JPH04160012A - Production of fine born carbide powder - Google Patents

Production of fine born carbide powder

Info

Publication number
JPH04160012A
JPH04160012A JP2284492A JP28449290A JPH04160012A JP H04160012 A JPH04160012 A JP H04160012A JP 2284492 A JP2284492 A JP 2284492A JP 28449290 A JP28449290 A JP 28449290A JP H04160012 A JPH04160012 A JP H04160012A
Authority
JP
Japan
Prior art keywords
boron carbide
boron
powder
particle size
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2284492A
Other languages
Japanese (ja)
Other versions
JP2911207B2 (en
Inventor
Fumio Hatakeyama
文夫 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2284492A priority Critical patent/JP2911207B2/en
Publication of JPH04160012A publication Critical patent/JPH04160012A/en
Application granted granted Critical
Publication of JP2911207B2 publication Critical patent/JP2911207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain fine boron carbide particles by previously mixing boron carbide powder with starting materials and heating the mixture when boron carbide is further newly produced with a boron source and a carbon source as the starting materials. CONSTITUTION:When boron carbide is produced with a boron source such as metallic boron and a carbon source such as carbon black as starting materials, boron carbide powder of <=10mum particle diameter is previously mixed with the starting materials by 5-60 pts.wt. per 100 pts.wt. boron carbide newly formed by a reaction, and the mixture is fired at 1,500-2,000 deg.C in an inert gaseous atmosphere optionally after pelletizing to obtain fine boron carbide powder of about 1.5-2.5mum primary particle diameter.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は研磨材、熱中性子吸収材、焼結体を製造するに
好適な原料となる炭化ホウ素微粉末の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing fine boron carbide powder, which is a suitable raw material for producing abrasives, thermal neutron absorbers, and sintered bodies.

[従来の技術] 炭化ホウ素の従来の製造方法には(イ)ホウ素化合物を
炭素と反応させる方法、(ロ)ホウ素化合物を炭素と金
属Mgとで反応させる方法、(ハ)金属ホウ素と炭素と
の反応による方法、(ニ)BCl2およびCH4等を用
いて気相反応させる方法等が知られている。
[Prior Art] Conventional methods for producing boron carbide include (a) a method of reacting a boron compound with carbon, (b) a method of reacting a boron compound with carbon and metal Mg, and (c) a method of reacting a boron compound with carbon. (d) A method of performing a gas phase reaction using BCl2, CH4, etc. are known.

(イ)の方法では、酸化ホウ素等のホウ素化合物に炭素
材料を配合し、アーク炉等で2000℃もしくはそれ以
上の高温で還元、炭化させる方法で、最も一般的な製造
方法である(特公昭49−44880、特開昭48−3
9400 )。
In method (a), a carbon material is blended with a boron compound such as boron oxide, and the mixture is reduced and carbonized at a high temperature of 2000°C or higher in an arc furnace or the like, and is the most common manufacturing method (Tokuko Showa). 49-44880, Japanese Patent Publication No. 48-3
9400).

[発明が解決しようとする課題] ホウ素化合物を炭素とアーク炉を用いて反応させて炭化
ホウ素を造ると、電極下部に溶融、凝固した塊状の炭化
ホウ素が生成する。その粉末を得る場合には、それを所
望の粒度に粉砕するが、炭化ホウ素自体は高硬度のため
、インゴットを微粉にまで粉砕するのに多大なエネルギ
ーを要し、更に、長時間粉砕を要するため純度を低下さ
せ、不純物除去のため酸洗等の処理が必要であり、高純
度微粉を得るのは極めて収率が悪い。
[Problems to be Solved by the Invention] When boron carbide is produced by reacting a boron compound with carbon using an arc furnace, a lump of molten and solidified boron carbide is produced at the bottom of the electrode. To obtain the powder, it is ground to the desired particle size, but since boron carbide itself is highly hard, it takes a lot of energy to grind the ingot into a fine powder, and it also requires a long time of grinding. Therefore, the purity is lowered, and treatments such as pickling are required to remove impurities, and the yield of obtaining high-purity fine powder is extremely low.

