JPH04362009A - Production of fine particle beta type silicon carbide - Google Patents

Production of fine particle beta type silicon carbide

Info

Publication number
JPH04362009A
JPH04362009A JP3159691A JP15969191A JPH04362009A JP H04362009 A JPH04362009 A JP H04362009A JP 3159691 A JP3159691 A JP 3159691A JP 15969191 A JP15969191 A JP 15969191A JP H04362009 A JPH04362009 A JP H04362009A
Authority
JP
Japan
Prior art keywords
raw material
silicon carbide
carbon black
silicon
type silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3159691A
Other languages
Japanese (ja)
Inventor
Akira Yamakawa
山川 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP3159691A priority Critical patent/JPH04362009A/en
Publication of JPH04362009A publication Critical patent/JPH04362009A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/97Preparation from SiO or SiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Abstract

PURPOSE:To effectively produce fine particle beta type silicon carbide of good quality by a reduction carbonization process using a raw material system of uniform, fine complex composition. CONSTITUTION:Silica sol water solution and benzene are sprayed to a high temp. combustion gas flow flowing through a closed cylindrical furnace to prepare a raw material compound system consisting of silicon dioxide/carbon black by thermal decomposition reaction. The raw material compound system thermally reacts at 1300 to 3000 deg.C in an atmosphere of gaseous nitrogen. It is desirable that the raw material is prepared, composed of 60 to 100 pts.wt. of carbon black and 100 pts.wt. of silicon dioxide and is previously granulated or green compact molding treated before the thermal reaction.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、均質で微細な複合組成
の原料系を用いて還元炭化プロセスにより良質性状の微
粒子状β型炭化珪素を効率よく製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently producing fine particulate β-type silicon carbide of good quality by a reductive carbonization process using a homogeneous and fine raw material system with a complex composition.

【0002】0002

【従来の技術】従来、炭化珪素粉末を製造する方法とし
て、珪素酸化物を炭材とともに加熱処理する還元炭化法
、ハロゲン化珪素化合物と炭化水素を気相系で加熱反応
させる気相反応法、有機珪素化合物を熱分解反応させる
熱分解法が知られている。このうち気相反応法および熱
分解法は、サブミクロン級もしくはそれを下廻る微粒子
状の炭化珪素を純度よく生成させることが可能であるが
、原料となるハロゲン化珪素化合物や有機珪素化合物が
高価で取扱い難い物質であるうえに生成収率が低いため
、工業的な生産手段としては問題が多い。
[Prior Art] Conventionally, methods for producing silicon carbide powder include a reduction carbonization method in which silicon oxide is heat-treated together with a carbon material, a gas phase reaction method in which a halogenated silicon compound and a hydrocarbon are heated and reacted in a gas phase system, A thermal decomposition method is known in which an organic silicon compound is subjected to a thermal decomposition reaction. Among these methods, the gas phase reaction method and the thermal decomposition method are capable of producing silicon carbide in the form of submicron or smaller particles with high purity, but the raw materials, such as silicon halide compounds and organosilicon compounds, are expensive. It is a difficult substance to handle, and the production yield is low, so there are many problems as an industrial production method.

【0003】この点、還元炭化法は古くからアチソン法
と呼ばれる比較的単純な炉操業で量産できるため、現在
でも炭化珪素粉末を製造するための基本技術とされてい
る。しかしながら、この方法は一旦、炭化珪素のインゴ
ットを生成させたのち粉砕、分級工程を反復して所望の
粒度に調製するプロセスが採られているため、得られる
粉末粒度には限界があり、また粉砕過程等で不純物が混
入する関係で高純度のものが生産できない欠点がある。
[0003] In this respect, the reduction carbonization method has long been known as the Acheson method, and it is still considered the basic technology for producing silicon carbide powder because it can be mass-produced using a relatively simple furnace operation. However, this method involves the process of producing a silicon carbide ingot and then repeating the crushing and classification steps to adjust it to the desired particle size, so there is a limit to the powder particle size that can be obtained. The drawback is that it is not possible to produce highly pure products due to impurities being mixed in during the process.

