JPH0437545B2 - - Google Patents

Info

Publication number
JPH0437545B2
JPH0437545B2 JP57187523A JP18752382A JPH0437545B2 JP H0437545 B2 JPH0437545 B2 JP H0437545B2 JP 57187523 A JP57187523 A JP 57187523A JP 18752382 A JP18752382 A JP 18752382A JP H0437545 B2 JPH0437545 B2 JP H0437545B2
Authority
JP
Japan
Prior art keywords
plate
electrode plate
carbon fibers
short carbon
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57187523A
Other languages
Japanese (ja)
Other versions
JPS5978459A (en
Inventor
Kazuharu Shimizu
Tamotsu Takizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP57187523A priority Critical patent/JPS5978459A/en
Publication of JPS5978459A publication Critical patent/JPS5978459A/en
Publication of JPH0437545B2 publication Critical patent/JPH0437545B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、燃料電池の極板に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to an electrode plate for a fuel cell.

〈従来の技術〉 燃料電池、特に、リン酸水溶液を電解質とする
高温型燃料電池において、化学的に安定であると
いう理由で、極板を炭素材料で構成している。
<Prior Art> In fuel cells, particularly high-temperature fuel cells using an aqueous phosphoric acid solution as an electrolyte, the electrode plates are made of a carbon material because it is chemically stable.

そのような極板としては、従来、炭素短繊維を
炭化物で結着してなる多孔質基板の一面に、水素
などの燃料ガスや、空気もしくは酸素ガスを流す
ための溝(気体流路)を形成したリブ付極板と呼
ばれるものが知られている。
Conventionally, such electrode plates are made by forming grooves (gas channels) for flowing fuel gas such as hydrogen, air, or oxygen gas on one side of a porous substrate made of short carbon fibers bound with carbide. What is called a formed ribbed electrode plate is known.

この極板は、まず、炭素短繊維の多孔質基板を
成形し、それからリブを溝切り加工することによ
つて作られるが、溝切り加工の手間が大きいこと
と、溝切りによつて多くの炭素繊維がむだになる
ことから、溝付き金型を使用して成形する方法が
検討されるようになつてきた。
This electrode plate is made by first molding a porous substrate of short carbon fibers and then grooving the ribs. Due to the waste of carbon fiber, a method of molding using a grooved mold has been considered.

ところで、燃料電池用は、通常、数十ないし数
百個のユニツトセルを積層して構成する。その場
合、高い発電効率を得るためには内部抵抗を低く
する必要があり、特に、リブ付極板を使用する場
合には、リブと、セル間に配置する隔壁板との接
触抵抗を低くすることが必要になる。しかるに、
溝付き金型によるリブ付極板は、炭素短繊維が金
型の溝の隅々までなかなかゆきわたらないため
に、リブの表面が平滑でなくなつたり、角が欠落
したりして上記接触抵抗がかなり高くなるという
問題がある。
By the way, fuel cells are usually constructed by stacking tens to hundreds of unit cells. In that case, in order to obtain high power generation efficiency, it is necessary to lower the internal resistance, and in particular, when using ribbed electrode plates, the contact resistance between the ribs and the partition plate placed between the cells must be lowered. It becomes necessary. However,
Ribbed electrode plates made with grooved molds have a hard time spreading the short carbon fibers to every corner of the mold grooves, resulting in the surface of the ribs becoming uneven and missing corners, resulting in the above-mentioned contact resistance. The problem is that it becomes quite high.

〈発明が解決しようとする課題〉 この発明の目的は、従来の極板の上述した問題
点を解決し、内部抵抗を低くすることができ、高
い発電効率を得ることができる燃料電池用極板を
提供するにある。
<Problems to be Solved by the Invention> The purpose of the present invention is to provide an electrode plate for a fuel cell that can solve the above-mentioned problems of conventional electrode plates, lower internal resistance, and obtain high power generation efficiency. is to provide.

