JPH0438163A - Magnetic coupling cooling structure - Google Patents

Magnetic coupling cooling structure

Info

Publication number
JPH0438163A
JPH0438163A JP14248190A JP14248190A JPH0438163A JP H0438163 A JPH0438163 A JP H0438163A JP 14248190 A JP14248190 A JP 14248190A JP 14248190 A JP14248190 A JP 14248190A JP H0438163 A JPH0438163 A JP H0438163A
Authority
JP
Japan
Prior art keywords
drive
driven
hub
driving
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14248190A
Other languages
Japanese (ja)
Inventor
Taizo Azuma
東 泰造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP14248190A priority Critical patent/JPH0438163A/en
Publication of JPH0438163A publication Critical patent/JPH0438163A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To cool a can or partition wall by providing a channel groove on the end face of a cylindrical wheel perpendicular to the rotating shaft of the wheel or internal peripheral surface of the wheel and cooling the can with a cooling gas passed through the channel groove when the wheel is rotated. CONSTITUTION:When a recessed channel groove 17 is provided on the end face of a driving side wheel 9 perpendicular to the rotating shaft of the wheel 9, the wheel 9 rotates. As a result, a projecting section and the channel groove 17 respectively act as the blade and inter-blade channel of a fan and air is made to flow through a through hole 13a provided to a boss 13 and the channel groove 17 of the driving side wheel 9. Therefore, the can 11 is cooled with the cooling air.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は真空ポンプ又は圧縮機等の回転機械の回転体に
回転力を非接触で伝達するための磁気継手の冷却構造に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling structure for a magnetic coupling for contactlessly transmitting rotational force to a rotating body of a rotating machine such as a vacuum pump or a compressor.

〔従来技術〕[Prior art]

磁気継手は機械的手段によらず動力を伝達する機構であ
り、回転軸が外部に達するための貫通部がなく回転機械
の内部を外部の雰囲気から完全に遮断することができる
ものである。このため回転機械が内部からの流体の漏れ
、若しくは内部への流体の侵入を嫌う場合は有効な動力
伝達手段であり、薬液ポンプ等に使用されている。
A magnetic coupling is a mechanism for transmitting power without using mechanical means, and there is no penetration part for the rotating shaft to reach the outside, and the inside of the rotating machine can be completely isolated from the outside atmosphere. Therefore, it is an effective power transmission means when a rotating machine does not want fluid to leak from inside or enter into the inside, and is used in chemical liquid pumps and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

磁気継手は開口部が全く無いキャンを介して動力伝達を
行なうため密封性が完璧である。しかしながら、導電体
よりキャンを製作した場合、回転する磁束の貫通により
キャンに渦電流を生じ熱が発生する。キャンの材料とし
て木材、プラスチック等の絶縁物を用いれは渦電流は流
れないから、これによる熱の発生は無いが、強度や密封
性等の制約により通常、非磁性体金属と言われるステン
レス鋼等が使用きれる。しかしながらこれらの金属は導
電体であるため磁束を横切ることにより渦電流が発生し
、この渦電流による発熱は避けられない。ノ」−型の装
置においてもこの発熱量は数百Wにも達し、冷却が不十
分だと周囲部品の温度は数分で数百度に上昇する。この
過熱は磁石の磁力低下を惹起し、動力伝達不能(脱調)
に陥ってしまう。
Magnetic couplings transmit power through a can with no openings, so they are perfectly sealed. However, when the can is made of a conductor, eddy currents are generated in the can due to the penetration of rotating magnetic flux, and heat is generated. If the can is made of insulating materials such as wood or plastic, eddy currents will not flow and no heat will be generated due to this, but due to restrictions such as strength and sealing properties, stainless steel, which is usually considered a non-magnetic metal, is used. can be used up. However, since these metals are electrical conductors, eddy currents are generated when magnetic flux crosses them, and heat generation due to these eddy currents is unavoidable. Even in a 2000-inch type device, the amount of heat generated reaches several hundreds of watts, and if cooling is insufficient, the temperature of surrounding parts will rise to several hundred degrees in a few minutes. This overheating causes a decrease in the magnetic force of the magnet, making it impossible to transmit power (step-out).
I fall into this.

上記キャンの冷却方法とし、水ポンプ等の低温の流体が
自己液として内部に充満している場合はこの自己液によ
る自然冷却が可能である。またこの冷却方法が主流であ
る。しかしながら真空ポンプのようにキャン内部が真空
或いは極めて希薄な気体である場合は自然冷却の方法は
、熱輻射のみであり充分な冷却は全く期待できない。
As for the cooling method of the can, if the interior is filled with a low-temperature fluid such as a water pump as self-liquid, natural cooling using this self-liquid is possible. Moreover, this cooling method is the mainstream. However, when the inside of the can is vacuum or extremely diluted gas, such as in a vacuum pump, the only natural cooling method is thermal radiation, and sufficient cooling cannot be expected at all.

本発明は上述の点に鑑みてなされたもので、上記キャン
を強制的に冷却するキャン冷却手段を設けることにより
、上記欠点を除去した磁気継手の冷却構造を提供するこ
とを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a cooling structure for a magnetic coupling that eliminates the above drawbacks by providing a can cooling means for forcibly cooling the can.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため本発明は、回転機械の回転体に
磁気力により駆動側回転体から非接触で回転力を伝達す
る磁気継手の冷却構造を下記の如く構成した。
In order to solve the above problems, the present invention has a cooling structure for a magnetic coupling that transmits rotational force from a drive-side rotating body to a rotating body of a rotating machine in a non-contact manner by magnetic force, as described below.