前述の特公昭49−44880ではアーク炉の代わりに
誘導炉を用いて、不活性ガス中で1700〜2000℃
に加熱し炭化ホウ素微粉末を得ているが、その粒度は1
〜150umと粗く、場合により5〜10μmの細粉を
得ているが微粉末とはいい難い。
In the aforementioned Japanese Patent Publication No. 49-44880, an induction furnace was used instead of an arc furnace, and the heating temperature was 1700 to 2000°C in an inert gas.
Boron carbide fine powder is obtained by heating to
Although coarse powder of ~150 μm and fine powder of 5 to 10 μm was obtained in some cases, it is difficult to call it a fine powder.

また、ホウ素化合物を炭素と金JtEMgとで還元、炭
化する方法(特公昭41−15166 、特公昭41−
15167、特開昭57−17571.7、特開昭60
−46909、特開昭60−46910 )ではホウ素
化合物を単に炭素とで反応させる方法に比べ低温で炭化
ホウ素が合成できるが、その粒度の記載は見られない。
Also, a method of reducing and carbonizing boron compounds with carbon and gold JtEMg (Japanese Patent Publication No. 41-15166, Japanese Patent Publication No. 41-1979)
15167, JP-A-57-17571.7, JP-A-60
46909, JP-A No. 60-46910), boron carbide can be synthesized at a lower temperature than a method in which a boron compound is simply reacted with carbon, but there is no description of its particle size.

この方法では、炉内反応帯体積の75〜80 vo1%
を反応副生成物であるMgOが占め、焼成反応1バッチ
当りの実質的な炭化ホウ素の収量は極めて少なく、また
、反応が暴走したりガスの急膨張が起こり、試料の飛散
しやすい欠点がある。この後者の欠点を解決するために
、MgO等の希釈剤を加えて反応を緩慢に進ませたり、
触媒として金属硫酸塩を加えて、より低温で反応させて
改良をはかっているが、それによって更に収量を低下さ
せている。
In this method, 75 to 80 vol% of the reactor reaction zone volume
is dominated by MgO, a reaction by-product, and the actual yield of boron carbide per batch of calcination reaction is extremely small.In addition, there is a drawback that the reaction runs out of control, rapid gas expansion occurs, and the sample is easily scattered. . In order to solve this latter drawback, the reaction may be slowed down by adding a diluent such as MgO, or
Improvements have been made by adding metal sulfates as catalysts and allowing the reaction to occur at lower temperatures, but this further reduces yields.

本発明の目的は、従来製法の上記の種々の問題を解決し
、安価に炭化ホウ素微粉末を造ることにある。
The purpose of the present invention is to solve the various problems mentioned above in conventional manufacturing methods and to produce fine boron carbide powder at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は上記の目的を達成すべくいろいろ検討した結
果、微粒子化促進剤として炭化ホウ素粉末を前・もって
原料に添加しておく製法、すなわち、ホウ素源と炭素源
とを原料とする炭化ホウ素の製造方法において、反応に
より新たに生成する炭化ホウ素1100重量部に対し、
5〜60重量部の炭化ホウ素粉末を前記原料に混合した
後、不活性ガス雰囲気中で1500〜2000℃にて加
熱することを特徴とする炭化ホウ素微粉末の製造方法を
見出した。
As a result of various studies to achieve the above object, the inventor of the present invention has developed a manufacturing method in which boron carbide powder is added to the raw material as a microparticulation accelerator in advance, that is, boron carbide using a boron source and a carbon source as raw materials. In the production method, for 1100 parts by weight of boron carbide newly produced by the reaction,
We have found a method for producing fine boron carbide powder, which comprises mixing 5 to 60 parts by weight of boron carbide powder with the raw material and then heating the mixture at 1500 to 2000°C in an inert gas atmosphere.

原料であるホウ素源としては、金属ホウ素、酸化ホウ素
もしくは熱分解後酸化ホウ素等を生成する化合物を用い
る。
As the boron source, which is a raw material, metal boron, boron oxide, or a compound that produces boron oxide after thermal decomposition is used.