〈課題を解決するための手段〉 上記目的を達成するために、この本発明は、炭
素短繊維を炭化物で結着してなる多孔質極板であ
つて、その極板は、互いに対向する一対の板状部
と、これらの一対の板状部の間に位置する中間部
とからなり、上記中間部には極板面と並行するト
ンネル流路が設けられ、上記板状部においては平
均長5〜20mmの炭素短繊維が使用され、上記中間
部においては平均長50〜800μmの炭素短繊維が使
用されていることを特徴とする燃料電池用極板を
提供する。
<Means for Solving the Problems> In order to achieve the above object, the present invention provides a porous electrode plate formed by binding short carbon fibers with a carbide, the electrode plate comprising a pair of electrodes facing each other. and an intermediate part located between the pair of plate parts, and a tunnel flow path parallel to the electrode plate surface is provided in the intermediate part, and the average length of the plate part is To provide an electrode plate for a fuel cell, characterized in that short carbon fibers having a length of 5 to 20 mm are used, and short carbon fibers having an average length of 50 to 800 μm are used in the intermediate portion.

この発明をその一実施態様に基いて説明する
に、第1図は、積層型燃料電池をその1ユニツト
セル分について示すもので、2枚の極板1,2の
間には、たとえばリン酸水溶液からなる電解質3
が、また、極板1,2と電解質3との間には、た
とえば白金黒からなる触媒4,5が、それぞれ担
持されている。極板1,2は、約2〜5mmほどの
厚みを有し、その内部には、一端面からそれと対
向する他端面に貫通する、幅および深さがともに
1.0〜2.5mmほどの、多数の、横断面が矩形のトン
ネル流路7が設けられている。そして、2枚の極
板8,9は、トンネル流路7が互いに直交するよ
うに配置され、使用にあたつては、いずれか一方
の極板のトンネル流路に燃料ガス(水素ガスや天
然ガスなど)が流され、他方の極板のトンネル流
路に空気もしくは酸素ガスが流される。積層型燃
料電池は、このようなユニツトセルを数十ないし
数百個積層して構成されるが、各セル間は、燃料
ガスまたは空気もしくは酸素ガスを透過させるこ
とのない、たとえば黒鉛板などの隔壁板6で仕切
られている。
To explain this invention based on one embodiment thereof, FIG. 1 shows one unit cell of a stacked fuel cell. Electrolyte 3 consisting of
However, catalysts 4 and 5 made of platinum black, for example, are supported between the electrode plates 1 and 2 and the electrolyte 3, respectively. The electrode plates 1 and 2 have a thickness of about 2 to 5 mm, and there is a hole in both width and depth that penetrates from one end surface to the opposite end surface.
A large number of tunnel passages 7 having a rectangular cross section and a diameter of about 1.0 to 2.5 mm are provided. The two electrode plates 8 and 9 are arranged so that the tunnel passages 7 are orthogonal to each other, and in use, fuel gas (hydrogen gas or natural gas, etc.), and air or oxygen gas is flowed into the tunnel channel of the other plate. A stacked fuel cell is constructed by stacking dozens to hundreds of such unit cells, but between each cell there is a partition wall, such as a graphite plate, that does not allow fuel gas, air, or oxygen gas to pass through. It is partitioned by board 6.

上記極板1,2は、第2図に示すよに、ランダ
ムに分散された炭素短繊維11をそれらの交点ま
たも近接した点において炭化物12によつて一体
に結着してなり、互いに対向する一対の板状部
8,9と、これら一対の板状部8,9の間に位置
する中間部10とからなり、中間部10にトンネ
ル流路7が設けられている。
As shown in FIG. 2, the electrode plates 1 and 2 are made up of randomly dispersed short carbon fibers 11 bound together by carbide 12 at their intersections or close points, and facing each other. It consists of a pair of plate-shaped parts 8 and 9 and an intermediate part 10 located between these pair of plate-shaped parts 8 and 9, and a tunnel flow path 7 is provided in the intermediate part 10.