【0004】その後、各産業分野においてサブミクロン
級の微粒子状で純度の高い炭化珪素の開発要求が高まり
、この対応として還元炭化法を基本技術としながら原料
系を種々の組成あるいは形態に変える炭化珪素粉末の製
造方法が提案されている。例えば、(1) シリカ粉末
とカーボンブラックを炭素系バインダー等により造粒成
形したのち加熱還元する方法(特開昭59−39709
 号公報) 、(2) シリカ源溶液に炭素または炭素
化合物を均一に分散もしくは溶解し、ゲル化して乾燥さ
せたのち炭化珪素を合成する方法(特開昭58−104
010号公報) 、(3) 水蒸気を含む熱ガス中に四
塩化珪素、トリクロロシランのような分解性の珪素化合
物とメタノール、ベンゼン、灯油、クレオソート油など
の炭化水素化合物を送入して珪素酸化物と単体炭素を含
む混合エーロゾルを生成捕集し、該エーロゾルを強熱す
ることにより比表面積の高い炭化珪素粉末を生成する方
法(特開昭58−213621号公報) 等がこれにあ
たる。
[0004] Subsequently, the demand for the development of highly pure silicon carbide in the form of submicron-level particles increased in various industrial fields, and in response to this demand, silicon carbide was developed by changing the raw material system to various compositions and forms while using the reduction carbonization method as the basic technology. A method for producing powder has been proposed. For example, (1) a method in which silica powder and carbon black are granulated with a carbon-based binder, etc., and then heated and reduced (Japanese Patent Laid-Open No. 59-39709
(2) A method of uniformly dispersing or dissolving carbon or a carbon compound in a silica source solution, gelling it, drying it, and then synthesizing silicon carbide (Japanese Unexamined Patent Publication No. 58-104)
010 Publication), (3) Decomposable silicon compounds such as silicon tetrachloride and trichlorosilane and hydrocarbon compounds such as methanol, benzene, kerosene, and creosote oil are introduced into hot gas containing water vapor to produce silicon. This method includes a method in which a mixed aerosol containing oxides and elemental carbon is generated and collected, and the aerosol is ignited to produce silicon carbide powder with a high specific surface area (Japanese Patent Application Laid-Open No. 58-213621).

【0005】[0005]

【発明が解決しようとする課題】ところが、上記(1)
 の方法では珪素源原料粉末と炭材粉末とを機械的攪拌
により混合するに際し、十分に均質な分散状態を得るた
めに厳しい条件と長期の混合時間を必要とするため工業
的な原料調製手段としては好ましくない。(2) の方
法による場合には、シリカ源溶液と炭素または炭素化合
物を混合する際に界面活性剤を添加しないと分散性が向
上しない。原料成分を規制することによって界面活性剤
の添加を省略することもできるが、原料が著しく制約さ
れることになり、また均一混合原料を調製した後におい
てもpH調整によりゲル化する工程が必要になる等、工
程の煩雑化は免れない。さらに(3) の方法において
は、均一混合原料をある程度連続的に調製することは可
能となるが、分解性珪素化合物に取扱い難いハロゲン化
物を含むため、装置の複雑化と操業面での煩雑性は避け
られない。
[Problem to be solved by the invention] However, the above (1)
This method requires severe conditions and long mixing times to obtain a sufficiently homogeneous dispersion state when mixing the silicon source raw material powder and the carbonaceous powder by mechanical stirring, so it is not recommended as an industrial raw material preparation method. is not desirable. In the case of method (2), dispersibility does not improve unless a surfactant is added when mixing the silica source solution and carbon or a carbon compound. Although it is possible to omit the addition of a surfactant by regulating the raw material components, the raw materials are severely restricted, and even after preparing a homogeneous mixed raw material, a gelation process by adjusting the pH is required. As a result, the process becomes unavoidably complicated. Furthermore, in the method (3), it is possible to prepare a homogeneous mixed raw material to some extent continuously, but the decomposable silicon compound contains a halide that is difficult to handle, making the equipment complicated and the operation complicated. is unavoidable.