熱分解後酸化ホウ素を生成する化合物とは、ホウ酸やホ
ウ酸エステル等をいう。ホウ酸エステルは、一般式B 
(OR)n(OH)x−、、(nは1〜3の整数、Rは
アルキル基、シクロアルキル基、フェニル基)で表わさ
れるものをいう。
The compound that generates boron oxide after thermal decomposition refers to boric acid, boric acid ester, and the like. Boric acid ester has general formula B
(OR)n(OH)x-, (n is an integer of 1 to 3, R is an alkyl group, a cycloalkyl group, or a phenyl group).

また、炭素源としてはカーボンブラック等の固体炭素も
しくは熱分解後炭素を生成する化合物を用いる。熱分解
後に炭素を生成する化合物とはフェノール樹脂、砂糖等
の不活性ガス中で熱分解させた後、炭素が残るものであ
れば何でもよ(、いずれの化合物を用いても同じ効果を
生ずる。
Further, as the carbon source, solid carbon such as carbon black or a compound that produces carbon after thermal decomposition is used. A compound that produces carbon after pyrolysis is anything that leaves carbon behind after being pyrolyzed in an inert gas, such as phenol resin or sugar (the same effect is produced no matter which compound is used).

なお、本発明で使用できるカーボンブラックは、ファー
ネス法、アセチレン法等によって製造されるもののいず
れでもよ(、特に限定されるものではない。
The carbon black that can be used in the present invention may be any one produced by a furnace method, an acetylene method, etc. (but is not particularly limited).

微粒子化促進剤として加える炭化ホウ素粉末の添加量は
、反応により新たに生成する炭化ホウ素1100重量部
に対して5〜60重量部加えるのが好ましい。5重量部
未満では生成する炭化ホウ素の微粒子化に対して効果が
なく、60重量部を超えても微粒子化の効果はより優れ
ることはなく、経済性が劣ることになる。より好ましい
添加量は10〜30重量部である。
The amount of boron carbide powder added as a particulate accelerator is preferably 5 to 60 parts by weight based on 1100 parts by weight of boron carbide newly produced by the reaction. If it is less than 5 parts by weight, it will not be effective in making the resulting boron carbide into fine particles, and if it exceeds 60 parts by weight, the effect of making fine particles will not be better and the economy will be poor. A more preferable addition amount is 10 to 30 parts by weight.

また、添加混合する炭化ホウ素粉末の粒度は、粗(でも
反応により生成する炭化ホウ素の微粒子化の効果はある
が、反応生成相中にそのまま残るため、よりよい炭化ホ
ウ素微粉末を得るためには微細な炭化ホウ素粉末がよく
、lOμI以下の中心径のものが望ましく、粒径が小さ
い程望ましいことはいうまでもない。
In addition, the particle size of the boron carbide powder to be added and mixed is coarse (although it has the effect of making the boron carbide produced by the reaction into fine particles, it remains as it is in the reaction product phase, so in order to obtain a better boron carbide fine powder) Fine boron carbide powder is preferred, preferably one with a center diameter of 1OμI or less, and it goes without saying that the smaller the particle size, the more desirable it is.

本発明のポイントである炭化ホウ素を前もって添加して
おくことにより生成される炭化ホウ素が微粒子(Hする
のは、添加した炭化ホウ素が核として作用して、炭化ホ
ウ素粉末無添加の場合に比べて、核の総数が増加したこ
とになり、その結果、核の成長が抑制され微粒子化が進
行すると考えられる。また、酸化ホウ素と炭素とで炭化
ホウ素が生成される反応は発熱反応で、原料中に炭化ホ
ウ素粉末を前もって添加しておくことにより、反応系の
実質の原料が希釈されたことになり、発熱反応による熱
が分散されるとともに、反応が緩慢に進行する結果、生
成される炭化ホウ素が微粒子化されると考えられる。
The point of the present invention is that by adding boron carbide in advance, the boron carbide produced becomes fine particles (H) because the added boron carbide acts as a nucleus, and compared to the case without the addition of boron carbide powder. , the total number of nuclei has increased, and as a result, the growth of the nuclei is suppressed and the formation of fine particles is considered to proceed.In addition, the reaction in which boron carbide is produced between boron oxide and carbon is an exothermic reaction, and By adding boron carbide powder in advance, the actual raw material in the reaction system is diluted, the heat from the exothermic reaction is dispersed, and as a result of the reaction proceeding slowly, the boron carbide produced is It is thought that the particles become fine particles.