上述した極板は、60〜90%程度の高い気孔率を
有し、多孔質であるが、板状部においては、燃料
ガスまたは空気もしくは酸素ガスの透過性をよく
して発電効率を上げるために、気孔率は70%以上
であるのが好ましい。この場合、電気伝導性はや
や低くなるものの、板状部は面積が大きく、しか
も、薄いので、それほど問題にはならない。一
方、中間部においては、電気伝導性を高くするた
めに、気孔率はやや低めの60〜70%程度であるの
が好ましい。
The above-mentioned electrode plate has a high porosity of about 60 to 90% and is porous, but the plate part has a high permeability for fuel gas, air, or oxygen gas to increase power generation efficiency. In addition, the porosity is preferably 70% or more. In this case, although the electrical conductivity is slightly lower, since the plate-shaped portion has a large area and is thin, it does not cause much of a problem. On the other hand, in the middle part, the porosity is preferably slightly lower, about 60 to 70%, in order to increase electrical conductivity.

炭素短繊維は、ピツチ系、ポリアクリルニトリ
ル系のいずれであつてもよく、また、炭素化系、
黒鉛化系のいずれであつてもよい。電気伝導性や
耐食性が高く、しかも、力学的諸物性が優れてい
るという理由からはポリアクリルニトリル系の黒
鉛化炭素繊維からなるものが、また、コスト低減
の意味からはピツチ系炭素繊維からなるものが、
それぞれ好ましい。なお、炭素短繊維は、5〜
15μm程度の直径を有する。
The short carbon fibers may be either pitch type or polyacrylonitrile type, and may also be carbonized type,
It may be any graphitized type. Polyacrylonitrile-based graphitized carbon fibers are used because they have high electrical conductivity and corrosion resistance, as well as excellent mechanical properties, and pitch-based carbon fibers are used to reduce costs. The thing is
Each is preferable. In addition, carbon short fibers are 5-
It has a diameter of about 15 μm.

炭素短繊維は、板状部においては、極板に機械
的強度、特に、曲げ強度や曲げ剛性を与え、ま
た、短繊維の分散をより均一にして気孔分布のむ
らを小さくするという理由で、平均長5〜20mmの
比較的長いものを使用する。また、中間部におい
ては、短繊維を密に並べて電気伝導性を向上させ
るという理由で、平均長50〜800μmの比較的短い
ものを使用する。
In the plate-like part, carbon short fibers provide mechanical strength, especially bending strength and bending rigidity, to the electrode plate, and also because they make the short fibers more uniformly distributed and reduce the unevenness of the pore distribution. Use a relatively long one with a length of 5 to 20 mm. In addition, in the middle part, relatively short fibers with an average length of 50 to 800 μm are used because the short fibers are arranged closely to improve electrical conductivity.

また、炭素短繊維は、板状部においては、極板
の機械的強度を向上できることから、極板面とほ
ぼ平行な面内においてランダムに分散しているの
が好ましい。また、中間部においては、厚み方向
の電気伝導性をより向上させるために、可能な限
り厚み方向に向けるのが好ましい。
Further, in the plate-shaped portion, the carbon short fibers are preferably randomly dispersed in a plane substantially parallel to the electrode plate surface, since this can improve the mechanical strength of the electrode plate. Furthermore, in order to further improve the electrical conductivity in the thickness direction, it is preferable to orient the intermediate portion in the thickness direction as much as possible.