前記磁気継手は回転機械の回転体軸に直接又は間接的に
連結されたロータ軸と該ロータ軸外周との間に所定の間
隙を置いて同心円状で且つ回転自在に支承して配置され
た円筒状のホイールとを具備し、該ロータ軸外周には被
動側磁石又は被動側導電体又は被動側ヒステリシス材体
を設けると共に、円筒状のホイール内周には該被動側磁
石又は被動側導電体又は被動側ヒステリシス材体と対応
させて駆動側導電体又は駆動側磁石又は駆動側ヒステリ
シス材体を固着し、ロータ軸とホイールの間で且つロー
タ軸の先端を覆うように回転機械内を外部雰囲気から遮
断するキャンを設け、円筒状のホイールには回転軸に垂
直な端面又は内周面に流路溝を設け、該円筒状のホイー
ルの回転時の該流路溝を通る冷却用気体によりキャンの
冷却を行なうことを特徴とする。
The magnetic joint is a cylinder that is concentrically and rotatably supported with a predetermined gap between a rotor shaft that is directly or indirectly connected to a rotating body shaft of a rotating machine and the outer periphery of the rotor shaft. A driven-side magnet, a driven-side conductor, or a driven-side hysteresis material is provided on the outer periphery of the rotor shaft, and a driven-side magnet, a driven-side conductor, or a cylindrical wheel is provided on the inner periphery of the cylindrical wheel. Fix the drive-side conductor, drive-side magnet, or drive-side hysteresis material body in correspondence with the driven-side hysteresis material body, and protect the inside of the rotating machine from the external atmosphere between the rotor shaft and the wheel and so as to cover the tip of the rotor shaft. A can is provided to block the can, and the cylindrical wheel is provided with a flow groove on the end face or inner peripheral surface perpendicular to the rotation axis, and the cooling gas passing through the flow groove when the cylindrical wheel rotates can cause the can to be blocked. It is characterized by cooling.

また、波路溝は回転軸に垂直な端面に複数の凹状溝を切
削して形成したことを特徴とする。
Further, the wave groove is characterized in that a plurality of concave grooves are formed by cutting an end face perpendicular to the rotation axis.

また、前記流路溝は円筒状のホイールの内周の所定位置
に複数の翼を所定の間隔で設け、該翼と翼の間を流路溝
としたことを特徴とする。
Further, the channel groove is characterized in that a plurality of blades are provided at predetermined intervals on the inner periphery of a cylindrical wheel, and the channel groove is formed between the blades.

また、前記流路溝は円筒状のホイールの内周に複数の前
記駆動側導電体又は駆動側磁石を所定の間隔で設け該駆
動側導電体と駆動側導電体の間又は前記駆動側磁石と駆
動側磁石の間を流路溝としたことを特徴とする。
In addition, the flow groove is provided with a plurality of the drive-side conductors or drive-side magnets at predetermined intervals on the inner periphery of the cylindrical wheel, and between the drive-side conductors and the drive-side conductor or between the drive-side magnets. It is characterized in that a channel groove is formed between the drive side magnets.

また、前記磁気継手は前記回転機械の回転体軸に直接又
は間接的に連結されロータ軸の端部に固定された被動側
ハブと、駆動側軸の端部に固定され該被動側ハブと対向
して配置された駆動側ハブとを具備し、被動側ハブの駆
動側ハブとの対向面には被動側磁石又は被動側導電体又
は被動側ヒステリシス材体を設けると共に駆動側ハブの
被動側ハブとの対向面には該被動側磁石又は被動側導電
体又は被動側ヒステリシス材体と対応させて駆動側導電
体又は駆動側磁石又は駆動側ヒステリシス材体を設け、
回転機械側の支持部材に固定され、被動側ハブと駆動側
ハブの間で且つ回転機械内を外部雰囲気から遮断するキ
ャン又は隔壁を設け、駆動側ハブのキャン対向面に流路
溝を設け、該駆動側ハブの回転時の該流路溝を通る冷却
用気体によりキャン又は隔壁の冷却を行なうことを特徴
とする。
Further, the magnetic coupling includes a driven hub connected directly or indirectly to the rotating body shaft of the rotary machine and fixed to an end of the rotor shaft, and a driven hub fixed to an end of the driving shaft and facing the driven hub. A driven side hub is provided with a driven side magnet, a driven side conductor, or a driven side hysteresis material body on a surface of the driven side hub facing the driving side hub, and a driven side hub of the driven side hub is provided with a driven side magnet, a driven side conductor, or a driven side hysteresis material body. A driving-side conductor, a driving-side magnet, or a driving-side hysteresis material is provided on the surface facing the driven-side magnet, the driven-side conductor, or the driven-side hysteresis material in correspondence with the driven-side magnet, the driven-side conductor, or the driven-side hysteresis material;
A can or partition is provided that is fixed to a support member on the rotating machine side and isolates the interior of the rotating machine from the external atmosphere between the driven hub and the driving hub, and a flow groove is provided on the surface of the driving hub facing the can, It is characterized in that the can or the partition wall is cooled by the cooling gas that passes through the flow channel when the drive-side hub rotates.

また、前記流路溝は駆動側ハブの複数の駆動側磁石又は
駆動側導電体を所定の間隔で設け、該駆動側磁石と駆動
側磁石の間又は駆動側導電体と駆動側導電体の間を流路
溝としたことを特徴とする。
Further, the flow path groove is provided with a plurality of drive-side magnets or drive-side conductors of the drive-side hub at predetermined intervals, and between the drive-side magnets or between the drive-side conductors and the drive-side conductor. is characterized in that it is a flow path groove.

また、前記流路溝は駆動側ハブのキャンに対向する面に
複数の凹状溝を設けて形成したことを特徴とする。
Further, the flow path groove is formed by providing a plurality of concave grooves on the surface of the drive-side hub facing the can.

〔作用〕[Effect]

磁気継手を上記の如く構成することにより、駆動側ホイ
ール又は駆動側ハブの回転に連動してロータ軸も回転し
、キャン又は隔壁が被動側磁石又は被動(ml導電体と
被動側導電体又は駆動側磁石との間に発生する磁束を横
切ることになり、これによりキャン又は隔壁内に渦電流
か発生し、この渦電流のジュール熱によりキャンは過熱
される力釈駆動側ホイール又は駆動側ハブの回転により
、前記流路溝を通る冷却用気体によりキャン又は隔壁が
冷却きれるから、磁気継手の安全な連続運転が可能とな
る。
By configuring the magnetic joint as described above, the rotor shaft also rotates in conjunction with the rotation of the drive side wheel or drive side hub, and the can or bulkhead is connected to the driven side magnet or the driven side (ml conductor and driven side conductor or drive side). This causes eddy currents to be generated in the can or bulkhead, and the can is overheated by the Joule heat of this eddy current. Due to the rotation, the can or the bulkhead can be completely cooled by the cooling gas passing through the flow groove, so that safe continuous operation of the magnetic coupling is possible.

〔実施例〕〔Example〕

以下、本発明の一実旅例を図面に基づい説明する。 Hereinafter, a practical example of the present invention will be explained based on the drawings.

