron. The silicon content in this termination alloy is preferably 1.5 to 7% because low temperature sintering is possible, which is advantageous in terms of equipment, and good magnetic properties can be obtained. To set the density of each part, the density of suction part 1A is
7.0g/cm 3 or more, density of yoke part 1B is 7.8g/cm 3
or less, and the density of the adsorption part 1A is the density of the yoke part 1B.
The density shall be 0.1 g/cm 3 or more greater than the density of By increasing the density of the attracting portion 1A of the yoke core with such a configuration, the magnetic flux density can be increased, and by decreasing the density of the yoke portion 1B, the specific resistance can be increased. will also decrease. When manufacturing a yoke core having this configuration, it is preferable to employ a master alloy method using a mixture of iron powder and iron-silicon alloy powder as the raw material powder. The master alloy method has the advantage of high compaction density during powder compaction. In addition, in order to have different densities in each part of the yoke core, as shown in Figure 2, a split mold is used when molding the powder compact, and the compacting pressure is partially varied to press the powder to form the powder compact. . That is, in the figure, 6 is the die, 7 is the core mold, 8 is the upper mold, 9A to 9C are the divided lower molds, and 10 is the powder filled in the part surrounded by each mold, and the magnetic core attracting part 1A is formed. The molding pressure of the lower mold 9A is applied to the yoke part 1B.
The powder 10 is pressurized at a pressure greater than the molding pressure of the lower molds 9B and 9C for molding. As a result, the density of the suction portion 1A becomes greater than the density of the yoke portion 1B. Another structure of the yoke core is, for example, as shown in FIG.
A and a yoke member 11 formed of a sintered body consisting of 1 to 10% by weight silicon and the remainder substantially iron are integrally joined. The adsorption member 11A uses pure iron in order to obtain a large magnetic flux density. Adsorption member 11
If A is made of a melted material, a large magnetic flux density can be obtained. The yoke member 11B is formed of a sintered body made of the aforementioned iron-silicon alloy in order to obtain a large resistivity and excellent magnetic properties. Note that the sintered density of the sintered body forming the yoke member 11B is set to 7.1 g/cm 3 in order to increase the specific resistance. Adsorption member 1
1A and the yoke member 11B, for example, a protrusion 11Aa is formed on the suction member 11A, a recess 11Ba is formed on the yoke member 11B,
Both are engaged and fixed. In the yoke core configured in this manner, the magnetic flux density of the attracting member 11A, that is, the attracting portion is high, and the resistivity of the yoke member 11B, that is, the yoke portion is small. When manufacturing a yoke core with this structure, the suction member 11 is formed into the shape of the suction part by machining.
Yoke member 11B formed into the shape of A and yoke part
The powder compact is combined and sintered. Due to this sintering, the concave portion 11Ba of the yoke member 11B contracts,
The convex portion 11Aa of the adsorption member 11A that is engaged with the concave portion 11Ba can be fixed. Further, as shown in FIG. 4, an adsorption member 21A formed of a sintered body made of iron and a yoke member 21B formed of a sintered body made of 10% by weight silicon and the remainder substantially iron are integrally joined. can also be applied.
The adsorption member 21A is a substitute for the adsorption member 11A made of the above-mentioned dissolving material, and is made of pure iron. The yoke member 21B is the same as the yoke member 11 described above.
B is the same, but the sintered density is 7.4 g/cm 3 or less. The adsorption member 21A and the yoke member 21B are joined by, for example, diffusion bonding. In the yoke core configured in this manner, the magnetic flux density of the attracting member 21A, that is, the attracting portion, made of a sintered body of iron is large, and the specific resistance of the yoke member 21B, that is, the yoke portion, that is made of a sintered iron-silicon alloy is large. It is. When manufacturing a yoke core having this structure, the powder compacts of the adsorption member 21A and the yoke member 21B are combined and sintered, and then diffusion bonding is performed to join both the members 21A and 21B. Furthermore, since the dot printer head operates with the movable body 2 in contact with the end of the yoke portion 1A as shown in FIG. 6, the end of the yoke portion 1B is worn out. For this reason, it is preferable to improve the wear resistance of the end portion of the yoke portion 1B that the movable body 2 contacts. The yoke portions of these structures are formed from a sintered body of iron-silicon alloy. Therefore, the yoke portion is subjected to steam treatment to generate iron oxide on the surface of the yoke portion and the sintered pores, thereby forming a wear-resistant surface layer. This increases the hardness of the yoke portion and improves wear resistance. In this case, the hardness is preferably HRB 80 or higher in order to provide the yoke with sufficient wear resistance. [Embodiments of the Invention] Next, embodiments of the present invention will be described. This embodiment is applied to each structure of the head yoke core for a dot printer described above. (1) Mix atomized iron powder and iron-silicon powder to obtain a raw material powder containing 3% by weight of iron-silicon, and use a split mold to mold this powder at a pressure of 4 to 7 tons/cm 2 (adsorption part 7 ton/cm 2 , 4 ton/cm 2 for parts other than the suction part)
The yoke core shown in FIG. 1 was manufactured by pressure molding the material and sintering it at a temperature of 1170° C. for 2 hours. The sintered density of the suction part of this yoke core is 7.3
g/cm 3 , and the sintered density of the yoke portion was 7.1 g/cm 3 . The obtained yoke core was subjected to steam treatment. (2) Machining the molten iron material to form a member that has the shape of the attracting part of the attracting magnetic core. A 3% by weight iron-silicon powder made by mixing atomized iron powder and iron-silicon powder is pressed at a molding pressure of 3 to 6 tons/cm 2 to form a powder compact in the shape of the yoke portion of the magnetic core. did. The adsorption member and the powder compact were combined, and the powder compact was sintered to produce a yoke core having the structure shown in FIG. 3. In addition, the sintered density of the yoke part is
It was 7.1 g/cm 3 . (3) The atomized iron powder was pressed at a molding pressure of 5 to 10 tons/cm 2 to form a powder compact in the shape of an adsorption part. Further, 3% by weight iron-silicon powder obtained by mixing atomized iron powder and iron-silicon powder was pressed to form a powder compact forming the yoke portion of the magnetic core. Both powder compacts were combined and sintered, followed by diffusion bonding to produce a yoke core having the structure shown in FIG. 4. Note that the sintered density of the yoke portion was 7.4 g/cm 3 or less. As a result of measuring the magnetic flux density and specific resistance of the yoke core manufactured in each of these Examples, the magnetic flux density of the attraction part was 14,000 Gauss to 16,000 Gauss, and the specific resistance of the yoke part was 50 to 60 μΩ·cm. The yoke cores manufactured in each of the above embodiments and the yoke cores made of a 3% iron-silicon alloy manufactured by the lost wax casting method were each assembled into a dot printer head, and the results of each yoke core when operated at a printing speed of 1000Hz. The operability, temperature rise resistance, and wear resistance were investigated.
Note that the operability was compared in terms of response time, the temperature rise property was compared in terms of the temperature rise of the yoke core, and the wear resistance was compared in terms of the state of wear of the yoke core due to contact with the movable body. The evaluation results for each item of each magnetic core are shown below.