炭素短繊維同士を結着している炭化物は、たと
えばポリビニルアルコール繊維、フエノール繊維
などの有機繊維からなる短繊維、または、セルロ
ース、パルプ、ポリビニルアルコール樹脂、フエ
ノール樹脂、タール、ピツチなどの有機物の焼成
によつて得られる。極板中における炭化物の割合
は、重量比で、炭素短繊維3〜10に対して炭化物
1程度がよい。
The carbide that binds short carbon fibers is, for example, short fibers made of organic fibers such as polyvinyl alcohol fibers and phenol fibers, or fired organic materials such as cellulose, pulp, polyvinyl alcohol resins, phenolic resins, tar, and pitch. obtained by. The ratio of carbide in the electrode plate is preferably about 1 carbide to 3 to 10 short carbon fibers by weight.

トンネル流路は、極板の一端面とそれに対向す
る他端面に開口をもち、気体はいずれか一方の開
口から流入し、極板内の気孔を通つて電解質側の
面に至り、そこで触媒と電解質との三相界面を形
成して反対する。反対に寄与しなかつた気体や反
応によつて生じた気体は、再びトンネル流路にも
どり、他方の開口から排出される。このように、
トンネル流路は極板の電解質側の面に一様に気体
を送る役割をもつので、極板面と並行するように
設けておく必要がある。しかしながら、真直ぐで
ある必要は必ずしもなく、極板面と平行または垂
直な面内において周期的に曲がつていたり、横断
面積が周期的に変化していてもよい。また、横断
面の形状は、矩形に限らず、円形や楕円形など、
任意であつてよい。
The tunnel flow path has openings on one end surface of the electrode plate and the other end surface opposite thereto, and gas flows in from either opening, passes through the pores in the electrode plate, reaches the surface on the electrolyte side, and is exposed to the catalyst there. Opposed by forming a three-phase interface with the electrolyte. Gases that did not contribute to the opposite effect and gases generated by the reaction return to the tunnel flow path and are discharged from the other opening. in this way,
Since the tunnel channel has the role of uniformly sending gas to the electrolyte side surface of the electrode plate, it is necessary to provide it parallel to the electrode plate surface. However, it does not necessarily have to be straight, and may be periodically curved in a plane parallel or perpendicular to the electrode plate surface, or may have a cross-sectional area that changes periodically. In addition, the shape of the cross section is not limited to rectangular, but also circular, oval, etc.
It can be optional.

この発明の極板は、いろいろな方法によつて製
造することができる。次にその好適な一例を示
す。
The electrode plate of this invention can be manufactured by various methods. Next, a suitable example will be shown.

すなわち、まず、平均長5〜20mmの炭素短繊維
と有機短繊維または有機物との水中分散液を抄造
し、乾燥した後、適当な溶媒(たとえば、メタノ
ール)で希釈したフエノール樹脂を含浸し、厚み
が0.1〜2.5mm程度の平板状体を得る。
That is, first, an aqueous dispersion of short carbon fibers and organic short fibers or organic substances with an average length of 5 to 20 mm is made into paper, dried, and then impregnated with a phenolic resin diluted with an appropriate solvent (for example, methanol) to obtain a thickness. Obtain a flat plate with a diameter of about 0.1 to 2.5 mm.

次に、上記平板状体を下金型に上に1〜数枚置
き、その上に適当な横断面形状と横断面積をもつ
たプラスチツク製の棒または管を並列に並べる。
さらに、その上に平均長50〜800μmの炭素短繊維
と有機短繊維または有機物の粉末との混合物を
1.0〜2.5mmほど推積させ、その上に上記平板状体
を1〜数枚重ねて置き、上金型を閉じて100〜200
℃で数十分加熱する。すると、炭素短繊維同士が
有機短繊維または有機物で結着された板状の成形
体が得られる。
Next, one or more of the above-mentioned flat plates are placed on the lower mold, and plastic rods or tubes having appropriate cross-sectional shapes and cross-sectional areas are arranged in parallel thereon.
Furthermore, a mixture of short carbon fibers with an average length of 50 to 800 μm and organic short fibers or organic powder is added on top of the mixture.
The thickness is estimated to be about 1.0 to 2.5 mm, one to several sheets of the above flat plate are placed on top of it, the upper mold is closed, and the thickness is 100 to 200 mm.
Heat at ℃ for several minutes. As a result, a plate-shaped molded body in which short carbon fibers are bound together by organic short fibers or an organic substance is obtained.

