JPH04358031A - Ceramic fiber fabric reinforced composite material and production thereof - Google Patents

Ceramic fiber fabric reinforced composite material and production thereof

Info

Publication number
JPH04358031A
JPH04358031A JP3132513A JP13251391A JPH04358031A JP H04358031 A JPH04358031 A JP H04358031A JP 3132513 A JP3132513 A JP 3132513A JP 13251391 A JP13251391 A JP 13251391A JP H04358031 A JPH04358031 A JP H04358031A
Authority
JP
Japan
Prior art keywords
composite material
ceramic fiber
woven fabric
reinforced composite
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3132513A
Other languages
Japanese (ja)
Inventor
Kazuaki Kawasaki
川崎 和明
Shigeru Kudo
茂 工藤
Kenichi Takamura
高村 賢一
Hiromichi Horie
堀江 博通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP3132513A priority Critical patent/JPH04358031A/en
Publication of JPH04358031A publication Critical patent/JPH04358031A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a lightweight low-cost composite material for a brake excellent in heat and oxidative consumption resistances. CONSTITUTION:Ceramic fibers are spun and woven into a multilayered fabric. A liq. carbon source is impregnated into the fabric and carbonized by burning. A molten metal is then impregnated and solidified. The gaps in the ceramic fiber multilayered fabric are filled with carbon and metal matrixes and a ceramic fiber fabric reinforced composite material is produced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ディスクブレーキ機構
におけるディスクローター、ディスクパッド、高速度運
動体の着地制動時の橇状の摺動材等に使用されるセラミ
ック繊維織布強化複合材料及びその製造法に関する。
[Field of Industrial Application] The present invention relates to ceramic fiber woven fabric reinforced composite materials used for disc rotors, disc pads, sled-shaped sliding members during landing braking of high-speed moving bodies, etc. in disc brake mechanisms, and the like. Regarding manufacturing methods.

【0002】0002

【従来の技術】自動車、航空機等のブレーキ装置や一般
産業用機械設備には、ブレーキ等の制動装置が必要であ
り、かつこれが重要保安部品であることが多い。この制
動装置を構成する部品は、ディスクブレーキ機構の場合
はディスクローター及びディスクパッドであり、ドラム
ブレーキ機構の場合はドラム及びブレーキライニングで
ある。自動車のブレーキ装置に要求される性能は、■燃
料の節約のために軽量であること、■摩擦面の温度が7
00℃以上になる高速高負荷の条件にさらされても耐摩
耗性(耐酸化消耗性)の良いこと、■特定化学物質を出
来るかぎり使用しないこと、■より経済的(安価)で実
用に普及可能なことなどが挙げられる。
BACKGROUND OF THE INVENTION Braking devices such as brakes are necessary for automobiles, aircraft, etc. and general industrial machinery and equipment, and these are often important safety parts. The parts constituting this braking device are a disc rotor and a disc pad in the case of a disc brake mechanism, and a drum and a brake lining in the case of a drum brake mechanism. The performance requirements for automobile brake systems are: ■ It must be lightweight to save fuel, ■ The temperature of the friction surface must be 7.
Good wear resistance (oxidation and wear resistance) even when exposed to high-speed, high-load conditions that reach temperatures above 00°C; ■Does not use specific chemical substances as much as possible; ■More economical (cheap) and widespread use in practical use. There are many things that are possible.

【0003】0003

【発明が解決しようとする課題】しかるに現在、ブレー
キのディスクローターやブレーキドラムは、FC25、
FCD45等の鋳鉄製のものであり、摩擦特性、機械強
度などは優れているが、密度が7.2〜7.3と重い。 これに代るものとして炭素繊維強化炭素材料(以下C/
Cコンポと呼ぶ)がある。C/Cコンポは密度が1.7
〜1.9と軽量であるが炭素繊維が高価であり、かつ構
造物を製造する場合は平織や朱子織のように繊維を二次
元に配した織布を積層するか、又は三次元の織布を使用
するために更に高価なものとなる。またC/Cコンポは
全体が炭素系材料で構成されているために、高速高負荷
の条件にさらされて摩擦面の温度が400℃以上になる
と空気中では酸化消耗する欠点がある。
[Problem to be solved by the invention] However, currently, brake disc rotors and brake drums are FC25,
It is made of cast iron such as FCD45, and has excellent friction characteristics and mechanical strength, but is heavy with a density of 7.2 to 7.3. As an alternative to this, carbon fiber reinforced carbon material (hereinafter referred to as C/
There is a C component. The density of C/C component is 1.7
Although carbon fiber is lightweight at ~1.9, it is expensive, and when manufacturing structures, it is necessary to layer woven fabrics with fibers arranged two-dimensionally, such as plain weave or satin weave, or to use three-dimensional woven fabrics. The use of cloth makes it even more expensive. Furthermore, since the C/C component is entirely composed of carbon-based materials, it has the disadvantage of being oxidized and consumed in air when exposed to high-speed, high-load conditions and the temperature of the friction surface exceeds 400°C.

