JPH04367740A - Catalyst and method for reducing and removing nitrogen oxide - Google Patents

Catalyst and method for reducing and removing nitrogen oxide

Info

Publication number
JPH04367740A
JPH04367740A JP3167501A JP16750191A JPH04367740A JP H04367740 A JPH04367740 A JP H04367740A JP 3167501 A JP3167501 A JP 3167501A JP 16750191 A JP16750191 A JP 16750191A JP H04367740 A JPH04367740 A JP H04367740A
Authority
JP
Japan
Prior art keywords
catalyst
nitrogen oxides
reducing
exhaust gas
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3167501A
Other languages
Japanese (ja)
Inventor
Shiyuuichi Kagawa
鹿川 修一
Yasutake Teraoka
寺岡 靖剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP3167501A priority Critical patent/JPH04367740A/en
Priority to JP4174988A priority patent/JPH05269386A/en
Publication of JPH04367740A publication Critical patent/JPH04367740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a catalyst for reducing and removing nitrogen oxide having excellent capacity at low temp. CONSTITUTION:An iron ion is added to ZSM-5 wherein an SiO2/Al2O3 mol ratio is 20-60 in an amount of at least 1wt.% to obtain a catalyst having high activity at low temp. and reducing and removing nitrogen oxide from exhaust gas containing nitrogen oxide, hydrocarbon and oxygen.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、窒素酸化物、炭化水素
及び酸素を含有する排ガスから窒素酸化物を還元除去す
る触媒及びその使用方法に関するものであり、さらに詳
細には、低温での性能の優れた窒素酸化物還元除去用触
媒を提供するものである。
[Field of Industrial Application] The present invention relates to a catalyst for reducing and removing nitrogen oxides from exhaust gas containing nitrogen oxides, hydrocarbons, and oxygen, and a method for using the same. The present invention provides an excellent catalyst for reducing and removing nitrogen oxides.

【0002】0002

【従来の技術】窒素酸化物の発生源であるボイラ−、自
動車等の排ガス中から窒素酸化物を除去する方法として
、V2O5/TiO2系を触媒としたアンモニアによる
選択的接触還元法、あるいは、貴金属を担持したアルミ
ナを触媒として未燃の炭化水素及び一酸化炭素により還
元する非選択的接触還元法等が工業的に実用化されてい
る。
[Prior Art] As a method for removing nitrogen oxides from the exhaust gas of boilers, automobiles, etc., which are the sources of nitrogen oxides, there is a selective catalytic reduction method using ammonia using a V2O5/TiO2 system as a catalyst, or a method using precious metals. A non-selective catalytic reduction method in which unburned hydrocarbons and carbon monoxide are reduced using alumina supported on carbon monoxide as a catalyst has been put into practical use industrially.

【0003】また、更には、特開昭60−125250
号公報には、還元剤非共存下で窒素酸化物を直接接触分
解できる触媒として銅イオン交換したゼオライトを用い
る方法が提案されている。
[0003] Furthermore, Japanese Patent Application Laid-Open No. 60-125250
The publication proposes a method using copper ion-exchanged zeolite as a catalyst that can directly catalytically decompose nitrogen oxides in the absence of a reducing agent.

【0004】また、酸素過剰下でも、排ガス中の未燃の
一酸化炭素、炭化水素等の還元成分により窒素酸化物を
選択的に還元できる触媒として、Cu等の卑金属をゼオ
ライト等に含有させた触媒が提案されている。
[0004] Furthermore, base metals such as Cu have been incorporated into zeolite as catalysts that can selectively reduce nitrogen oxides using reducing components such as unburned carbon monoxide and hydrocarbons in exhaust gas even under excessive oxygen conditions. Catalysts have been proposed.

【0005】一方、鉄を含有する疎水性のゼオライト触
媒を用いて、一酸化炭素及び炭化水素を含む廃ガス中に
存在する窒素酸化物を減少させる方法が提案されている
(特開昭63−283727)。この方法では、水等の
極性分子に比べ炭化水素等の非極性分子を選択的に吸着
する、いわゆる疎水性を有するゼオライトを用いること
が必須である。
On the other hand, a method has been proposed for reducing nitrogen oxides present in waste gas containing carbon monoxide and hydrocarbons by using a hydrophobic zeolite catalyst containing iron (Japanese Unexamined Patent Application Publication No. 1986-1999). 283727). In this method, it is essential to use a zeolite having so-called hydrophobic properties, which selectively adsorbs non-polar molecules such as hydrocarbons compared to polar molecules such as water.