【0006】発明者は、高温燃焼ガス流に珪素含有溶液
と炭化水素を導入させると前記のような問題を伴わずに
操業性よく均質分散系の複合組成原料を得ることができ
ることを知見して本発明の開発に至ったもので、その目
的は均質で微細な複合組成の原料系を用いて還元炭化プ
ロセスにより良質性状の微粒子状β型炭化珪素を効率よ
く製造する方法を提供することにある。
[0006] The inventor found that by introducing a silicon-containing solution and a hydrocarbon into a high-temperature combustion gas stream, it is possible to obtain a homogeneously dispersed composite composition raw material with good operability and without the above-mentioned problems. The present invention has been developed, and its purpose is to provide a method for efficiently producing fine-grained β-type silicon carbide with good properties through a reductive carbonization process using a homogeneous and fine raw material system with a composite composition. .

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による微粒子状β型炭化珪素の製造方法は、
密閉円筒炉内を流通する高温燃焼ガス流に珪素含有溶液
と炭化水素を同一もしくは別の位置から噴霧して熱分解
反応により二酸化珪素とカーボンブラックが混在する組
成の複合系原料を調製し、該複合原料を非酸化性雰囲気
中で1300〜2000℃の温度域で加熱反応させるこ
とを構成上の特徴とする。
[Means for Solving the Problems] A method for producing particulate β-type silicon carbide according to the present invention to achieve the above objects includes:
A silicon-containing solution and a hydrocarbon are sprayed from the same or different positions into a high-temperature combustion gas flow flowing in a closed cylindrical furnace, and a composite raw material containing a mixture of silicon dioxide and carbon black is prepared by a thermal decomposition reaction. The structural feature is that the composite raw material is heated and reacted in a temperature range of 1300 to 2000°C in a non-oxidizing atmosphere.

【0008】密閉筒炉内を流通する高温燃焼ガス流は、
燃料用炭化水素を酸素含有気流と共に炉頭部に噴射して
完全燃焼させることによって形成する。装置としては、
頭部燃焼室と円筒反応室が連結した形態を有するカーボ
ンブラック発生炉と同一設計の構造炉が有効に適用され
る。燃料油には、軽油、重油、クレオソート油、エチレ
ンボトム油などカーボンブラック製造用として常用され
る油状炭化水素を用いることもできるが、生成させる二
酸化珪素に高純度を付与する面からはプロパン、メタン
、ブタン等のガス状炭化水素を使用することが望ましい
。炉内の温度は、少なくとも珪素含有溶液を噴霧する位
置において1300℃以上の高温水準を保持する必要が
ある。
[0008] The high temperature combustion gas flow flowing in the closed cylinder furnace is
It is formed by injecting fuel hydrocarbons together with an oxygen-containing air stream into the reactor head for complete combustion. As a device,
A structural furnace having the same design as a carbon black generating furnace having a configuration in which a head combustion chamber and a cylindrical reaction chamber are connected can be effectively applied. As the fuel oil, oily hydrocarbons commonly used for producing carbon black, such as light oil, heavy oil, creosote oil, and ethylene bottom oil, can be used, but propane, Preferably, gaseous hydrocarbons such as methane, butane, etc. are used. The temperature inside the furnace needs to be maintained at a high temperature level of 1300° C. or higher at least at the position where the silicon-containing solution is sprayed.