第1図は本発明の第1の実施例である磁気継手の冷却構
造をスクリュー式真空ポンプに用いた例を示す断面図で
ある。スクリュー式真空ポンプは主として、王ケーシン
グ1、吸込側ケーシング2及び吐出側端面板3を具備し
、雄ロータ5及び雌ロータ6が主ケーシング1内にロー
タ軸受7により回転自在に支承きれている。また、吸込
側ケーシング2内には雄ロータ5及び雌ロータ6のそれ
ぞれのロータ軸端に固着され且つ互い噛み合うタミング
キア5a、5aが配置きれている。なお、雄ロータ5及
び雌ロータ6のそれぞれのロータ軸が主ケーシング1及
び吐出側端面板3を貫通する、部分には密封部材8が設
けられ、主ケーシング1内が外部から遮断される構造と
なっている。
FIG. 1 is a sectional view showing an example in which a magnetic coupling cooling structure according to a first embodiment of the present invention is used in a screw type vacuum pump. The screw type vacuum pump mainly includes a main casing 1, a suction side casing 2, and a discharge side end plate 3, and a male rotor 5 and a female rotor 6 are rotatably supported in the main casing 1 by a rotor bearing 7. Further, in the suction side casing 2, there are arranged timing gears 5a, 5a which are fixed to the respective rotor shaft ends of the male rotor 5 and the female rotor 6 and mesh with each other. In addition, a sealing member 8 is provided at the portion where the rotor shafts of the male rotor 5 and the female rotor 6 pass through the main casing 1 and the discharge side end plate 3, so that the inside of the main casing 1 is isolated from the outside. It has become.

上記構造の゛スクリュー式真空ポンプは、雄ロータ5の
ロータ軸に動力が伝達され、雄ロータ5が回転するとタ
ミングギャ5a、6aを介して動力が雌ロータ6のロー
タ軸に伝達され、雌ロータ6も回転する。
In the screw type vacuum pump having the above structure, power is transmitted to the rotor shaft of the male rotor 5, and when the male rotor 5 rotates, power is transmitted to the rotor shaft of the female rotor 6 via the timing gears 5a and 6a. It also rotates.

雄ロータ5のロータ軸5bを延長し、吐出側端面板3及
び磁気継手支持板4を貫通させ、該ロータ軸5bの端部
に磁気継手の被動側ハブ10を固定し、該被動側ハブ1
0の外周には被動側磁石10aが固着されている。
The rotor shaft 5b of the male rotor 5 is extended to pass through the discharge side end plate 3 and the magnetic joint support plate 4, and the driven side hub 10 of the magnetic joint is fixed to the end of the rotor shaft 5b.
A driven side magnet 10a is fixed to the outer periphery of the magnet 0.

前記磁気継手支持板4にはロータ軸5bの軸端に固定さ
れた被動側ハブ10を覆ってキャン11が固定し、該キ
ャン1工によりスクリュー式真空ポンプ内を外部雰囲気
から遮断している。被動側磁石10aとキャン11内周
との間には所定の間隙が設けられており、互いに摺接し
ないようになっている。
A can 11 is fixed to the magnetic joint support plate 4 so as to cover a driven hub 10 fixed to the shaft end of the rotor shaft 5b, and the can 11 isolates the inside of the screw type vacuum pump from the outside atmosphere. A predetermined gap is provided between the driven side magnet 10a and the inner periphery of the can 11, so that they do not come into sliding contact with each other.

キャン11の外周には円筒状の磁気継手の駆動側ホイー
ル9が配置され、該駆動側ホイール9の内周面には前記
被動側磁石i0aと対応する駆動側磁石9aが固着され
ている。この駆動側磁石9aとキャン11の外周面の間
には所定の間隙が設けられており、互いに摺接しないよ
うになっている。また、駆動側ホイール9は軸受14を
介してボス13に支承きれている。ボス13はロッド1
6を介して磁気継手支持板4に固定されている。
A driving side wheel 9 of a cylindrical magnetic coupling is arranged on the outer periphery of the can 11, and a driving side magnet 9a corresponding to the driven side magnet i0a is fixed to the inner peripheral surface of the driving side wheel 9. A predetermined gap is provided between the drive side magnet 9a and the outer peripheral surface of the can 11, so that they do not come into sliding contact with each other. Further, the drive side wheel 9 is fully supported by the boss 13 via a bearing 14. Boss 13 is rod 1
It is fixed to the magnetic joint support plate 4 via 6.

また、ボス13の細部には貫通穴13aが設けられてい
る。
Further, a through hole 13a is provided in a detail of the boss 13.

駆動側ホイール9に一体に形成されたブリー9bを回動
することにより、駆動側ホイール9の内周に固着された
駆動側磁石9aを回転し、該駆動側磁石9aと被動側磁
石10aの間の磁力の作用により、被動側ハブ10を介
して回転力がロータ軸5bに伝達きれ、雄ロータ5が回
転すると同時にタミングギア5a、6aを介して雌ロー
タ6も回転する。即ち、スクリュ式真空ポンプが駆動さ
れることになる。
By rotating the bully 9b formed integrally with the driving wheel 9, the driving magnet 9a fixed to the inner periphery of the driving wheel 9 is rotated, and the space between the driving magnet 9a and the driven magnet 10a is rotated. Due to the action of the magnetic force, the rotational force is completely transmitted to the rotor shaft 5b via the driven hub 10, and at the same time as the male rotor 5 rotates, the female rotor 6 also rotates via the timing gears 5a and 6a. That is, the screw type vacuum pump is driven.

駆動側ホイール9の回転軸と垂直な端面、即ちキャン1
1のフランジ部11aに対向する端面には、第2図及び
第3図に示すように凹状の流路溝17が設けられている
。なお、第2図は駆動側ホイール9の第1図のA−A矢
視図であり、第3図は第2図のB矢視図である。
The end face perpendicular to the rotational axis of the drive side wheel 9, that is, the can 1
As shown in FIGS. 2 and 3, a concave flow channel groove 17 is provided on the end face facing the flange portion 11a of the flange 1. As shown in FIGS. Note that FIG. 2 is a view of the drive side wheel 9 taken along arrow A-A in FIG. 1, and FIG. 3 is a view taken along arrow B of FIG.