【0006】しかしながら、これらの提案されている触
媒は、特に低温での十分な活性を有しておらず、未だ実
用化されるに至っていない。
However, these proposed catalysts do not have sufficient activity, especially at low temperatures, and have not yet been put into practical use.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、酸素
存在下でも、還元剤であるアンモニアを使用することな
く、工業プラント、自動車等から排出される燃焼排ガス
中の窒素酸化物を効率良く除去し、特に低温においても
効率の良い窒素酸化物還元除去触媒、また、その使用方
法を提供するものである。
[Problems to be Solved by the Invention] An object of the present invention is to efficiently remove nitrogen oxides from combustion exhaust gases emitted from industrial plants, automobiles, etc., even in the presence of oxygen, without using ammonia as a reducing agent. The purpose of the present invention is to provide a catalyst for reducing and removing nitrogen oxides that is efficient even at low temperatures, and a method for using the same.

【0008】[0008]

【課題を解決するための手段】]本発明者等は、上記課
題について鋭意検討を重ねた結果、本発明を完成するに
至った。
[Means for Solving the Problems] The present inventors have completed the present invention as a result of intensive studies regarding the above problems.

【0009】即ち本発明は、SiO2/Al2O3モル
比が20〜60のZSM−5に鉄イオンを少なくとも1
wt%含有させたことを特徴とする、窒素酸化物、炭化
水素及び酸素を含む排ガスから窒素酸化物を還元除去す
る触媒、及び、鉄イオンを含有したZSM−5に窒素酸
化物、炭化水素及び酸素を含む排ガスを接触させること
を特徴とする窒素酸化物還元除去方法を提供するもので
ある。
That is, the present invention provides ZSM-5 with a SiO2/Al2O3 molar ratio of 20 to 60 and at least one iron ion.
A catalyst for reducing and removing nitrogen oxides from exhaust gas containing nitrogen oxides, hydrocarbons, and oxygen, and containing iron ions in ZSM-5 containing nitrogen oxides, hydrocarbons, and The present invention provides a method for reducing and removing nitrogen oxides, which is characterized by contacting exhaust gas containing oxygen.

【0010】以下、本発明をより詳細に説明する。The present invention will be explained in more detail below.

【0011】本発明において用いられるZSM−5のS
iO2/Al2O3モル比は20〜60であることが必
須である。SiO2/Al2O3モル比が20〜60の
ZSM−5は耐熱性に優れ、かつ、約1wt%以上の水
分吸着量を示すゼオライトである。
[0011] S of ZSM-5 used in the present invention
It is essential that the iO2/Al2O3 molar ratio is 20-60. ZSM-5 having a SiO2/Al2O3 molar ratio of 20 to 60 is a zeolite that has excellent heat resistance and exhibits a water adsorption amount of about 1 wt% or more.

【0012】ゼオライトの水分吸着量は、そのSiO2
/Al2O3モル比の増加と共に減少し、SiO2/A
l2O3モル比20で約10wt%、40で約2wt%
、60で約1wt%、60を越えると殆ど水分を吸着し
なくなる。一方、非極性分子であるシクロヘキサンにつ
いては、SiO2/Al2O3モル比40以上では約5
wt%と一定の吸着量を示す。
[0012] The water adsorption amount of zeolite is determined by its SiO2
/Al2O3 molar ratio decreases, and SiO2/A
About 10 wt% at l2O3 molar ratio of 20, about 2 wt% at 40
, 60 is about 1 wt%, and when it exceeds 60, it hardly absorbs moisture. On the other hand, for cyclohexane, which is a nonpolar molecule, when the SiO2/Al2O3 molar ratio is 40 or more, the
It shows a constant adsorption amount as wt%.