【0009】珪素含有溶液としては、例えばシリカゾル
の水溶液、イオン交換樹脂処理を施してナトリウム等の
不純物を除去した水ガラス水溶液、アルコキシシラン溶
液等が使用される。これらの珪素含有溶液は、高温燃焼
ガス流と同軸もしくは直角方向から窒素ガスなどに同伴
させながら二流体式の噴霧ノズルを用いて炉内に噴霧す
る。珪素含有溶液の濃度は20〜80%とすることが好
ましく、この範囲を外れると脱アルカリ化に長時間を要
したり噴霧導入が困難になる等の不都合な結果を招く。
As the silicon-containing solution, for example, an aqueous solution of silica sol, an aqueous water glass solution treated with an ion exchange resin to remove impurities such as sodium, an alkoxysilane solution, etc. are used. These silicon-containing solutions are sprayed into the furnace using a two-fluid spray nozzle while being entrained by nitrogen gas or the like from the same axis or perpendicular direction to the high-temperature combustion gas flow. The concentration of the silicon-containing solution is preferably 20 to 80%, and if it is out of this range, disadvantageous results will occur such as a long time being required for dealkalization and difficulty in spray introduction.

【0010】カーボンブラックを生成させるための原料
となる炭化水素としては、例えばスチレンモノマー、ベ
ンゼン、エチレンボトム油、クレオソート油などが好適
に用いられる。
[0010] As the hydrocarbon which is a raw material for producing carbon black, for example, styrene monomer, benzene, ethylene bottom oil, creosote oil, etc. are suitably used.

【0011】これら炭化水素は、前記珪素含有溶液と同
一または別の位置から炉内に噴霧される。同一位置から
噴霧する場合には、原料成分を混合または懸濁した状態
で同一噴霧ノズルから噴射し、別の位置から導入する際
には各成分毎に別の噴霧ノズルを介して炉内に噴射する
。炉内に噴霧された珪素含有溶液および炭化水素は、急
速に熱分解して高純度で微粒子状の二酸化珪素とカーボ
ンブラックに転化する。これら成分を引続き一定時間高
温炉内に滞留させると、二酸化珪素とカーボンブラック
が混在する組成からなる複合系原料が調製される。
These hydrocarbons are sprayed into the furnace from the same or different location as the silicon-containing solution. When spraying from the same location, the raw material components are mixed or suspended and sprayed from the same spray nozzle; when introduced from different locations, each component is injected into the furnace through a separate spray nozzle. do. The silicon-containing solution and hydrocarbons sprayed into the furnace are rapidly thermally decomposed and converted into high purity, finely divided silicon dioxide and carbon black. When these components are allowed to remain in the high-temperature furnace for a certain period of time, a composite raw material containing a mixture of silicon dioxide and carbon black is prepared.

【0012】上記の工程において、炭化水素の炉内供給
量を制御することにより二酸化珪素とカーボンブラック
の混合割合を所望の比率に調整することができ、また炭
化水素供給量や炉内温度等の条件制御によってカーボン
ブラックの特性を調整することが可能となる。
In the above process, the mixing ratio of silicon dioxide and carbon black can be adjusted to a desired ratio by controlling the amount of hydrocarbons fed into the furnace, and the amount of hydrocarbons fed, the temperature inside the furnace, etc. It becomes possible to adjust the properties of carbon black by controlling the conditions.

【0013】複合系原料の成分比率は、二酸化珪素 1
00重量部に対してカーボンブラックが60〜100 
重量部の混在組成になるように調整することが好ましい
。カーボンブラックの混在比率が60重量部を下廻ると
生成する微粒子状炭化珪素に二酸化珪素粉末が混在する
うえ、炭化珪素の生成反応に寄与しない一酸化珪素の揮
散ガスが増加して結果的に炭化珪素の収率が低下する。 カーボンブラックをSiO2 :Cの反応モル比以上に
設定するのは、前記の理由の外にカーボン成分の混在化
が炭化珪素の粒成長を防止して微細な粉末として生成さ
せるために有効であるが、カーボンブラックの混在比率
が 100重量部を越えると未反応カーボン成分の残留
が多くなり過ぎて、分離工程が煩雑となる。
[0013] The component ratio of the composite raw material is silicon dioxide 1
Carbon black is 60 to 100 parts by weight
It is preferable to adjust the composition to have a mixture of parts by weight. When the mixing ratio of carbon black is less than 60 parts by weight, silicon dioxide powder is mixed in the fine particulate silicon carbide produced, and the volatilized gas of silicon monoxide that does not contribute to the silicon carbide production reaction increases, resulting in carbonization. Silicon yield decreases. The reason why carbon black is set at a reaction molar ratio of SiO2:C or higher is that, in addition to the above reasons, the inclusion of carbon components is effective in preventing grain growth of silicon carbide and producing it as a fine powder. If the mixing ratio of carbon black exceeds 100 parts by weight, too much unreacted carbon component remains, making the separation process complicated.