【表】 〔発明の効果〕 以上説明したように本発明によれば、吸着部の
磁束密度を大きくして可動体を吸着する吸着力を
高め、またヨーク部の比抵抗値を大きくして発熱
を抑制した優れたヨークコアを得ることができ
る。
[Table] [Effects of the Invention] As explained above, according to the present invention, the magnetic flux density of the attraction part is increased to increase the attraction force for attracting the movable object, and the specific resistance value of the yoke part is increased to reduce heat generation. It is possible to obtain an excellent yoke core that suppresses

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図はドツトプリンター用ヘツ
ドヨークコアで、第1図は本発明ヨークコアの構
成を示す部分断面図、第2図は同ヨークコアの粉
末成形体の成型工程を示す説明図、第3図および
第4図は夫々ヨークコアの他の構成を示す部分断
面図、第5図および第6図はドツトプリンターへ
ツドのヨークコア部分を示す正面図および断面図
である。 1……ヨークコア、1A……吸着部、1B……
ヨーク部、2……可動体、3……励磁コイル、5
……ワイヤ、11A……吸着部材、11B……ヨ
ーク部材、21A……吸着部材、21B……ヨー
ク部材。
1 to 4 show head yoke cores for dot printers, FIG. 1 is a partial sectional view showing the structure of the yoke core of the present invention, FIG. 2 is an explanatory view showing the molding process of a powder compact of the yoke core, and FIG. 3 and 4 are partial sectional views showing other configurations of the yoke core, and FIGS. 5 and 6 are front views and sectional views showing the yoke core portion of the dot printer head. 1...Yoke core, 1A...Adsorption part, 1B...
Yoke part, 2...Movable body, 3...Exciting coil, 5
... wire, 11A ... suction member, 11B ... yoke member, 21A ... suction member, 21B ... yoke member.

Claims (1)