【0013】SiO2/Al2O3モル比が20よりも
低いと触媒の耐熱性が低下する。また、上述したように
、SiO2/Al2O3モル比が60を越えると水分を
殆ど吸着しなくなり、このようなZSM−5に鉄イオン
を含有させても、低温での性能の優れた触媒とはなり得
ない。好ましくは、SiO2/Al2O3モル比が20
〜35である。
[0013] When the SiO2/Al2O3 molar ratio is lower than 20, the heat resistance of the catalyst decreases. Furthermore, as mentioned above, when the SiO2/Al2O3 molar ratio exceeds 60, almost no moisture is adsorbed, and even if such ZSM-5 contains iron ions, it will not be a catalyst with excellent performance at low temperatures. I don't get it. Preferably, the SiO2/Al2O3 molar ratio is 20
~35.

【0014】本発明の触媒を構成するZSM−5の製造
方法は特に限定されない。また、ZSM−5はそのまま
あるいはアンモニウム塩、鉱酸等で処理しNH4イオン
交換或いはHイオン交換してから使用することもできる
The method for producing ZSM-5 constituting the catalyst of the present invention is not particularly limited. Further, ZSM-5 can be used as it is or after being treated with ammonium salt, mineral acid, etc. to exchange NH4 ions or H ions.

【0015】本発明の触媒は、SiO2/Al2O3モ
ル比が20〜60のZSM−5に鉄イオンを少なくとも
1wt%含有させることが必須である。鉄イオンが1w
t%未満では、低温での十分な活性が得られない。好ま
しくは、鉄イオン含有量が1.5wt%以上である。ま
た、その上限は特に限定されないが、3wt%以下であ
ることが好ましい。
[0015] In the catalyst of the present invention, it is essential that ZSM-5 having a SiO2/Al2O3 molar ratio of 20 to 60 contains at least 1 wt% of iron ions. Iron ion is 1w
If it is less than t%, sufficient activity at low temperatures cannot be obtained. Preferably, the iron ion content is 1.5 wt% or more. Further, the upper limit is not particularly limited, but it is preferably 3 wt% or less.

【0016】上記のZSM−5に鉄イオンを含有させる
方法は特に限定されないが、イオン交換法が好ましい。 イオン交換法としては、一般的に行われている方法、た
とえば鉄イオンを含有する水溶液を用いてイオン交換す
る方法を採用することができる。
[0016] The method for incorporating iron ions into the above ZSM-5 is not particularly limited, but an ion exchange method is preferred. As the ion exchange method, a commonly used method such as a method of ion exchange using an aqueous solution containing iron ions can be adopted.

【0017】鉄イオンは可溶性の塩の形で使用でき、可
溶性の塩としては、硝酸塩、酢酸塩、シュウ酸塩、塩酸
塩等が好適に使用できる。
[0017] Iron ions can be used in the form of soluble salts, and nitrates, acetates, oxalates, hydrochlorides, etc. can be preferably used as the soluble salts.

【0018】イオン交換時の鉄イオンの添加量は、ZS
M−5中のAlに対しFe/Al原子比で表わして0.
1〜5であることが望ましい。0.1未満では鉄イオン
が十分に交換されず、鉄イオン含有量が1.0wt%未
満になる恐れがあり、また、5を越えてもそれに見合う
だけの効果は期待できない。イオン交換のスラリー濃度
は、通常行われる0.1%〜30%で良い。
The amount of iron ions added during ion exchange is ZS
The Fe/Al atomic ratio is 0.0 compared to Al in M-5.
It is desirable that it is 1-5. If it is less than 0.1, iron ions may not be exchanged sufficiently and the iron ion content may become less than 1.0 wt%, and even if it exceeds 5, no commensurate effect can be expected. The slurry concentration for ion exchange may be 0.1% to 30%, which is usually carried out.

【0019】また、処理条件は通常行われる室温〜10
0℃の温度、1時間〜10日の時間であることが望まし
い。室温未満の温度、1時間未満の時間では、鉄イオン
が十分に交換されず、鉄イオン含有量が1.0wt%未
満になる恐れがあり、100℃を越える温度、5日を越
える時間では、それに見合うだけの効果は期待できない
。また、必要に応じて、イオン交換操作を繰返し行うこ
ともできる。
[0019] The processing conditions are usually room temperature to 10
Preferably, the temperature is 0°C and the time is 1 hour to 10 days. If the temperature is below room temperature and the time is less than 1 hour, the iron ions may not be exchanged sufficiently and the iron ion content may become less than 1.0 wt%. We cannot expect the effect to be commensurate with that. Moreover, the ion exchange operation can be repeated as necessary.