【0014】生成した複合系原料は粉末としてそのまま
加熱反応に供することもできるが、この状態では嵩密度
が大きいために反応容器への充填効率が低下すると共に
、充填組織中に空隙部分が多くなって生成炭化珪素が結
晶成長によりウイスカーに転化して混在するようになる
。このような危惧をなくし、ハンドリング等の操業性を
高めるため、複合系粉末を一旦、造粒もしくは圧粉成形
してペレット状にすることが好適な原料性状となる。 この場合の造粒化は水などの造粒媒体を用いて湿式転動
する方法、また圧粉成形は通常の錠剤成形手段によって
おこなうことができる。
[0014] The produced composite raw material can be directly subjected to a heating reaction as a powder, but in this state, the bulk density is large, so the filling efficiency into the reaction vessel is reduced, and the filling structure has many voids. The silicon carbide produced during this process is converted into whiskers due to crystal growth and becomes mixed therein. In order to eliminate such concerns and improve operability such as handling, it is preferable to first granulate or compact the composite powder to form pellets. In this case, granulation can be carried out by wet rolling using a granulating medium such as water, and powder compaction can be carried out by ordinary tablet forming means.

【0015】上記の工程で調製された二酸化珪素/カー
ボンブラックからなる複合系原料は、黒鉛のような高耐
熱性材料で構成された反応容器に充填密閉し、非酸化性
雰囲気中で1300〜2000℃の温度域で加熱反応さ
せる。反応後、反応容器内に残留する未反応のカーボン
ブラック成分は大気中での燃焼処理によって除去する。
[0015] The composite raw material consisting of silicon dioxide/carbon black prepared in the above process is filled into a reaction vessel made of a highly heat-resistant material such as graphite and sealed, and heated to 1,300 to 2,000 ℃ in a non-oxidizing atmosphere. The reaction is carried out by heating in the temperature range of ℃. After the reaction, unreacted carbon black components remaining in the reaction vessel are removed by combustion treatment in the atmosphere.

【0016】このようにして製造される炭化珪素は、粒
子径 0.6μm以下の微粒子状β−SiCの均質粉末
である。
The silicon carbide produced in this manner is a homogeneous powder of fine particles of β-SiC with a particle size of 0.6 μm or less.

【0017】[0017]

【作用】本発明の原料を構成する複合組成は、珪素含有
溶液と炭化水素の熱分解を介して、極めて操業性よく均
質な分散状態と所望の組成比を備える二酸化珪素/カー
ボンブラック系の混在組成として調整することができる
。したがって、この複合系原料を加熱反応させることに
より還元炭化が円滑かつ迅速に進行し、常に良質性状の
微粒子状β型炭化珪素に転化させることが可能となる。
[Operation] The composite composition constituting the raw material of the present invention is a mixture of silicon dioxide/carbon black that has a homogeneous dispersion state with excellent operability and a desired composition ratio through thermal decomposition of a silicon-containing solution and a hydrocarbon. The composition can be adjusted. Therefore, by subjecting this composite raw material to a heating reaction, reduction carbonization proceeds smoothly and quickly, and it becomes possible to always convert it into fine particulate β-type silicon carbide with good quality properties.