このことは原料中に添加する炭化ホウ素の粒径を小さく
する程、生成される炭化ホウ素の粒径が小さ(なる傾向
が見られるが、これは、原料中に同−重量部の炭化ホウ
素を加えた場合、炭化ホウ素の粒径が小さい程粒子数が
多くなり、核総数を増していることになることからもう
なずける。
This means that the smaller the particle size of boron carbide added to the raw material, the smaller the particle size of the boron carbide produced. This is understandable because when added, the smaller the particle size of boron carbide, the greater the number of particles, which increases the total number of nuclei.

本発明では、ホウ素源と炭素源の原料と添加炭化ホウ素
を充分に混合した後、ハンドリングの問題等からしてペ
レット化することが望ましい。それをAr、 Nz等の
不活性ガス雰囲気中で焼成する。
In the present invention, it is desirable to thoroughly mix the boron source, carbon source materials, and added boron carbide, and then pelletize them in view of handling problems. It is fired in an inert gas atmosphere such as Ar or Nz.

炭化ホウ素を生成させる焼成温度は1500〜2000
℃が好ましく、1500℃未満では未反応の酸化ホウ素
や炭素が多量に残り、また、2000℃を超えると生成
した炭化ホウ素の粒成長を起こし好ましくない。
The firing temperature to generate boron carbide is 1500-2000
C. is preferable; if it is less than 1500.degree. C., a large amount of unreacted boron oxide and carbon will remain, and if it exceeds 2000.degree. C., grain growth of the boron carbide produced will occur, which is not preferable.

本発明により生成される炭化ホウ素はX線回折的には、
B4CまたはB、3C,、またはそれらの混合物である
In terms of X-ray diffraction, boron carbide produced according to the present invention has the following characteristics:
B4C or B, 3C, or mixtures thereof.

[実施例] 本発明を実施例にて詳細に説明する。[Example] The present invention will be explained in detail by way of examples.

実施例1〜9 ホウ素源として金属ホウ素(Stark社製アモ社製7
スルフアスB5gm、純度95〜97%)を7.2g、
炭素源としてカーボンブラック(昭和ギヤボット■製シ
ョウブラックN220)を2.0gに対し、表・1のご
とく炭化ホウ素84C粉末(5tark社製F −15
00、粒度1〜2μm、純度95〜97%)を0.46
〜5.52gの範囲の9種類の添加量(炭化ホウ素生成
量100重量部に対して5〜60重量部に相当)で加え
、アセトン40 mβを分散媒として5時間湿式ボール
ミル混合した。得られたスラリーを乾燥、解砕した後、
ペレット状に成形し、Ar気流中において、1700℃
、1時間の条件で焼成した。
Examples 1 to 9 Metallic boron (manufactured by Stark Co., Ltd., Amo Co., Ltd. 7) was used as a boron source.
7.2 g of sulfurous B (5 gm, purity 95-97%),
As shown in Table 1, boron carbide 84C powder (F-15 manufactured by 5tark) was added to 2.0 g of carbon black (Show Black N220 manufactured by Showa Gearbot ■) as a carbon source.
00, particle size 1-2 μm, purity 95-97%) is 0.46
Nine types of addition amounts ranging from ~5.52 g (corresponding to 5 to 60 parts by weight per 100 parts by weight of boron carbide produced) were added, and wet ball mill mixing was performed for 5 hours using 40 mβ of acetone as a dispersion medium. After drying and crushing the obtained slurry,
Formed into pellets and heated at 1700°C in an Ar flow.
, for 1 hour.

X線回折により、生成物の同定を行なったところ、いず
れも84G (又はB+zC2)の回折ピークのみが認
められた。
When the products were identified by X-ray diffraction, only the 84G (or B+zC2) diffraction peak was observed in each case.

また、合成された粉末の一次粒子径をSEMにより観察
したところ、 1.5〜2.5μ田程度であり、B、C
添加量が多い程、−次粒子径が小さくなる傾向があるこ
とがわかる。
In addition, when the primary particle size of the synthesized powder was observed by SEM, it was about 1.5 to 2.5 μm, and B, C
It can be seen that the larger the amount added, the smaller the secondary particle diameter tends to be.