上記構造の磁気継手において、駆動側ホイール9の回転
により、駆動側磁石9aと被動側磁石10aの間に発生
する磁束の磁力により被動側磁石10aが回転するが、
これにより駆動側磁石9aと被動側磁石10aの間に発
生する磁束をキャン11が切ることになるから、キャン
11の材料が導電体であれば、キャン11内に渦電流が
発生し、これによりキャン11が熱される。この渦電流
による加熱が高くなると磁気継手として不具合いが発生
することは前述の通りである。
In the magnetic joint having the above structure, when the driving wheel 9 rotates, the driven magnet 10a rotates due to the magnetic force of the magnetic flux generated between the driving magnet 9a and the driven magnet 10a.
As a result, the can 11 cuts off the magnetic flux generated between the driving side magnet 9a and the driven side magnet 10a, so if the material of the can 11 is a conductor, an eddy current is generated in the can 11, and this causes The can 11 is heated. As mentioned above, if the heating caused by this eddy current increases, problems will occur in the magnetic joint.

そこで、上記のように駆動側ホイール9の回転軸と垂直
な端面に凹部状の流路溝17を設けると、駆動側ホイー
ル9が回転することにより、凸部と流路溝17とがそれ
ぞれファンの翼と翼間流路として作用し、空気が第1図
中の矢印に示すように、ボス13に設けられた貫通穴1
3a及び駆動側ホイール9の流路溝17を通って流れ、
この冷却用空気によりキャン11が冷却されることにな
る。
Therefore, when the concave channel groove 17 is provided on the end face perpendicular to the rotation axis of the driving wheel 9 as described above, as the driving wheel 9 rotates, the convex portion and the channel groove 17 are respectively connected to the fan. The air flows through the through hole 1 provided in the boss 13 as shown by the arrow in FIG.
3a and the flow path groove 17 of the drive side wheel 9,
The can 11 is cooled by this cooling air.

上記構造とすることにより、駆動側ホイール9が回転し
ている限り冷却用空気(主として大気)はボス13等の
貫通穴13a及び流路溝17を通って流れ、安定したキ
ャン11の冷却が可能となる。
With the above structure, as long as the drive wheel 9 is rotating, cooling air (mainly atmospheric air) flows through the through hole 13a of the boss 13 etc. and the flow channel groove 17, allowing stable cooling of the can 11. becomes.

なお、本実施例では貫通穴13aを駆動側ホイール9に
同心の円筒形状としたが、ボス13を貫通する穴であれ
はどのような穴でもよいことは当然である。
In this embodiment, the through hole 13a has a cylindrical shape concentric with the drive wheel 9, but it goes without saying that any hole passing through the boss 13 may be used.

なお、上記実施例では駆動側ホイール9の一端のみを軸
受14を介してボス13に回転自在に支承する所謂片持
ち支持の例を示したが、駆動側ホイール9の他端も軸受
を介して例えは磁気継手支持板4に回転自在に支承許せ
る所謂両端支持としてもよいことは当然である。
In the above embodiment, an example of so-called cantilever support is shown in which only one end of the driving wheel 9 is rotatably supported on the boss 13 via the bearing 14, but the other end of the driving wheel 9 is also supported via a bearing. For example, it goes without saying that the magnetic joint support plate 4 may be rotatably supported at both ends.

第4図は本発明の第2の実施例である磁気継手の冷却構
造を示す図で、同図(a)は断面図1.同図(b)は駆
動側ホイールの内面展開図である。
FIG. 4 is a diagram showing a cooling structure of a magnetic joint according to a second embodiment of the present invention, and FIG. 4(a) is a cross-sectional view 1. FIG. 2B is a developed view of the inner surface of the drive-side wheel.

なお、同図において、第1乃至第3図と同一符号を付し
た部分は同一部分を示す。また、他の図面においても同
様とする。なお、木実凡例においては、ロータ軸5bよ
り先のスクリュー式真空ポンブの構造は第1図と同一で
あるから、その図示は省略する。以下、他の実施例にお
いても同様とする。
In addition, in this figure, parts given the same reference numerals as in FIGS. 1 to 3 indicate the same parts. The same applies to other drawings. In the tree legend, the structure of the screw type vacuum pump beyond the rotor shaft 5b is the same as that in FIG. 1, so its illustration is omitted. The same applies to other embodiments below.

第4図に示すように、駆動側ホイール9の内周面の所定
の位置に複数の翼9eを所定の間隔で設けている。この
翼9cは軸方向に対して所定の角度で配置されいる。
As shown in FIG. 4, a plurality of blades 9e are provided at predetermined positions on the inner peripheral surface of the driving wheel 9 at predetermined intervals. This blade 9c is arranged at a predetermined angle with respect to the axial direction.

上記構造の磁気継手において、駆動側ホイール9を回転
すると、翼9eと翼9eの間の流路溝を通って、矢印A
、Bに示すように空気が流れ、この空気の流れにより、
キャン11は効果的に冷却きれる。
In the magnetic coupling having the above structure, when the drive side wheel 9 is rotated, it passes through the flow path groove between the blades 9e and the arrow A
, the air flows as shown in B, and due to this air flow,
The can 11 can be effectively cooled down.

第5図は本発明の第3の実施例である磁気継手の冷却構
造を示す図で、同図(a)は断面図、同図(b)は駆動
側ホイールの内面展開図である。
FIG. 5 is a diagram showing a cooling structure of a magnetic coupling according to a third embodiment of the present invention, in which FIG. 5(a) is a sectional view and FIG. 5(b) is an exploded view of the inner surface of a drive-side wheel.

本実施例では、駆動側ホイール9に設けた複数の駆動側
磁石9aを所定の間隔で配置し、該駆動側磁石9aと駆
動側磁石9aの間を流路溝としている。この場合、各駆
動側磁石9aは軸方向に対して所定の角度で配置きれい
る。
In this embodiment, a plurality of drive-side magnets 9a provided on the drive-side wheel 9 are arranged at predetermined intervals, and a channel groove is formed between the drive-side magnets 9a. In this case, each drive-side magnet 9a is arranged at a predetermined angle with respect to the axial direction.

上記構造の磁気継手において、駆動側ホイール9を回転
すると、駆動側磁石9aと駆動側磁石9aの間の流路溝
を通って、矢印A、Bに示すように空気が流れ、この空
気の流れにより、キャン11は効果的に冷却される。
In the magnetic coupling having the above structure, when the drive wheel 9 is rotated, air flows as shown by arrows A and B through the flow channel between the drive magnets 9a, and this air flow As a result, the can 11 is effectively cooled.