【0018】[0018]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1〜4 炉頭部に燃焼バーナーおよび炭化水素噴射ノズルを備え
る燃焼室(直径200mm、長さ500mm)と、該燃
焼室と同軸的に連結する狭径反応室(直径80mm、長
さ150mm)ならびに広径反応室 (直径120mm
 、長さ1800mm) とから構成されたカーボンブ
ラック発生炉と同形態の横型密閉円筒炉において、炉頭
部から 550mm下流位置に珪素含有溶液用の噴霧ノ
ズル、同 700mm下流位置にカーボンブラック生成
用炭化水素の噴霧ノズルをそれぞれセットし、広径反応
室の後部位置に反応停止用の冷却水注入ノズルを設置し
た。
[Examples] Examples of the present invention will be explained below in comparison with comparative examples. Examples 1 to 4 A combustion chamber (diameter 200 mm, length 500 mm) equipped with a combustion burner and a hydrocarbon injection nozzle at the furnace head, and a narrow-diameter reaction chamber (diameter 80 mm, length 150 mm) coaxially connected to the combustion chamber. ) and wide diameter reaction chamber (diameter 120mm
In a horizontal closed cylindrical furnace of the same type as the carbon black generating furnace, it is constructed of a carbon black generating furnace, with a spray nozzle for a silicon-containing solution located 550 mm downstream from the furnace head, and a carbonization nozzle for carbon black generation located 700 mm downstream from the furnace head. Hydrogen spray nozzles were set, and a cooling water injection nozzle for stopping the reaction was installed at the rear of the wide-diameter reaction chamber.

【0019】原料成分は、珪素含有溶液としてシリカゾ
ル〔電化工業(株)製“アデライトAT−30 ”〕の
水溶液を用い、カーボンブラック生成用炭化水素として
ベンゼンを使用し、また燃料炭化水素にはプロパンを用
いた。
As for the raw material components, an aqueous solution of silica sol ("Adelite AT-30" manufactured by Denka Kogyo Co., Ltd.) is used as a silicon-containing solution, benzene is used as a hydrocarbon for producing carbon black, and propane is used as a fuel hydrocarbon. was used.

【0020】上記の炉および原料成分を用い、表1に示
す各種の生成条件により二酸化珪素とカーボンブラック
からなる組成の複合系原料を調製し、得られた複合系原
料の特性を生成条件と対比して同表に示した。なお、表
1中「CB」は「カーボンブラック」を指す(以下同じ
)。
[0020] Using the above-mentioned furnace and raw material components, a composite raw material having a composition consisting of silicon dioxide and carbon black was prepared under various production conditions shown in Table 1, and the characteristics of the obtained composite raw material were compared with the production conditions. and shown in the same table. In addition, "CB" in Table 1 refers to "carbon black" (the same applies hereinafter).

【0021】上記のように調製した各複合系原料を直径
20mmの金型を用いて100kg/cm2 の成形圧
により錠剤状に成形したのち黒鉛製反応容器に充填し、
上部に黒鉛蓋を被せて窒素ガス雰囲気に保持された電気
抵抗加熱炉に移し1650℃の温度で2時間加熱反応さ
せた。加熱反応後、反応容器から内容物を回収して粉砕
し、ついで大気中で 600℃の温度に熱処理して残留
する未反応のカーボンブラック成分を燃焼除去した。こ
のようにして得られた各炭化珪素粉末の性状および生成
収率を表2に示した。なお表2の性状のうち、粒子径は
ミクロンフォトサイザー〔(株)セイシン企業製、SK
C−2000〕を用いて沈降法により測定し、生成収率
は二酸化珪素原料から理論的に生成される炭化珪素重量
(Wt)と生成した炭化珪素(Wa)の比率(Wa/W
t×100)として示した。
[0021] Each of the composite raw materials prepared as described above was molded into a tablet shape using a mold with a diameter of 20 mm under a molding pressure of 100 kg/cm2, and then filled into a graphite reaction container.
The upper part was covered with a graphite lid, and the mixture was transferred to an electric resistance heating furnace maintained in a nitrogen gas atmosphere, and heated and reacted at a temperature of 1650° C. for 2 hours. After the heating reaction, the contents were recovered from the reaction vessel and pulverized, and then heat treated in the atmosphere at a temperature of 600°C to burn off remaining unreacted carbon black components. Table 2 shows the properties and production yield of each silicon carbide powder thus obtained. In addition, among the properties in Table 2, the particle size is the micron photosizer [manufactured by Seishin Enterprise Co., Ltd., SK
C-2000] by the sedimentation method, and the production yield is the ratio of the weight of silicon carbide theoretically produced from the silicon dioxide raw material (Wt) to the produced silicon carbide (Wa) (Wa/W
t×100).