【0020】イオン交換処理した試料は、固液分離、洗
浄、乾燥して使用される。また、必要に応じて焼成して
から用いることもできる。
The ion-exchanged sample is used after solid-liquid separation, washing and drying. Moreover, it can also be used after baking if necessary.

【0021】本発明の触媒のSiO2/Al2O3モル
比は、使用したゼオライト基材のSiO2/Al2O3
モル比と実質的に変わらない。また、触媒の結晶構造も
イオン交換前後で本質的に異なるものではない。
The SiO2/Al2O3 molar ratio of the catalyst of the present invention is the SiO2/Al2O3 molar ratio of the zeolite base material used.
The molar ratio is virtually unchanged. Further, the crystal structure of the catalyst is not essentially different before and after ion exchange.

【0022】本発明の触媒は、粘土鉱物等のバインダー
と混合し成形して使用することもできる。また、予めゼ
オライトを成形し、その成形体に鉄イオンをイオン交換
等で含有させることもできる。ゼオライトを成形する際
に用いられるバインダーとしては、カオリン、アタパル
ガイト、モンモリロナイト、ベントナイト、アロフェン
、セピオライト等の粘土鉱物である。あるいは、バイン
ダーを用いずに成形体を直接合成したバインダレスゼオ
ライト成形体であっても良い。また更に、コージェライ
ト製あるいは金属製等のハニカム状基材にゼオライトを
コートして用いることもできる。
The catalyst of the present invention can also be used by being mixed with a binder such as a clay mineral and molded. Alternatively, zeolite may be formed in advance and iron ions may be contained in the formed body through ion exchange or the like. Binders used in forming zeolite include clay minerals such as kaolin, attapulgite, montmorillonite, bentonite, allophane, and sepiolite. Alternatively, it may be a binderless zeolite molded product that is directly synthesized without using a binder. Furthermore, a honeycomb-shaped substrate made of cordierite or metal may be coated with zeolite.

【0023】排ガス中の窒素酸化物の還元除去は、本発
明の触媒と窒素酸化物、炭化水素及び酸素を含む排ガス
を接触させることにより行なう。本発明で用いられる排
ガスは、窒素酸化物、炭化水素及び酸素を含むことが必
須である。また、排ガス中の炭化水素等の還元成分に対
して過剰量の酸素が含まれている場合においても窒素酸
化物を効率よく還元除去できる。更に、一酸化炭素,水
素,アンモニア,水分,硫黄酸化物等が含まれている場
合にも有効である。また、酸素の含まれていない排ガス
においても十分な効果を発揮する。
The reduction and removal of nitrogen oxides in the exhaust gas is carried out by bringing the catalyst of the present invention into contact with the exhaust gas containing nitrogen oxides, hydrocarbons and oxygen. It is essential that the exhaust gas used in the present invention contains nitrogen oxides, hydrocarbons, and oxygen. Further, even when the exhaust gas contains an excessive amount of oxygen with respect to reducing components such as hydrocarbons, nitrogen oxides can be efficiently reduced and removed. Furthermore, it is also effective when carbon monoxide, hydrogen, ammonia, moisture, sulfur oxides, etc. are contained. In addition, sufficient effects are exhibited even in exhaust gas that does not contain oxygen.

【0024】本発明で処理される排ガス中の各成分ガス
の濃度は特に限定されないが、通常、窒素酸化物が50
〜20000ppm、炭化水素が10〜20000pp
m、酸素が0.1〜20%である。
[0024] The concentration of each component gas in the exhaust gas treated in the present invention is not particularly limited, but usually nitrogen oxides are
~20000ppm, hydrocarbons 10~20000ppm
m, oxygen is 0.1-20%.

【0025】処理される排ガスの空間速度及び温度は特
に限定されないが、好ましくは空間速度(体積基準)5
00〜300000hr−1、温度100℃〜800℃
、更に好ましくは空間速度1000〜200000hr
−1、温度200℃〜700℃である。
The space velocity and temperature of the exhaust gas to be treated are not particularly limited, but are preferably space velocity (volume basis) 5.
00~300000hr-1, temperature 100℃~800℃
, more preferably a space velocity of 1000 to 200000 hr
-1, the temperature is 200°C to 700°C.