なお、上記実施例においては駆動側ホイール9の内周面
に設けた駆動側磁石9aも被動側ハブ10の外周に設け
た被動側磁石10aを磁石である同期型としたが、両者
とも磁石である必要がなく、一方を磁石とし、他方を導
電体又は磁化されな磁性体即ちヒステリシス材体とする
所謂誘導型とすることも可能である。また、磁石も永久
磁石に限定されるものではなく、電磁石でもよいことは
当然である。
In the above embodiment, the driving side magnet 9a provided on the inner peripheral surface of the driving side wheel 9 and the driven side magnet 10a provided on the outer periphery of the driven side hub 10 are synchronous type magnets, but both of them are magnets. It is also possible to use a so-called induction type in which one is a magnet and the other is a conductor or an unmagnetized magnetic material, that is, a hysteresis material. Moreover, the magnet is not limited to a permanent magnet, and it goes without saying that an electromagnet may also be used.

また、上記実施例では、ロータ軸5bの端部に固定され
た被動側ハブ10の外周に被動側磁石10aを設け、さ
らにその外周に駆動側ホイール9の内周に設けた駆動側
磁石9aを対向させる、シノンダ型の磁気継手を例に説
明したが、本発明の冷却構造で対象とする磁気継手の構
造はこれに限定されるものではない。
Further, in the above embodiment, the driven side magnet 10a is provided on the outer periphery of the driven side hub 10 fixed to the end of the rotor shaft 5b, and the driving side magnet 9a provided on the inner periphery of the driving side wheel 9 is further provided on the outer periphery. Although the explanation has been given using an example of a Shinonda-type magnetic joint that is opposed to each other, the structure of the magnetic joint that is the object of the cooling structure of the present invention is not limited to this.

例えは、第f図に示すように、駆動側ホイール9の一端
部を軸受14bを介して、磁気継手支持板4の側部に直
接支承させる構造の磁気継手でもよい。なお、第孕図に
おいてはキャン冷却手段の図示は省略する。
For example, as shown in FIG. Note that the can cooling means is not shown in FIG.

また、第7図及び第8図に示すように、ロータ軸5bの
端部に被動側ハブ10を固定し、この被動側ハブ10に
対向させて駆動側ロータ軸9dの端部に固定された駆動
側ハブ9−1を配置し、被動側ハブ10の駆動側ハブ9
−1との対向面に被動側磁石10aを設け、駆動側ハブ
9−1の被動側ハブ10との対向面に駆動側磁石9aを
設けた構造の所謂ディスク型の磁気継手としてもよい。
Further, as shown in FIGS. 7 and 8, a driven-side hub 10 is fixed to the end of the rotor shaft 5b, and a driven-side hub 10 is fixed to the end of the drive-side rotor shaft 9d facing the driven-side hub 10. The driving side hub 9-1 is arranged, and the driving side hub 9 of the driven side hub 10 is arranged.
A so-called disk-type magnetic coupling may be used, in which the driven side magnet 10a is provided on the surface facing the driven side hub 10 of the driving side hub 9-1, and the driving side magnet 9a is provided on the surface of the driving side hub 9-1 facing the driven side hub 10.

第7図(a)は本発明の第5の実施例である磁気継手の
冷却構造の断面図、同図(b)は駆動側磁石の同図(a
)B−B矢視図である。第7図の場合は、駆動側ハブ9
−1の駆動側磁石9aと被動側ハブ10の被動側磁石1
0aの間に隔壁11を磁気継手支持板4に固定して配置
しいる。駆動側ハブ9−1のキャン11との対向面に設
ける駆動側磁石9aは同図(b)に示すように、扇形の
駆動側磁石9aと駆動側磁石9aを所定の間隔を設けて
配置している。従って、駆動側磁石9aと駆動(II 
i石9aとの間が中心から放射状に伸びる波路溝となる
。駆動側ロータ軸9dの中心部には駆動側ハブ9−1の
中心に形成された穴と連通ずる中空穴9gが設けられて
いる。図中、Mは駆動モータである。
FIG. 7(a) is a cross-sectional view of the cooling structure of a magnetic joint according to the fifth embodiment of the present invention, and FIG. 7(b) is a sectional view of the driving side magnet (a).
) It is a BB arrow view. In the case of Fig. 7, the drive side hub 9
-1 driving side magnet 9a and driven side magnet 1 of driven side hub 10
A partition wall 11 is fixedly disposed on the magnetic joint support plate 4 between the magnetic joint support plates 4 and 0a. The drive-side magnet 9a provided on the surface of the drive-side hub 9-1 facing the can 11 has fan-shaped drive-side magnets 9a and drive-side magnets 9a arranged at a predetermined interval, as shown in FIG. ing. Therefore, the drive side magnet 9a and the drive (II
The space between the i-stone 9a becomes a wave groove extending radially from the center. A hollow hole 9g communicating with a hole formed at the center of the drive side hub 9-1 is provided at the center of the drive side rotor shaft 9d. In the figure, M is a drive motor.

上記構造の磁気継手の冷却構造において、駆動モータで
駆動側ロータ軸9dを回転きせると、駆動側磁石9aと
被動側磁石10aの間を通る磁束の磁力により被動側ハ
ブ10及びロータ軸5bが回転する。これにより、該磁
束を隔壁11がこの磁束を横切ることになるから、隔壁
11に渦電流が発生し、そのジュール熱により、隔壁1
1の温度は上昇しようとするが、前記駆動側磁石9aと
駆動側磁石9aとの間の流路溝を矢印Aに示すように空
気が流れ、この空気の流れにより隔壁11は効果的に冷
却きれる。なお、駆動側ハブ9−1の中心に形成された
穴には駆動側ロータ軸9dの中空穴9gを通って空気が
供給される。
In the magnetic joint cooling structure having the above structure, when the drive motor rotates the drive side rotor shaft 9d, the driven side hub 10 and the rotor shaft 5b are rotated by the magnetic force of the magnetic flux passing between the drive side magnet 9a and the driven side magnet 10a. do. As a result, the magnetic flux is passed through the partition wall 11, so that an eddy current is generated in the partition wall 11, and the Joule heat generated by the partition wall 11 causes the partition wall 11 to cross the magnetic flux.
1 tends to rise, but air flows through the flow groove between the drive side magnets 9a as shown by arrow A, and the partition wall 11 is effectively cooled by this air flow. I can do it. Note that air is supplied to the hole formed at the center of the drive-side hub 9-1 through the hollow hole 9g of the drive-side rotor shaft 9d.