【0022】[0022]

【表1】[Table 1]

【0023】[0023]

【表2】[Table 2]

【0024】表2の結果から、本発明による複合系原料
の組成要件を満たす各実施例は粒子径 0.6μm 以
下の均質な微粒子状β型炭化珪素が得られることが判る
。しかし、SiO2 :Cの重量比が 100:60未
満の比較例1では未反応の二酸化珪素が混在するととも
に生成収率が減退し、また前記Cの重量比が 100を
越える比較例2ではカーボンブラックの残留量が多くな
って操業性を低下させる傾向を示した。
From the results in Table 2, it can be seen that in each of the Examples satisfying the compositional requirements of the composite raw material according to the present invention, homogeneous fine particulate β-type silicon carbide with a particle size of 0.6 μm or less can be obtained. However, in Comparative Example 1 where the weight ratio of SiO2:C is less than 100:60, unreacted silicon dioxide is mixed and the production yield is reduced, and in Comparative Example 2 where the weight ratio of C is over 100, carbon black is produced. There was a tendency for the residual amount to increase and reduce operability.

【0025】比較例粒度 170μm の珪砂粉末 (
サラワクサンド) と窒素吸着比表面積27m2/g、
よう素吸着量62mg/g、DBP吸油量87ml/1
00g のカーボンブラック〔東海カーボン(株)製“
シーストV”〕を重量比で100 :60の割合で配合
し、V型混合機で攪拌混合した。この混合粉末を実施例
と同様に圧粉成形して錠剤状原料を作製し、実施例と同
一条件で加熱反応させて炭化珪素を生成させた。
Comparative Example: Silica sand powder with a particle size of 170 μm (
Sarawak Sand) and nitrogen adsorption specific surface area 27m2/g,
Iodine adsorption amount 62mg/g, DBP oil absorption amount 87ml/1
00g of carbon black (manufactured by Tokai Carbon Co., Ltd.)
Sheest V"] was blended at a weight ratio of 100:60 and stirred and mixed using a V-type mixer. This mixed powder was compacted in the same manner as in the example to prepare a tablet-shaped raw material. A heating reaction was performed under the same conditions to produce silicon carbide.

【0026】得られた炭化珪素は平均粒子径が 1.2
μm の粉末で粒度が不均質であり、生成物中に未反応
の二酸化珪素粉末の混在が認められた。
The obtained silicon carbide has an average particle diameter of 1.2
The particle size of the powder was non-uniform, and unreacted silicon dioxide powder was observed to be present in the product.

【0027】[0027]