【0026】[0026]

【発明の効果】本発明の触媒は、燃焼排ガス中の窒素酸
化物を低温においても効率良く除去できるという効果が
ある。したがって、本発明の触媒を燃焼排ガスと接触さ
せることにより、低温においても窒素酸化物を容易に除
去することができる。
Effects of the Invention The catalyst of the present invention has the effect of efficiently removing nitrogen oxides from combustion exhaust gas even at low temperatures. Therefore, by bringing the catalyst of the present invention into contact with combustion exhaust gas, nitrogen oxides can be easily removed even at low temperatures.

【0027】[0027]

【実施例】以下、実施例において本発明をさらに詳細に
説明する。しかし、本発明はこれら実施例のみに限定さ
れるものではない。
EXAMPLES The present invention will be explained in more detail in the following examples. However, the present invention is not limited to these examples.

【0028】実施例1 攪拌状態にある実容積2リットルのオーバーフロータイ
プの反応槽に、珪酸ソーダ水溶液(SiO2;153g
/リットル,Na2O;50g/リットル,Al2O3
;0.8g/リットル)と、硫酸アルミニウム水溶液(
Al2O3;38.4g/リットル,H2SO4;27
5g/リットル)とをそれぞれ3.2リットル/hr,
0.8リットル/hrの速度で連続的に供給した。反応
温度は30〜32℃、排出されるスラリーのpHは6.
4〜6.6であった。
Example 1 A sodium silicate aqueous solution (SiO2; 153 g
/liter, Na2O; 50g/liter, Al2O3
;0.8g/liter) and aluminum sulfate aqueous solution (
Al2O3; 38.4g/liter, H2SO4; 27
5g/liter) and 3.2liter/hr, respectively.
It was fed continuously at a rate of 0.8 liters/hr. The reaction temperature was 30-32°C, and the pH of the slurry discharged was 6.
It was 4-6.6.

【0029】排出スラリーを固液分離し十分水洗した後
、Na2O;1.72wt%,Al2O3;2.58w
t%,SiO2;39.3wt%,H2O;56.4w
t%の粒状無定形アルミノ珪酸塩均一化合物を得た。 該均一化合物2,840gと1.39wt%のNaOH
水溶液5,160gとをオートクレーブに仕込み、16
0℃で72時間攪拌下で結晶化した。次いで、固液分離
、十分水洗し、乾燥してZSM−5型ゼオライトを得た
。得られたZSM−5型ゼオライト50gを0.1N硝
酸ナトリウム水溶液2リットルに添加し、60℃にて一
昼夜撹拌し、固液分離、洗浄した。この操作を2回繰返
した後乾燥しNa型ゼオライトを得た。化学分析の結果
、その組成は無水ベースにおける酸化物のモル比で表わ
して次の組成を有していた。
After solid-liquid separation of the discharged slurry and thorough washing with water, Na2O: 1.72wt%, Al2O3: 2.58w
t%, SiO2; 39.3wt%, H2O; 56.4w
A granular amorphous aluminosilicate homogeneous compound of t% was obtained. 2,840 g of the homogeneous compound and 1.39 wt% NaOH
Charge 5,160 g of aqueous solution into an autoclave,
Crystallization was carried out under stirring at 0° C. for 72 hours. Next, solid-liquid separation, thorough washing with water, and drying were performed to obtain ZSM-5 type zeolite. 50 g of the obtained ZSM-5 type zeolite was added to 2 liters of 0.1N aqueous sodium nitrate solution, stirred at 60°C all day and night, solid-liquid separated, and washed. This operation was repeated twice and then dried to obtain Na-type zeolite. As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

【0030】1.0Na2O,Al2O3,22.8S
iO2 このNa型ゼオライト10gを、0.012N硝酸鉄水
溶液1リットルに添加した。60℃にて一昼夜攪拌し、
洗浄、乾燥して触媒1を得た。化学分析の結果、その組
成は無水ベースにおける酸化物のモル比で表わして次の
組成を有していた。
1.0Na2O, Al2O3, 22.8S
iO2 10 g of this Na-type zeolite was added to 1 liter of 0.012N iron nitrate aqueous solution. Stir overnight at 60°C,
Catalyst 1 was obtained by washing and drying. As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

【0031】0.21Fe2O3,0.27Na2O,
Al2O3,23.1SiO2 Feイオンの含有量は1.69wt%であった。
0.21Fe2O3, 0.27Na2O,
The content of Al2O3,23.1SiO2 Fe ions was 1.69 wt%.