比較例1〜5 84C粉末を原料混合段階で0〜0.37g (炭化ホ
ウ素生成量に対して1〜4重量部相当)の範囲の5種類
の添加量で加えること以外は、実施例1〜9と同様の手
順、条件でB4C(又はB+5Cz)を合成した。表・
1に原料配合および生成粉特性等を示す。原料として8
4C無添加の場合、生成したB、C(又はB+5Cz)
の粒径は50μmに達した。
Comparative Examples 1 to 5 Examples 1 to 5 except that 84C powder was added in five different amounts ranging from 0 to 0.37 g (equivalent to 1 to 4 parts by weight based on the amount of boron carbide produced) at the raw material mixing stage. B4C (or B+5Cz) was synthesized using the same procedure and conditions as in Example 9. table·
1 shows the raw material composition and the characteristics of the resulting powder. 8 as a raw material
In the case of no addition of 4C, the generated B, C (or B + 5Cz)
The particle size reached 50 μm.

また、4重量部添加の場合でも、生成したものの一次粒
子の平均粒径は10μIを超えていた。
Furthermore, even when 4 parts by weight was added, the average particle diameter of the primary particles produced exceeded 10 μI.

C以下余白) 実施例10〜17 ホウ素源として市販品oaooz (関東化学■製、特
級品)を20g、炭素源として砂糖(三井精糖■製グラ
ニュー糖、市販品、残炭率20%)を12g用い、更に
、表・2に示す様に粒度の異なる8種類の84Cを0.
32g (炭化ホウ素生成量に対し20重量部相当)加
え、純水120 mβを分散媒として、5時間湿式ボー
ルミル混合した。
Examples 10 to 17 As a boron source, 20 g of commercial product oaooz (manufactured by Kanto Kagaku ■, special grade), and as a carbon source, 12 g of sugar (granulated sugar manufactured by Mitsui Seito ■, commercial product, residual carbon rate 20%) Furthermore, as shown in Table 2, eight types of 84C with different particle sizes were added at 0.
32 g (equivalent to 20 parts by weight based on the amount of boron carbide produced) was added and mixed in a wet ball mill for 5 hours using 120 mβ of pure water as a dispersion medium.

この場合、原料として配合する平均粒径2μm以上の粗
い粒度の84C粉末は、5tark社製の銘柄F−15
00(粒度1〜3μm)からF−400(粒度8〜32
μm)の各種の粒度の市販品をそのまま用いたが、2μ
m未満の粒度のものについては、市販品B、C粉末を水
中分散させ、沈降法により分級し微粉末84Gを採取し
た。
In this case, the coarse 84C powder with an average particle size of 2 μm or more to be blended as a raw material is brand F-15 manufactured by 5tark.
00 (particle size 1-3μm) to F-400 (particle size 8-32μm)
Commercially available products with various particle sizes of 2μm) were used as they were;
For those with a particle size of less than m, commercially available powders B and C were dispersed in water and classified by a sedimentation method to collect fine powder 84G.

原料配合して得られた混合スラリーを乾燥、解砕した後
、ベレット状に成形し、Ar気流中において1700℃
、1時間で焼成した。
After drying and crushing the mixed slurry obtained by blending the raw materials, it was formed into a pellet shape and heated at 1700°C in an Ar gas flow.
, baked in 1 hour.

得られた生成84G (又はB+5Cz)の特性を表・
2に示す。
The characteristics of the obtained generated 84G (or B+5Cz) are shown in the table below.
Shown in 2.

粒度の粗いB、Cを用いても、比較的細かいB、C(又
はB13C2)が生成するが、原料中に加えたB、Cは
そのまま残るため、平均粒径は若干粗くなる。原料中に
加える84C粒度が細かい程、生成したB4C(又はB
+5Cz)は細か(なり、原料添加の84Cがサブミク
ロンであると、生成したB、C(又はB+zCt)の平
均粒径もサブミクロンとなった。
Even if B and C with coarse particle sizes are used, relatively fine B and C (or B13C2) are produced, but since the B and C added to the raw materials remain as they are, the average particle size becomes slightly coarse. The finer the 84C particle size added to the raw material, the more
+5Cz) was fine (and when 84C added as a raw material was submicron), the average particle size of the produced B and C (or B+zCt) was also submicron.