第8図(a)は本発明の第6の実施例である磁気継手の
冷却構造の断面図、同図(b)は駆動側ハブの同図(a
)B−B矢視図である。第7図の場合は、駆動側ハブ9
−1の隔壁11の対向面の所定の位置(図では、駆動側
磁石9aの外周側)に放射状に凹状の流路溝9fを設け
ている。駆動モータで駆動側ロータ軸9dを回転させる
と、駆動側ロータ軸9dの中空穴9gを通って空気は流
路溝9fを矢印Aに示すように流れ、この空気の流れに
より隔壁11は効果的に冷却される。
FIG. 8(a) is a cross-sectional view of a cooling structure for a magnetic coupling according to a sixth embodiment of the present invention, and FIG. 8(b) is a cross-sectional view of the drive side hub (a).
) It is a BB arrow view. In the case of Fig. 7, the drive side hub 9
A radially concave channel groove 9f is provided at a predetermined position on the opposing surface of the partition wall 11 (in the figure, on the outer peripheral side of the drive-side magnet 9a). When the drive motor rotates the drive side rotor shaft 9d, air flows through the hollow hole 9g of the drive side rotor shaft 9d through the flow groove 9f as shown by arrow A, and this air flow causes the partition wall 11 to effectively move. is cooled to

なお、上記第5及び第6実旌例においては、被動側ハブ
10と駆動側ハブ9−1の間に配置され、スクリュー式
真空ポンプ内を外部雰囲気から完全に遮断する隔壁11
を設ける例を示したが、被動側ハブ10と駆動側ハブ9
−1の配置位置等によっては複雑なキャンとする必要も
ある。
In the fifth and sixth practical examples, the partition wall 11 is disposed between the driven hub 10 and the driving hub 9-1 and completely isolates the interior of the screw vacuum pump from the external atmosphere.
Although the example in which the driven side hub 10 and the driving side hub 9 are provided has been shown,
Depending on the placement position of -1, etc., it may be necessary to use a complicated can.

また、第7図及び第8図においても駆動側磁石9a及び
被動側磁石10aのいずれか一方を磁石とし、他方を導
電体又はヒステリシス材体とする所謂誘導型とすること
も当然可能であり、また、磁石も永久磁石に限定される
ものではなく、i@石でもよいことは当然である。
Also, in FIGS. 7 and 8, it is naturally possible to use a so-called induction type in which either one of the driving side magnet 9a and the driven side magnet 10a is a magnet, and the other is a conductor or a hysteresis material. Moreover, the magnet is not limited to a permanent magnet, and it goes without saying that an i@stone may also be used.

また、上記実施例においては、何れもロータ軸5bはス
クリュー式真空ポンプの雄ロータ5に直結する例を示し
た力釈直結するものに限定きれるものではなく、例えば
増減速のギアを介し間接的に連結される構造であっても
よいことは当然である。
Furthermore, in the above embodiments, the rotor shaft 5b is not limited to being directly connected to the male rotor 5 of the screw vacuum pump, as shown in the example, but may be indirectly connected to the male rotor 5 of the screw type vacuum pump, for example, through an acceleration/deceleration gear. It goes without saying that the structure may be connected to.

また、上記実例では磁気継手をスクリュー式真空ポンプ
の動力伝達手段として用いる例を示したが、本磁気継手
はスクリュー式真空ポンプ以外の回転式真空ポンプは勿
論のこと、真空ポンプ以外の例えば圧縮機等の回転機械
の動力伝達手段としても利用できることは当然である。
In addition, although the above example shows an example in which a magnetic joint is used as a power transmission means for a screw type vacuum pump, this magnetic joint can be applied not only to rotary vacuum pumps other than screw type vacuum pumps, but also to devices other than vacuum pumps, such as compressors. Naturally, it can also be used as a power transmission means for rotating machines such as the following.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれは下記のような優れた
効果か得られる。
As explained above, the present invention provides the following excellent effects.