【0032】実施例2 実施例1で得られた触媒1の窒素酸化物接触還元能を調
べた。
Example 2 The nitrogen oxide catalytic reduction ability of Catalyst 1 obtained in Example 1 was investigated.

【0033】触媒をプレス成形した後、粉砕して42〜
80メッシュに整粒した。その0.1gを常圧固定床流
通式反応管に充填した。前処理として、Heガス流通下
5℃/minで昇温後、触媒温度500℃で1時間保持
した。Heガス流通下で冷却後、NO:3000ppm
,C2H4:3000ppm,O2:2.0%含有する
Heガスを20ml/minで流通させ、各温度におけ
る定常活性を調べた。このときの空間速度は6000h
r−1であった。定常活性は、各温度で一定間隔で分析
を行い、出口ガス成分が一定組成になった場合のNOか
らN2への転化率で示した。
After press-molding the catalyst, it is pulverized and
The particles were sized to 80 mesh. 0.1 g of the solution was filled into an atmospheric fixed bed flow reaction tube. As a pretreatment, the temperature was raised at 5° C./min under He gas flow, and then the catalyst temperature was maintained at 500° C. for 1 hour. After cooling under He gas flow, NO: 3000ppm
, C2H4: 3000 ppm, O2: 2.0% He gas was flowed at 20 ml/min, and the steady-state activity at each temperature was examined. The space velocity at this time is 6000h
It was r-1. The steady-state activity was analyzed at regular intervals at each temperature, and was expressed as the conversion rate from NO to N2 when the outlet gas component had a constant composition.

【0034】N2への転化率は次式で表される。The conversion rate to N2 is expressed by the following formula.

【0035】 XN2={2×[N2]out/[NO]in}×10
0XN2:NOからN2への転化率 [N2]out:出口ガスのN2濃度 [NO]in:  入口ガスのNO濃度各温度における
N2への転化率を表1に示す。
XN2={2×[N2]out/[NO]in}×10
0XN2: Conversion rate of NO to N2 [N2] out: N2 concentration of outlet gas [NO] in: NO concentration of inlet gas Table 1 shows the conversion rate of NO to N2 at each temperature.

【0036】[0036]

【表1】 比較例1 実施例1で得られたNa型ゼオライト10gを、0.0
24N酢酸銅水溶液1リットルに添加した後、60℃で
一昼夜攪拌し、洗浄、乾燥して比較触媒1を調製した。 化学分析の結果、その組成は無水ベースにおける酸化物
のモル比で表わして次の組成を有していた。
[Table 1] Comparative Example 1 10 g of Na-type zeolite obtained in Example 1 was
After adding it to 1 liter of 24N copper acetate aqueous solution, it was stirred at 60° C. all day and night, washed, and dried to prepare Comparative Catalyst 1. As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

【0037】1.12CuO,0.03Na2O,Al
2O3,23.3SiO2 比較例2 比較例1で得られた比較触媒1を用いて、実施例2と同
様にして比較触媒の接触還元能を調べた。
1.12CuO, 0.03Na2O, Al
2O3,23.3SiO2 Comparative Example 2 Using Comparative Catalyst 1 obtained in Comparative Example 1, the catalytic reduction ability of the comparative catalyst was investigated in the same manner as in Example 2.

【0038】その結果を表2に示す。The results are shown in Table 2.