比較例6〜13 原料に対し、平均粒径0.2μmおよび2.0μmの8
4C粉末を0〜0.06g (炭化ホウ素生成量に対し
O〜3.75重量部相当)を表・2のごとく添加する以
外は、実施例10〜17と同様にB、C(又はB+5C
t)を合成した。
Comparative Examples 6 to 13 For the raw material, 8 with an average particle size of 0.2 μm and 2.0 μm
B, C (or B+5C
t) was synthesized.

得られた合成粉末の特性を表・2に示す。The properties of the obtained synthetic powder are shown in Table 2.

84C添加量を同じとした場合、平均粒径の小さいB、
Cを用いた方が、合成された84G (又はB、、Cm
)の粒径は小さくなったが、いずれも平均粒径は、10
μmを超えていた。
When the amount of 84C added is the same, B with a small average particle size,
Using C, the synthesized 84G (or B, , Cm
) became smaller, but the average particle size was 10
It exceeded μm.

(以下余白) 実施例18〜25、比較例14〜19 ホウ素源としてB2O3(関東化学■製、市販特級品)
を10g、炭素源としてカーボンブラック(実施例1〜
9と同一物)を5゜Ogに対し、表・3のごとく平均粒
径0.5および1.0μmの84C分級粉末を0.49
g (生成炭化ホウ素量に対し15重量部相当)加え、
純水57膳βを分散媒として5時間湿式ボールミル混合
した。得られたスラリーを乾燥、解砕した後、ベレット
状に成形し、Ar気流中において、表・3のごと< 1
300〜2200℃の温度範囲で2時間保持して焼成し
た。
(Left below) Examples 18-25, Comparative Examples 14-19 B2O3 as a boron source (manufactured by Kanto Kagaku ■, commercially available special grade product)
10g, carbon black as a carbon source (Example 1~
9) to 5°Og, 84C classified powder with average particle diameters of 0.5 and 1.0 μm was added to 0.49g as shown in Table 3.
g (equivalent to 15 parts by weight based on the amount of boron carbide produced), and
Wet ball mill mixing was carried out for 5 hours using 57 units of pure water β as a dispersion medium. After drying and crushing the obtained slurry, it was formed into a pellet shape, and in an Ar air flow, it was heated as shown in Table 3 < 1
Firing was carried out by holding at a temperature in the range of 300 to 2200°C for 2 hours.

焼成温度を1500℃以下では生成物の酸素含有量が高
くなり、1500℃未満では急激に酸素含有量を増し、
未反応B、0.が残っていることを表わしている。この
ことは、炭素含有量からもわかり、B、Cの理論炭素量
で21.74%を1500℃以下の焼成温度では超えて
いて、1500℃未満の焼成温度では極端に未反応炭素
が含まれている。
If the calcination temperature is below 1500°C, the oxygen content of the product will be high, and if it is below 1500°C, the oxygen content will increase rapidly.
Unreacted B, 0. This indicates that there are still . This can be seen from the carbon content; the theoretical carbon content of B and C exceeds 21.74% at a firing temperature of 1500°C or lower, and unreacted carbon is extremely contained at a firing temperature of less than 1500°C. ing.

焼成温度が1600℃以上では酸素、遊離炭素濃度の低
い炭化ホウ素粉末が得られるが、2000℃を超えると
炭化ホウ素の粒成長が進行していることがわかる。
It can be seen that when the firing temperature is 1,600°C or higher, boron carbide powder with low oxygen and free carbon concentrations is obtained, but when the firing temperature exceeds 2,000°C, grain growth of boron carbide progresses.

(以下余白) 比較例20〜27 平均粒径0.5および1.0μmの84Cの原料中への
添加量をO〜0.13g (生成炭化ホウ素に対して0
〜4.0重量部相当)にしたこと以外は実施例20.2
1と同様の手順、条件で炭化ホウ素を合成した。よって
、焼成条件は1700℃で2時間である。
(Left below) Comparative Examples 20 to 27 The amount of 84C with average particle diameters of 0.5 and 1.0 μm added to the raw material was 0 to 0.13 g (0 to 0.13 g relative to the boron carbide produced).
Example 20.2 except that the amount was changed to (equivalent to ~4.0 parts by weight)
Boron carbide was synthesized using the same procedure and conditions as in Example 1. Therefore, the firing conditions are 1700° C. for 2 hours.