【特許請求の範囲】 1 吸着部を有し、全体が電磁石材料からなるプ
リンターヘツド用ヨークコアにおいて、前記吸着
部はけい素10重量%以下、残部実質的に鉄からな
り磁束密度が14000ガウス以上であり、吸着部以
外の部分はけい素1〜10重量%、残部実質的に鉄
からなり比抵抗が50μΩ・cm以上であつて、前記
吸着部と前記吸着部以外の部分とが一体に形成さ
れており、且つ前記吸着部の密度が前記吸着部以
外の部分の密度より大きいことを特徴とするプリ
ンターへツド用ヨークコア。 2 吸着部の密度が吸着部以外の部分の密度に比
して0.1g/cm3以上大きい特許請求の範囲第1項
記載のプリンターヘツド用ヨークコア。 3 吸着部の密度が7.0g/cm3以上、吸着部以外
の部分の密度が7.4g/cm3以下である特許請求の
範囲第1項または第2項記載のプリンターヘツド
用ヨークコア。 4 吸着部以外の部分は耐摩耗性表面層を具備し
てなる特許請求の範囲第1項ないし第3項いずれ
か1項に記載のプリンターヘツド用ヨークコア。
[Scope of Claims] 1. A yoke core for a printer head that has an adsorption part and is entirely made of electromagnetic material, wherein the adsorption part is made of 10% by weight or less of silicon, the remainder being substantially iron, and has a magnetic flux density of 14,000 Gauss or more. The part other than the adsorption part is composed of 1 to 10% by weight of silicon and the remainder is substantially iron, and the resistivity is 50 μΩcm or more, and the adsorption part and the part other than the adsorption part are integrally formed. A yoke core for a printer head, characterized in that the density of the suction portion is greater than the density of a portion other than the suction portion. 2. The yoke core for a printer head according to claim 1, wherein the density of the suction portion is 0.1 g/cm 3 or more higher than the density of the portion other than the suction portion. 3. The yoke core for a printer head according to claim 1 or 2, wherein the density of the suction part is 7.0 g/cm 3 or more, and the density of the part other than the suction part is 7.4 g/cm 3 or less. 4. The yoke core for a printer head according to any one of claims 1 to 3, wherein the portion other than the suction portion is provided with an abrasion-resistant surface layer.
JP5171185A 1985-03-15 1985-03-15 Yoke core for printer head Granted JPS61211052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5171185A JPS61211052A (en) 1985-03-15 1985-03-15 Yoke core for printer head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5171185A JPS61211052A (en) 1985-03-15 1985-03-15 Yoke core for printer head

Publications (2)

Publication Number Publication Date
JPS61211052A JPS61211052A (en) 1986-09-19
JPH0439429B2 true JPH0439429B2 (en) 1992-06-29

Family

ID=12894475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5171185A Granted JPS61211052A (en) 1985-03-15 1985-03-15 Yoke core for printer head

Country Status (1)

Country Link
JP (1) JPS61211052A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773917B2 (en) * 1986-09-19 1995-08-09 キヤノン株式会社 Wired head
JPH06104366B2 (en) * 1986-12-17 1994-12-21 キヤノン株式会社 Impact record head
JP5568983B2 (en) * 2009-12-25 2014-08-13 富士電機株式会社 Manufacturing method of powder core

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5561485A (en) * 1978-11-02 1980-05-09 Usac Electronics Ind Co Ltd Printing head for wire printer
JPS5577581A (en) * 1978-12-06 1980-06-11 Hitachi Ltd Electromagnet device for printer
JPS57187281A (en) * 1981-05-14 1982-11-17 Tdk Corp High-speed printing mechanism

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140447U (en) * 1979-03-28 1980-10-07

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5561485A (en) * 1978-11-02 1980-05-09 Usac Electronics Ind Co Ltd Printing head for wire printer
JPS5577581A (en) * 1978-12-06 1980-06-11 Hitachi Ltd Electromagnet device for printer
JPS57187281A (en) * 1981-05-14 1982-11-17 Tdk Corp High-speed printing mechanism

Also Published As

Publication number Publication date
JPS61211052A (en) 1986-09-19

Similar Documents

Publication Publication Date Title
JP4327214B2 (en) Sintered soft magnetic powder compact
JP2000030925A (en) Dust core and its manufacture
JPH0439429B2 (en)
JPH03191036A (en) Sintered fe-co alloy
JP2006210847A (en) Compressed powder magnetic core and manufacturing method thereof
JP2003217936A (en) Coil component
JP2003217958A (en) Method for manufacturing coil components
JPS61124038A (en) Deflection yoke for electromagnetic deflection type cathode ray tube and manufacture thereof
JPH11269579A (en) Silver-tungsten/wc base sintered type electric contact material and its production
JP2006013066A (en) Inductor
JP2005277180A (en) Magnet-manufacturing method, magnetic powder forming method and dry forming equipment
CN113161097A (en) Preparation method of high-strength soft magnetic alloy powder material
KR960000910B1 (en) High-frequency magnetic core made of fe-co alloy
JP2003510805A (en) Soft magnetic material and manufacturing method thereof
JP3639584B1 (en) Magnetic field orientation molding device and orientation magnetic field generator
US4585480A (en) Material for the powder metallurgical manufacture of soft magnetic components
JPS6227545A (en) Manufacture of sintered soft-magnetic parts
JPH0262268A (en) Actuator
JP3061849B2 (en) Sintered Fe-Co-V alloy and method for producing the same
JPS6110936A (en) Magnetic wedge
JPH08333166A (en) Mold for molding of rare earth magnet powder and molding using the mold
JPS6384942A (en) Printer head yoke core
JPS62144557A (en) Rotor core for stepping motor
JPS60221554A (en) Soft magnetic cast fe-si alloy
JPS62227064A (en) Magnetic core material for high frequency use made of fe-base alloy

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term