【発明の効果】以上のとおり、本発明に従えば優れた操
業性で調製されたミクロな均質分散状態を有する二酸化
珪素とカーボンブラックが混在する組成の複合系原料を
用いて還元炭化プロセスを適用するることにより、サブ
ミクロン級の高品質な微粒子状β型炭化珪素を効率よく
製造することができる。
[Effects of the Invention] As described above, according to the present invention, a reductive carbonization process is applied using a composite raw material containing a mixed composition of silicon dioxide and carbon black, which has a micro homogeneous dispersion state and is prepared with excellent operability. By doing so, it is possible to efficiently produce submicron-level high-quality fine particulate β-type silicon carbide.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  密閉円筒炉内を流通する高温燃焼ガス
流に珪素含有溶液と炭化水素を同一もしくは別の位置か
ら噴霧して熱分解反応により二酸化珪素とカーボンブラ
ックが混在する組成の複合系原料を調製し、該複合系原
料を非酸化雰囲気中で1300〜2000℃の温度域で
加熱反応させることを特徴とする微粒子状β型炭化珪素
の製造方法。
Claim 1: A composite raw material having a composition in which silicon dioxide and carbon black are mixed through a thermal decomposition reaction by spraying a silicon-containing solution and a hydrocarbon from the same or different positions into a high-temperature combustion gas flow flowing in a closed cylindrical furnace. 1. A method for producing particulate β-type silicon carbide, which comprises preparing a composite raw material and subjecting the composite raw material to a heating reaction in a temperature range of 1300 to 2000°C in a non-oxidizing atmosphere.
【請求項2】  複合系原料を、二酸化珪素 100重
量部に対しカーボンブラック60〜100 重量部の混
在組成に調製する請求項1記載の微粒子状β型炭化珪素
の製造方法。
2. The method for producing particulate β-type silicon carbide according to claim 1, wherein the composite raw material is prepared to have a mixed composition of 60 to 100 parts by weight of carbon black to 100 parts by weight of silicon dioxide.
【請求項3】  調製した複合系原料を、加熱反応前に
造粒もしくは圧粉成形処理する請求項1または2記載の
微粒子状β型炭化珪素の製造方法。
3. The method for producing particulate β-type silicon carbide according to claim 1 or 2, wherein the prepared composite raw material is granulated or compacted before the heating reaction.
JP3159691A 1991-06-04 1991-06-04 Production of fine particle beta type silicon carbide Pending JPH04362009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3159691A JPH04362009A (en) 1991-06-04 1991-06-04 Production of fine particle beta type silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3159691A JPH04362009A (en) 1991-06-04 1991-06-04 Production of fine particle beta type silicon carbide

Publications (1)

Publication Number Publication Date
JPH04362009A true JPH04362009A (en) 1992-12-15

Family

ID=15699215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3159691A Pending JPH04362009A (en) 1991-06-04 1991-06-04 Production of fine particle beta type silicon carbide

Country Status (1)

Country Link
JP (1) JPH04362009A (en)

Similar Documents

Publication Publication Date Title
US5340417A (en) Process for preparing silicon carbide by carbothermal reduction
US4529575A (en) Process for producing ultrafine silicon carbide powder
US5190737A (en) High yield manufacturing process for silicon carbide
Koc et al. Synthesis of beta silicon carbide powders using carbon coated fumed silica
WO1983004188A1 (en) Process for manufacturing metal carbides and their precursors
US5070049A (en) Starting composition for the production of silicon carbide and method of producing the same
US4217335A (en) Process for producing β-silicon carbide fine powder
JPH0411519B2 (en)
EP0453516B1 (en) Process for preparing silicon carbide
JPH04362009A (en) Production of fine particle beta type silicon carbide
JPH06166510A (en) Production of silicon carbide fine powder
JP3154773B2 (en) Method for producing particulate silicon carbide
JPH0118005B2 (en)
JP4111478B2 (en) Method for producing silicon carbide microspheres
JPS63147811A (en) Production of fine sic powder
JP2536849B2 (en) Β-crystal silicon carbide powder for sintering
JPH03358B2 (en)
JPH04270199A (en) Production of silicon carbide whisker
JPS5939709A (en) Manufacture of hyperfine silicon carbide powder
JPS63297205A (en) Production of nitride
JPH04160012A (en) Production of fine born carbide powder
JP2002316812A (en) Method for producing silicon carbide fine powder
JPH01172205A (en) Raw material composition for producing metal carbide
JPH03232800A (en) Production of silicon carbide whisker
JPH022802B2 (en)