次に、上記成形体を、窒素雰囲気中にておおむ
ね1000℃以上の温度で数十分焼成する。すると、
有機短繊維または有機物が炭化されるとともに、
プラスチツク製の棒または管が燃えてなくなつて
そのあとにトンネル流路が形成され、この発明の
極板が得られる。
Next, the molded body is fired at a temperature of approximately 1000° C. or higher for several minutes in a nitrogen atmosphere. Then,
While organic short fibers or organic substances are carbonized,
The plastic rod or tube is burnt out and a tunnel flow path is formed thereafter to obtain the plate of the present invention.

上記において、平均長50〜800μmの炭素短繊維
を極板の厚み方向に向かせたい場合には、フエノ
ール樹脂を塗布した紙上に上記プラスチツク製の
棒または管を並べ、その棒または管の間に平均長
50〜800μmの炭素短繊維を静電植毛した後、有機
短繊維と有機物との混合物を添加し、その上に上
記平板上体を1〜数枚重ね合わせ、加圧、加熱し
て成形する。そして、得られた成形体の、平板状
体と対向する面にフエノール樹脂を用いて上記平
板状体を1〜数枚接着した後、上記と同様に焼成
する。
In the above, if you want short carbon fibers with an average length of 50 to 800 μm to be oriented in the thickness direction of the electrode plate, arrange the above plastic rods or tubes on paper coated with phenol resin, and place them between the rods or tubes. average length
After electrostatically flocking short carbon fibers of 50 to 800 μm, a mixture of organic short fibers and an organic substance is added, one to several sheets of the above-mentioned flat plate body are superimposed thereon, and molded by applying pressure and heating. Then, one or more of the above-mentioned flat bodies are adhered to the surface of the obtained molded body facing the flat plate-like body using a phenol resin, and then fired in the same manner as described above.

ここで用いるプラスチツク製の棒や管は、フエ
ノール樹脂の硬化温度では変形せず、しかも、焼
成時にはほぼ完全に燃えてトンネル流路を形成す
るものであることが必要であり、ポリエステル樹
脂やポリアミド樹脂などからなるものを使用する
とよい。
The plastic rods and tubes used here must not be deformed at the curing temperature of the phenolic resin, and must also burn almost completely during firing to form a tunnel channel, so they must be made of polyester resin or polyamide resin. It is recommended to use something consisting of:

〈発明の効果〉 この発明の極板は、気体流路をトンネル流路と
して構成しており、したがつて、極板は外形的に
は完全な平板状であるから、隔壁板との接触面積
を大きくとることができる。そのため、隔壁板と
の接触抵抗を著しく低くすることができるように
なり、電池の内部抵抗が低くなつて発電効率が大
きく向上する。
<Effects of the Invention> In the electrode plate of the present invention, the gas flow path is configured as a tunnel flow path, and therefore, since the electrode plate has a completely flat plate shape, the contact area with the partition plate is small. can be made larger. Therefore, the contact resistance with the partition plate can be significantly lowered, the internal resistance of the battery is lowered, and the power generation efficiency is greatly improved.

また、トンネル流路を周期的に曲げたり、横断
面積が周期的に変化する形状とした場合には、気
体の流れに関して流路に適当な抵抗ができ、気孔
率に多少の場所的むらがあつても気体が一様に流
れるようになつて反応が均一に行われるようにな
り、この面からも発電効率が向上する。
In addition, if the tunnel flow path is bent periodically or has a shape in which the cross-sectional area changes periodically, appropriate resistance will be created in the flow path with respect to gas flow, resulting in some local unevenness in porosity. However, the gas flows evenly, allowing the reaction to occur evenly, which also improves power generation efficiency.