84C添加量が同一の場合、その平均粒径が小さい程、
合成される炭化ホウ素粉末の粒径は小さ(なるが、合成
された炭化ホウ素の平均粒径は、いずれも10μmを超
えていた。
When the amount of 84C added is the same, the smaller the average particle size,
The particle size of the synthesized boron carbide powder was small (although the average particle size of the synthesized boron carbide was all over 10 μm).

(以下余白) 実施例26〜28 炭素源としてフェノール樹脂(固形フェノール樹脂、昭
和高分子■製BRM−595,残炭率40%)を使用し
、表・5に示すごとく種々のホウ素源ならびに炭化ホウ
素生成量に対し10重量部相当の84C粉末を混合する
以外は、実施例1〜9と同一条件、手順にて炭化ホウ素
を合成した。
(Left below) Examples 26 to 28 Phenol resin (solid phenol resin, BRM-595 manufactured by Showa Kobunshi ■, residual carbon ratio 40%) was used as a carbon source, and various boron sources and carbonization were used as shown in Table 5. Boron carbide was synthesized under the same conditions and procedures as in Examples 1 to 9, except that 84C powder was mixed in an amount equivalent to 10 parts by weight based on the amount of boron produced.

その結果、合成された炭化ホウ素の粉末粒度も表・5に
示す。
As a result, the powder particle size of the synthesized boron carbide is also shown in Table 5.

(以下余白) 実施例29 実施例10の合成炭化ホウ素粉末を、SiCボールをメ
ディアとして振動ミルで1時間粉砕した。
(The following is a blank space) Example 29 The synthetic boron carbide powder of Example 10 was pulverized for 1 hour in a vibrating mill using SiC balls as a media.

得られた粉末の粒度を粒度分布測定機で測定した二次粒
子に相当する平均粒径は0.4μmであった。また、粉
砕後の不純物分析をしたところSiCボールによると思
われるSi不純物が最も多く350ppm含有されてい
ることがわかった。
The particle size of the obtained powder was measured using a particle size distribution analyzer, and the average particle size corresponding to secondary particles was 0.4 μm. In addition, an analysis of impurities after pulverization revealed that Si impurities, which are thought to be caused by SiC balls, were contained in the largest amount at 350 ppm.

実施例30 実施例14の合成粉末につき実施例29と同様に振動ミ
ル粉砕した。ただ、粉砕時間は5時間とした。
Example 30 The synthetic powder of Example 14 was crushed by a vibratory mill in the same manner as in Example 29. However, the grinding time was 5 hours.

得られた粉末の平均粒径を実施例29と同様に測定した
ところ0.7μIであり、Si不純物含量は700pp
mであった 比較例28 比較例1の合成炭化ホウ素粉末につき実施例29と同様
に振動ミル粉砕した。ただ、粉砕時間は10倍の10時
間で粉砕した。しかし、得られた粉砕粉の平均粒径を実
施例29と同様に測定したところ、8.0μmであり、
Si不純物含量は5.2wt%であった。
The average particle size of the obtained powder was measured in the same manner as in Example 29 and was found to be 0.7μI, and the Si impurity content was 700pp.
Comparative Example 28 The synthetic boron carbide powder of Comparative Example 1 was pulverized in a vibratory mill in the same manner as in Example 29. However, the grinding time was 10 hours, which is 10 times longer. However, when the average particle size of the obtained pulverized powder was measured in the same manner as in Example 29, it was 8.0 μm.
The Si impurity content was 5.2 wt%.

〔発明の効果〕〔Effect of the invention〕

本発明により、−次粒子経が2μm以下の炭化ホウ素粉
末を容易に合成することができ、また、粉砕により簡単
に二次粒子径としてサブミクロンの微粉末が得られる。
According to the present invention, boron carbide powder having a secondary particle size of 2 μm or less can be easily synthesized, and fine powder with a secondary particle size of submicrons can be easily obtained by pulverization.