即ち、駆動側ホイール又は駆動側ハブの回転に連動して
ロータ軸も回転し、キャンが被動側磁石又は被動側導電
体と被動側導電体又は駆動側磁石との間に発生する磁束
を横切ることになり、これによりキャン内に渦電流が発
生し、この渦電流のジュール熱によりキャンは過熱され
るが、駆動側ホイール又は駆動側ハブの回転により、前
記流路溝を通る気体のファン効果によりキャン又は隔壁
が効果的に冷却させるから、磁気継手の安全な連続運転
が可能となる。
In other words, the rotor shaft rotates in conjunction with the rotation of the driving wheel or the driving hub, and the can crosses the magnetic flux generated between the driven magnet or the driven conductor and the driven conductor or the driving magnet. As a result, eddy currents are generated within the can, and the can is overheated by the Joule heat of this eddy current, but due to the fan effect of the gas passing through the flow path groove due to the rotation of the drive side wheel or drive side hub. The can or bulkhead provides effective cooling, allowing safe continuous operation of the magnetic coupling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例である磁気継手の冷却構造を示
す断面図、第2図は第1図の駆動側ホイールのA−A矢
視図、第3図は第2図のB矢視図、第4図は本発明の第
2の実施例である磁気継手の冷却構造を示す図で、同図
(a)は断面図、同区(b)は駆動側ホイールの内面展
開図、第5図は本発明の第3の実施例である磁気継手の
冷却構造を示す図で、同図(a)は断面図、同図(b)
は駆動側ホイールの内面展開図、第6図は本発明の第4
の実施例である磁気継手の冷却構造を示す断面図、第7
図は本発明の第5の実施例である磁気継手の冷却構造を
示す図で、同図(a)は断面図、同図(b)は駆動側磁
石の同図(a)のB−B矢視図、第8図は本発明の第6
の実施例である磁気継手の冷却構造を示す図で、同図(
a)は断面図、同図(b)は駆動側ハブの同図(a)の
B−B矢視図である。 図中、1・・・主ケーシング、2・・・・吸込側ケーシ
ング、3・・・吐出側端面板、4 ・・・磁気継手支持
板、5 ・雄ロータ、6・ ・雌ロータ、7・ ・軸受
、8 ・・密封部材、9・ ・駆動側ホイール、10・
・・被動側ハブ、11 ・キャン、12・冷却ハウシン
グ、13・ ボス、14・・・軸受、16・・・・ロッ
ド、17・ 流路溝。 特許出願人 株式会社荏原製作所 代理人 弁理士 熊谷隆(外1名) I′! 第 1図 (J酪l門“喘11イ刺71.1−ルA−A 来復)第
2図 (B天イ見) 第3 図 第6図 (a) Cb) 第4図 tb) 第5図 (I!2) (b) 第 7図 (b) 第 8図
FIG. 1 is a sectional view showing the cooling structure of a magnetic coupling according to an embodiment of the present invention, FIG. 2 is a view taken along arrow A-A of the drive side wheel in FIG. 1, and FIG. 4 is a view showing a cooling structure of a magnetic coupling according to a second embodiment of the present invention, where (a) is a sectional view, and (b) is a developed view of the inner surface of the drive side wheel. FIG. 5 is a diagram showing a cooling structure of a magnetic joint according to a third embodiment of the present invention, in which FIG. 5(a) is a sectional view and FIG. 5(b) is a sectional view.
6 is a developed view of the inner surface of the drive side wheel, and FIG. 6 is the fourth embodiment of the present invention.
A sectional view showing a cooling structure of a magnetic joint, which is an example of
The figure shows a cooling structure of a magnetic joint according to a fifth embodiment of the present invention, in which (a) is a cross-sectional view, and (b) is a drive-side magnet taken along line B-B in (a). The arrow view, FIG. 8 shows the sixth aspect of the present invention.
This is a diagram showing the cooling structure of a magnetic joint, which is an example of
FIG. 2A is a cross-sectional view, and FIG. 2B is a view of the drive-side hub taken along the line B-B in FIG. In the figure, 1...Main casing, 2...Suction side casing, 3...Discharge side end plate, 4...Magnetic joint support plate, 5.Male rotor, 6..Female rotor, 7..・Bearing, 8 ・Sealing member, 9・ ・Drive side wheel, 10・
...Driven side hub, 11. Can, 12. Cooling housing, 13. Boss, 14. Bearing, 16. Rod, 17. Channel groove. Patent applicant: Ebara Corporation Representative: Patent attorney: Takashi Kumagai (1 other person) I'! Figure 1 (J's 11th sting 71.1-ru A-A return) Figure 2 (B Heaven view) Figure 3 Figure 6 (a) Cb) Figure 4 tb) Figure 5 (I!2) (b) Figure 7 (b) Figure 8

Claims (1)

【特許請求の範囲】 (1)回転機械の回転体に磁気力により駆動側回転体か
ら非接触で回転力を伝達する磁気継手において、 前記磁気継手は前記回転機械の回転体軸に直接又は間接
的に連結されたロータ軸と、 該ロータ軸外周との間に所定の間隙を置いて同心円状で
且つ回転自在に配置される円筒状のホィールとを具備し
、 該ロータ軸外周には被動側磁石又は被動側導電体又は被
動側ヒステリシス材体を設けると共に、前記円筒状のホ
ィール内周には該被動側磁石又は被動側導電体又は被動
側ヒステリシス材体と対応させて駆動側導電体又は駆動
側磁石又は駆動側ヒステリシス材体を固着し、 前記ロータ軸と前記ホィールの間で且つ前記ロータ軸の
先端を覆うように前記回転機械内を外部雰囲気から遮断
するキャンを設け、 前記円筒状のホィールの回転軸に垂直な端面又は内周面
に流路溝を設け、該円筒状のホィールの回転時の該流路
溝を通る冷却用気体により前記キャンを冷却することを
特徴とする磁気継手の冷却構造。 (2)前記流路溝は回転軸に垂直な端面に複数の凹状溝
を切削して形成したことを特徴とする請求項(1)記載
の磁気継手の冷却構造。 (3)前記流路溝は円筒状のホィールの内周の所定位置
に複数の翼を所定の間隔で設け、該翼と翼の間を流路溝
としたことを特徴とする請求項(1)記載の磁気継手の
冷却構造。(4)前記流路溝は円筒状のホィールの内周
に複数の前記駆動側導電体又は駆動側磁石を所定の間隔
で設け該駆動側導電体と駆動側導電体の間又は前記駆動
側磁石と駆動側磁石の間を流路溝としたことを特徴とす
る請求項(1)記載の磁気継手の冷却構造。 (5)回転機械の回転体に磁気力により駆動側回転体か
ら非接触で回転力を伝達する磁気継手において、 前記磁気継手は前記回転機械の回転体軸に直接又は間接
的に連結されたロータ軸の端部に固定された被動側ハブ
と、駆動側軸の端部に固定され該被動側ハブと対向して
配置された駆動側ハブとを具備し、 前記被動側ハブの駆動側ハブとの対向面には被動側磁石
又は被動側導電体又は被動側ヒステリシス材体を設ける
と共に、前記駆動側ハブの被動側ハブとの対向面には該
被動側磁石又は被動側導電体又は被動側ヒステリシス材
体と対応させて駆動側導電体又は駆動側磁石又は駆動側
ヒステリシス材体を設け、 前記回転機械側の支持部材に固定され、前記被動側ハブ
と駆動側ハブの間で且つ前記回転機械内を外部雰囲気か
ら遮断するキャンを設け、 前記駆動側ハブのキャン対向面に流路溝を設け、該駆動
側ハブの回転時に該流路溝を通る冷却用気体により前記
キャンを冷却することを特徴とする磁気継手の冷却構造
。 (6)前記流路溝は前記駆動側ハブの複数の駆動側磁石
又は駆動側導電体を所定の間隔で設け、該駆動側磁石と
駆動側磁石の間又は駆動側導電体と駆動側導電体の間を
流路溝としたことを特徴とする請求項(5)記載の磁気
継手の冷却構造。 (7)前記流路溝は前記駆動側ハブの前記キャンに対向
する面に複数の凹状溝を設けて形成したことを特徴とす
る請求項(5)記載の磁気継手の冷却構造。
[Scope of Claims] (1) A magnetic coupling that transmits rotational force from a drive-side rotating body to a rotating body of a rotating machine in a non-contact manner by magnetic force, wherein the magnetic coupling directly or indirectly connects to the axis of the rotating body of the rotating machine. a rotor shaft that is connected to the rotor shaft; and a cylindrical wheel that is concentrically and rotatably arranged with a predetermined gap between the outer circumference of the rotor shaft, and the outer circumference of the rotor shaft has a driven side. A magnet, a driven-side conductor, or a driven-side hysteresis material is provided, and a driving-side conductor or drive is provided on the inner periphery of the cylindrical wheel in correspondence with the driven-side magnet, driven-side conductor, or driven-side hysteresis material. A side magnet or a drive side hysteresis material is fixed, and a can is provided between the rotor shaft and the wheel to cover the tip of the rotor shaft to isolate the interior of the rotating machine from the external atmosphere, and the cylindrical wheel A magnetic coupling characterized in that a flow groove is provided on an end face or an inner peripheral surface perpendicular to the rotation axis of the can, and the can is cooled by cooling gas passing through the flow groove when the cylindrical wheel rotates. Cooling structure. (2) The cooling structure for a magnetic joint according to claim 1, wherein the flow path groove is formed by cutting a plurality of concave grooves on an end face perpendicular to the rotation axis. (3) The channel groove is characterized in that a plurality of blades are provided at a predetermined interval at a predetermined position on the inner periphery of a cylindrical wheel, and the channel groove is formed between the blades. ) Cooling structure of the magnetic coupling described. (4) The flow groove is provided with a plurality of the drive-side conductors or drive-side magnets at predetermined intervals on the inner periphery of the cylindrical wheel, and between the drive-side conductors and the drive-side conductor or between the drive-side magnets. 2. A cooling structure for a magnetic joint according to claim 1, wherein a flow path groove is provided between the drive-side magnet and the drive-side magnet. (5) In a magnetic coupling that non-contact transmits rotational force from a driving rotating body to a rotating body of a rotating machine by magnetic force, the magnetic coupling is connected to a rotor that is directly or indirectly connected to a rotating body axis of the rotating machine. A driven hub fixed to an end of a shaft, and a driving hub fixed to an end of a driving shaft and disposed opposite to the driven hub, the driving hub of the driven hub A driven magnet, a driven conductor, or a driven hysteresis material is provided on the opposing surface of the drive hub, and a driven magnet, a driven conductor, or a driven hysteresis material is provided on the surface of the driving hub that faces the driven hub. A driving-side conductor, a driving-side magnet, or a driving-side hysteresis material is provided in correspondence with the material, and is fixed to the supporting member of the rotating machine, and is located between the driven-side hub and the driving-side hub and within the rotating machine. A can is provided to isolate the drive-side hub from the external atmosphere, a flow groove is provided on a surface of the drive-side hub facing the can, and the can is cooled by cooling gas passing through the flow-path groove when the drive-side hub rotates. Cooling structure of magnetic joint. (6) The flow path groove is provided with a plurality of drive-side magnets or drive-side conductors of the drive-side hub at predetermined intervals, and is provided between the drive-side magnets or between the drive-side conductors or between the drive-side conductors. 6. The cooling structure for a magnetic joint according to claim 5, wherein a flow groove is formed between the cooling structures. (7) The cooling structure for a magnetic joint according to claim (5), wherein the flow path groove is formed by providing a plurality of concave grooves on a surface of the drive-side hub facing the can.
JP14248190A 1990-05-31 1990-05-31 Magnetic coupling cooling structure Pending JPH0438163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14248190A JPH0438163A (en) 1990-05-31 1990-05-31 Magnetic coupling cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14248190A JPH0438163A (en) 1990-05-31 1990-05-31 Magnetic coupling cooling structure