さらに、この発明の極板は、全体としてみると
平板状であり、リブ付極板のように表面に溝を有
しないので、機械的強度、特に、曲げ強度や曲げ
剛性が向上し、たとえば600mm角、900mm角といつ
た大型の極板でも取り扱いやすく、ユニツトセル
の組立作業が容易になるばかりか、使用中のさま
ざまなシヨツクに対しても壊れにくい。
Furthermore, since the electrode plate of the present invention has a flat plate shape as a whole and does not have grooves on the surface unlike a ribbed electrode plate, mechanical strength, especially bending strength and bending rigidity, is improved. Even large electrode plates such as square and 900mm square plates are easy to handle, making it easier to assemble unit cells, as well as being resistant to breakage when subjected to various shocks during use.

また、この発明の極板は、板状部に平均長5〜
20mmの炭素短繊維を使用しているから、機械的強
度、特に、曲げ強度や曲げ剛性がより向上すると
ともに、炭素短繊維の分散がより均一になつて気
孔分布のむらが小さくなる。また、中間部に平均
長50〜800μmの炭素短繊維を使用しているから、
炭素短繊維の分布が密になつて電気伝導性が向上
し、板状部における気孔分布のむらが小さいこと
と相まつて発電効率がさらに向上する。
Further, the electrode plate of the present invention has an average length of 5 to
Since 20 mm short carbon fibers are used, mechanical strength, especially bending strength and bending rigidity, is further improved, and the carbon short fibers are more uniformly distributed, reducing unevenness in pore distribution. In addition, because short carbon fibers with an average length of 50 to 800 μm are used in the middle part,
The dense distribution of carbon short fibers improves electrical conductivity, and together with the small unevenness of pore distribution in the plate-shaped portion, power generation efficiency further improves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の極板を使用した積層型燃
料電池をそのユニツトセル分について示す概略斜
視図、第2図は、上記第1図に示した極板の概略
斜視図である。 1:極板、2:極板、3:電解質、4:触媒、
5:触媒、6:隔壁板、7:トンネル流路、8:
板状部、9:板状部、10:中間部、11:炭素
短繊維、12:炭化物。
FIG. 1 is a schematic perspective view showing a unit cell of a stacked fuel cell using the electrode plate of the present invention, and FIG. 2 is a schematic perspective view of the electrode plate shown in FIG. 1. 1: electrode plate, 2: electrode plate, 3: electrolyte, 4: catalyst,
5: Catalyst, 6: Partition plate, 7: Tunnel channel, 8:
Plate-like part, 9: Plate-like part, 10: Intermediate part, 11: Short carbon fiber, 12: Carbide.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素短繊維を炭化物で結着してなる多孔質極
板であつて、その極板は、互いに対向する一対の
板状部と、これら一対の板状部の間に位置する中
間部とからなり、上記中間部には極板面と並行す
るトンネル流路が設けられ、上記板状部において
は平均長5〜20mmの炭素短繊維が使用され、上記
中間部においては平均長50〜800μmの炭素短繊維
が使用されていることを特徴とする燃料電池用極
板。
1. A porous electrode plate made by binding short carbon fibers with carbide, which electrode plate consists of a pair of plate-like parts facing each other and an intermediate part located between the pair of plate-like parts. In the middle part, a tunnel flow path parallel to the electrode plate surface is provided, and in the plate part, short carbon fibers with an average length of 5 to 20 mm are used, and in the middle part, short carbon fibers with an average length of 50 to 800 μm are used. A fuel cell electrode plate characterized by using short carbon fibers.
JP57187523A 1982-10-27 1982-10-27 Electrode plate for fuel cell Granted JPS5978459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57187523A JPS5978459A (en) 1982-10-27 1982-10-27 Electrode plate for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57187523A JPS5978459A (en) 1982-10-27 1982-10-27 Electrode plate for fuel cell

Publications (2)