【0039】[0039]

【表2】 表1,表2から明らかなように、本発明の触媒は、窒素
酸化物、炭化水素及び酸素を含有するガスと接触させる
ことによりガス中の窒素酸化物を低温においても効率よ
く除去できる性能を有する。
[Table 2] As is clear from Tables 1 and 2, the catalyst of the present invention efficiently removes nitrogen oxides from the gas even at low temperatures by contacting it with a gas containing nitrogen oxides, hydrocarbons, and oxygen. It has the ability to remove.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】SiO2/Al2O3モル比が20〜60
のZSM−5に鉄イオンを少なくとも1wt%含有させ
たことを特徴とする、窒素酸化物、炭化水素及び酸素を
含む排ガスから、窒素酸化物を還元除去する触媒。
Claim 1: SiO2/Al2O3 molar ratio is 20 to 60
A catalyst for reducing and removing nitrogen oxides from exhaust gas containing nitrogen oxides, hydrocarbons, and oxygen, characterized in that ZSM-5 containing at least 1 wt% of iron ions.
【請求項2】請求項1に記載の触媒に、窒素酸化物、炭
化水素及び酸素を含む排ガスを接触させることを特徴と
する窒素酸化物還元除去方法。
2. A method for reducing and removing nitrogen oxides, which comprises bringing the catalyst according to claim 1 into contact with exhaust gas containing nitrogen oxides, hydrocarbons, and oxygen.
JP3167501A 1991-06-13 1991-06-13 Catalyst and method for reducing and removing nitrogen oxide Pending JPH04367740A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3167501A JPH04367740A (en) 1991-06-13 1991-06-13 Catalyst and method for reducing and removing nitrogen oxide
JP4174988A JPH05269386A (en) 1991-06-13 1992-06-10 Catalyst for reduction removing nitrogen oxide and method for reduction removing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3167501A JPH04367740A (en) 1991-06-13 1991-06-13 Catalyst and method for reducing and removing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH04367740A true JPH04367740A (en) 1992-12-21

Family

ID=15850857

Family Applications (2)

Application Number Title Priority Date Filing Date
JP3167501A Pending JPH04367740A (en) 1991-06-13 1991-06-13 Catalyst and method for reducing and removing nitrogen oxide
JP4174988A Pending JPH05269386A (en) 1991-06-13 1992-06-10 Catalyst for reduction removing nitrogen oxide and method for reduction removing

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP4174988A Pending JPH05269386A (en) 1991-06-13 1992-06-10 Catalyst for reduction removing nitrogen oxide and method for reduction removing

Country Status (1)

Country Link
JP (2) JPH04367740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330866A (en) * 2006-06-13 2007-12-27 Toyota Motor Corp Adsorbent for treating exhaust

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100527963B1 (en) * 1999-12-31 2005-11-09 현대자동차주식회사 Manufacturing method of hydrothermally stable Fe/ZSM-5 zeolite catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330866A (en) * 2006-06-13 2007-12-27 Toyota Motor Corp Adsorbent for treating exhaust

Also Published As

Publication number Publication date
JPH05269386A (en) 1993-10-19

Similar Documents

Publication Publication Date Title
JP4957176B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
EP0462598B1 (en) Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
JP2928853B2 (en) Nitrogen oxide catalytic cracking catalyst and catalytic cracking method
JPH04219141A (en) Exhaust gas purification catalyst
JPH04367740A (en) Catalyst and method for reducing and removing nitrogen oxide
JPH08173761A (en) Method for removing nitrogen oxide
JPH0516886B2 (en)
JPH07112121A (en) Method for removing nox
JPH06170166A (en) Removal of nitrogen oxide
JPH044045A (en) Catalyst for processing exhaust gas
JP2555637B2 (en) Method for producing copper-containing zeolite
JP3395219B2 (en) Nitrogen oxide removal method
JPH0478444A (en) Catalyst for purification of exhaust gas and its using method
JP3395221B2 (en) Nitrogen oxide removal method
JP3395220B2 (en) Nitrogen oxide removal method
JPH03127629A (en) Direct catalytic cracking catalyst for nitrogen oxides
JP3110921B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3482658B2 (en) Nitrogen oxide removal method
JP3482661B2 (en) Nitrogen oxide removal method
JPH04215847A (en) Nitrogen oxide catalytic cracking catalyst and catalytic cracking method
JPH04193347A (en) Catalyst for purification of exhaust gas
JPH0389942A (en) Exhaust gas purifying catalyst and purifying method with it utilized therefor
JPH06238131A (en) Removing method for nitrogen oxide
JPH03293041A (en) Catalyst for catalytic decomposition of nitrogen oxide and catalytic decomposition method
JPH0760059A (en) Removing process for nitrogen oxide