Publications (1)

Publication Number Publication Date
JPH0438163A true JPH0438163A (en) 1992-02-07

Family

ID=15316325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14248190A Pending JPH0438163A (en) 1990-05-31 1990-05-31 Magnetic coupling cooling structure

Country Status (1)

Country Link
JP (1) JPH0438163A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100670938B1 (en) * 2005-07-12 2007-01-17 한국건설기술연구원 Prestressed structural glass member
JP2008163865A (en) * 2006-12-28 2008-07-17 Anest Iwata Corp Fluid machine coupled to driving source via magnetic coupling
JP2013129485A (en) * 2011-12-21 2013-07-04 Ricoh Co Ltd Punch waste recovery box, sheet post-processing device, and image forming apparatus
CN104518641A (en) * 2013-09-30 2015-04-15 中达电通股份有限公司 Permanent magnetic speed regulating coupling

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100670938B1 (en) * 2005-07-12 2007-01-17 한국건설기술연구원 Prestressed structural glass member
JP2008163865A (en) * 2006-12-28 2008-07-17 Anest Iwata Corp Fluid machine coupled to driving source via magnetic coupling
JP2013129485A (en) * 2011-12-21 2013-07-04 Ricoh Co Ltd Punch waste recovery box, sheet post-processing device, and image forming apparatus
CN104518641A (en) * 2013-09-30 2015-04-15 中达电通股份有限公司 Permanent magnetic speed regulating coupling

Similar Documents

Publication Publication Date Title
CA1153414A (en) High speed magnetic coupling with ceramic magnets maintained under centrifugal compression
US4207485A (en) Magnetic coupling
US4013384A (en) Magnetically driven centrifugal pump and means providing cooling fluid flow
US3916231A (en) Induction motor
KR100382308B1 (en) Vacuum pump
US6091168A (en) Rotor for a dynamoelectric machine
CA2726294C (en) Gas compressor magnetic coupler
JP2023502345A (en) electromechanical
US5898246A (en) Control of reluctance dynamoelectric machine cooling fluid
JP4059416B2 (en) Integrated motor pump
JP2004504537A (en) Monoblock housing for vacuum pump
JPH0438163A (en) Magnetic coupling cooling structure
RU2150609C1 (en) Centrifugal compressor unit and electric motor
GB2119609A (en) Heating arrangement for a pump
BRPI0620779A2 (en) trigger system for turning a cleaning head in a tank
CN111628589A (en) Rotating electrical machine
KR930702619A (en) Integral centrifugal pumps and motors
RU2717838C1 (en) Multi-rotor electric machine with combined cooling system
JPH0438166A (en) Magnetic coupling cooling structure
FI108669B (en) Blower
KR101953971B1 (en) Fluid machinery having impeller using magnetic levitation
JP2004251173A (en) Compressor with closed type motor
RU2233533C2 (en) Double-section dc inductor generator
JPH0438162A (en) Magnetic coupling cooling structure
JPH0438168A (en) Magnetic coupling cooling structure