Publication Number Publication Date
JPS5978459A JPS5978459A (en) 1984-05-07
JPH0437545B2 true JPH0437545B2 (en) 1992-06-19

Family

ID=16207567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57187523A Granted JPS5978459A (en) 1982-10-27 1982-10-27 Electrode plate for fuel cell

Country Status (1)

Country Link
JP (1) JPS5978459A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214161A (en) * 1983-05-18 1984-12-04 Showa Denko Kk Carbon plate for fuel battery
JPS60249261A (en) * 1984-05-23 1985-12-09 Mitsubishi Electric Corp Fuel cell
DK63389A (en) * 1988-02-12 1989-08-13 Int Fuel Cells Corp CORROSION-RESISTANT ELECTRODE MATERIALS FOR FUEL CELLS
KR100449208B1 (en) * 2000-10-31 2004-09-18 마쯔시다덴기산교 가부시키가이샤 High polymer electrolyte fuel cell
CN114156491B (en) * 2021-11-10 2024-03-22 深圳市氢瑞燃料电池科技有限公司 Preparation method of fuel cell polar plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966063A (en) * 1982-10-05 1984-04-14 Kureha Chem Ind Co Ltd Electrode base plate for fuel cell
JPS5968170A (en) * 1982-10-12 1984-04-18 Kureha Chem Ind Co Ltd Electrode base plate for fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966063A (en) * 1982-10-05 1984-04-14 Kureha Chem Ind Co Ltd Electrode base plate for fuel cell
JPS5968170A (en) * 1982-10-12 1984-04-18 Kureha Chem Ind Co Ltd Electrode base plate for fuel cell

Also Published As

Publication number Publication date
JPS5978459A (en) 1984-05-07

Similar Documents

Publication Publication Date Title
US4579789A (en) Carbonaceous fuel cell electrode substrate incorporating three-layer separator, and process for preparation thereof
US4522895A (en) Multilayer fuel cell electrode substrate having elongated holes for feeding reactant gases
KR101484762B1 (en) Carbon substrate for gas diffusion layer, gas diffusion layer using the same, and electrode for fuel cell comprising the gas diffusion layer
US4664988A (en) Fuel cell electrode substrate incorporating separator as an intercooler and process for preparation thereof
RU2182387C2 (en) Bipolar separator plate of fuel cell with proton-exchange membrane
US4567086A (en) Carbonaceous, five-layer fuel cell electrode substrate with elongated holes for feeding reactant gases
JP7387905B2 (en) Gas diffusion layer, manufacturing method thereof, membrane electrode assembly and fuel cell
US6413663B1 (en) Fluid permeable flexible graphite fuel cell electrode
JPH0544779B2 (en)
US4245009A (en) Porous coolant tube holder for fuel cell stack
US20020192539A1 (en) High polymer electrolyte fuel cell
JP4051714B2 (en) Electrode substrate for polymer electrolyte fuel cell and method for producing the same
US20170244113A1 (en) Nonwoven carbon fiber fabric, process for producing nonwoven carbon fiber fabric, and polymer electrolyte membrane fuel cell
CA2420485A1 (en) Fluid diffusion layers for fuel cells
GB2126775A (en) Ribbed substrate for fuel cell electrode
US9023556B2 (en) Method of preparing gas diffusion media for a fuel cell
US4687607A (en) Process for producing electrode substrate for use in fuel cells
JPH0437545B2 (en)
JPS6332863A (en) Carbon-graphite reservoir layer and manufacture of the same
US4580337A (en) Process for producing electrode substrate for fuel cells
JP2006331786A (en) Electrode material for fuel cell, and manufacturing method thereof
GB2126410A (en) Ribbed substrate for fuel cell electrode
US4666755A (en) Porous fuel cell electrode substrate having elongated holes for feeding reactant gases
JPS6046515B2 (en) Method for manufacturing electrolyte retention matrix for fuel cells
JP2003286085A (en) Porous carbon plate and manufacturing method thereof