Claims (1)

【特許請求の範囲】[Claims] ホウ素源と炭素源とを原料とする炭化ホウ素の製造方法
において、反応により新たに生成する炭化ホウ素量10
0重量部に対し、5〜60重量部の炭化ホウ素粉末を前
記原料に混合した後、不活性ガス雰囲気中で1500〜
2000℃にて加熱することを特徴とする炭化ホウ素微
粉末の製造方法。
In a method for producing boron carbide using a boron source and a carbon source as raw materials, the amount of boron carbide newly generated by reaction is 10
After mixing 5 to 60 parts by weight of boron carbide powder to the raw material,
A method for producing fine boron carbide powder, which comprises heating at 2000°C.
JP2284492A 1990-10-24 1990-10-24 Method for producing fine boron carbide powder Expired - Lifetime JP2911207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2284492A JP2911207B2 (en) 1990-10-24 1990-10-24 Method for producing fine boron carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2284492A JP2911207B2 (en) 1990-10-24 1990-10-24 Method for producing fine boron carbide powder

Publications (2)

Publication Number Publication Date
JPH04160012A true JPH04160012A (en) 1992-06-03
JP2911207B2 JP2911207B2 (en) 1999-06-23

Family

ID=17679220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2284492A Expired - Lifetime JP2911207B2 (en) 1990-10-24 1990-10-24 Method for producing fine boron carbide powder

Country Status (1)

Country Link
JP (1) JP2911207B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067642A (en) * 2007-09-14 2009-04-02 Doshisha Boron carbide ceramic and its production method
JP2010535693A (en) * 2007-08-08 2010-11-25 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Method for producing pressureless sintered high density boron carbide material
JP2019142757A (en) * 2018-02-23 2019-08-29 太平洋セメント株式会社 Method for producing boron carbide
KR20210008060A (en) * 2018-06-13 2021-01-20 사반치 유니버시티 Low temperature manufacturing method of boron carbide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535693A (en) * 2007-08-08 2010-11-25 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Method for producing pressureless sintered high density boron carbide material
JP2009067642A (en) * 2007-09-14 2009-04-02 Doshisha Boron carbide ceramic and its production method
JP2019142757A (en) * 2018-02-23 2019-08-29 太平洋セメント株式会社 Method for producing boron carbide
KR20210008060A (en) * 2018-06-13 2021-01-20 사반치 유니버시티 Low temperature manufacturing method of boron carbide

Also Published As

Publication number Publication date
JP2911207B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
US4117096A (en) Process for producing powder of β-type silicon carbide
CN101486462B (en) Preparation of titanium carbide micro powder
CN109336612B (en) Preparation method of superfine titanium carbonitride powder
US4217335A (en) Process for producing β-silicon carbide fine powder
CN105793002A (en) Method for recycling powdery silicon carbide waste products
WO2022071245A1 (en) Hexagonal boron nitride powder and method for producing sintered body
US4122152A (en) Process for preparing silicon nitride powder having a high α-phase content
JP2617140B2 (en) Ultrafine WC powder and method for producing the same
JPH04160012A (en) Production of fine born carbide powder
JP6184732B2 (en) Silicon carbide granules and method for producing the same
CN1481345A (en) Method for producing tungsten carbide
JPS58213617A (en) Production of titanium carbonitride powder
JP2536849B2 (en) Β-crystal silicon carbide powder for sintering
JPH0416502A (en) Production of boron nitride
JPH0118005B2 (en)
JPH08253364A (en) Preparation of sialon
JPH02271919A (en) Production of fine powder of titanium carbide
AU648108B2 (en) A proces for the preparation of alpha-silicon nitride powder
JP6734552B1 (en) Catalyst particles and hydrogen production method using the same
JP2002316812A (en) Method for producing silicon carbide fine powder
JPS5891019A (en) Manufacture of aluminum nitride-base powder
JPH05132307A (en) Method for producing finely granulated silicon carbide
JPH05279002A (en) Production of al nitride powder
CN1182279C (en) Preparation of nano grade Sic/SiO2 by high silicon coal and whisker/fibre thereof
JP3006843B2 (en) Method for producing metal complex containing silicon carbide powder