【0004】本発明は、軽量で耐熱性に優れ、かつ比較
的廉価なブレーキ用の摺動材料及びその製造法を提供す
ることを目的とする。
An object of the present invention is to provide a sliding material for brakes that is lightweight, has excellent heat resistance, and is relatively inexpensive, and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明は、セラミック繊
維多重織布の空隙に炭素マトリックス及び金属マトリッ
クスを充填してなるセラミック繊維織布強化複合材料並
びにセラミック繊維を紡糸し、これを多重織布とし、液
状の炭素源を含浸及び焼成炭化し、次いで金属を含浸固
化するセラミック繊維織布強化複合材料の製造法に関す
る。
[Means for Solving the Problems] The present invention provides a ceramic fiber woven fabric reinforced composite material made by filling the voids of a ceramic fiber multilayer woven fabric with a carbon matrix and a metal matrix, and a ceramic fiber woven fabric reinforced composite material, which is spun into a multilayer woven fabric. The present invention relates to a method for producing a ceramic fiber woven reinforced composite material in which a liquid carbon source is impregnated and fired and carbonized, and then a metal is impregnated and solidified.

【0006】本発明において、セラミック繊維はシリカ
(SiO2)及び/又はアルミナ(Al2O3)を主成
分とする綿状繊維が好ましい。このセラミック繊維は紡
糸してヤーンとされ、更に織機にかけて多重織布とされ
る。多重織布の層の数は使用目的に応じて選定され、特
に制限はない。該セラミック繊維はスフ、木綿、ポリア
クリルニトリル繊維、塩化ビニル繊維等の有機繊維と混
綿して単糸又は単糸を撚りあわせた複合糸として用いれ
ば、これらの有機繊維は液状の炭素源との濡れが良く、
多重織布への含浸性が良くなり、好ましい。混綿の比率
は重量でセラミック繊維/有機繊維が99/1〜75/
25が好ましい。
[0006] In the present invention, the ceramic fiber is preferably a cotton fiber containing silica (SiO2) and/or alumina (Al2O3) as a main component. The ceramic fibers are spun into yarn and then loomed into a multi-layered fabric. The number of layers of the multi-woven fabric is selected depending on the intended use and is not particularly limited. If the ceramic fibers are mixed with organic fibers such as cotton, polyacrylonitrile fibers, and vinyl chloride fibers and used as single yarns or composite yarns made by twisting single yarns, these organic fibers can be mixed with liquid carbon sources. Good wetness,
This is preferable because it improves the impregnating properties of the multi-woven fabric. The ratio of blended cotton is 99/1 to 75/ceramic fiber/organic fiber by weight.
25 is preferred.

【0007】液状の炭素源としてはタールピッチやフェ
ノール樹脂、カシュー変性フェノール樹脂、フラン樹脂
のような炭化歩留の良い熱硬化性樹脂が好ましい。液状
の炭素源の多重織布への含浸は浸漬、減圧含浸、加圧含
浸の何れでも良く、これらの組合せでも良い。含浸後は
熱硬化性樹脂を用いた場合はこれを加熱硬化させ、ター
ルピッチを用いた場合は冷却して成形体とされる。この
成形体における織布と炭素源との比率は、重量で織布/
炭素源が90/10〜45/55が好ましく、75/2
5〜45/55が最良である。次いで成形体を非酸化性
の雰囲気で400〜1000℃で焼成して炭素源を炭化
し炭素マトリックスとしてセラミック繊維多重織布の空
隙に充填し、セラミック繊維を結合させてセラミック繊
維と炭素の複合体を得る。この複合体における比率は重
量でセラミック繊維/炭素が90/10〜55/45で
かつ気孔率が5〜25%が好ましく、比率が75/25
〜55/45で気孔率が10〜20%であれば更に好ま
しい。このためには前記含浸及び焼成は2回以上行うこ
とが好ましい。
As the liquid carbon source, thermosetting resins with good carbonization yields such as tar pitch, phenol resins, cashew-modified phenol resins, and furan resins are preferred. The liquid carbon source may be impregnated into the multiple woven fabric by dipping, reduced pressure impregnation, pressurized impregnation, or a combination thereof. After impregnation, if a thermosetting resin is used, it is heated and cured, and if tar pitch is used, it is cooled to form a molded body. The ratio of woven fabric to carbon source in this molded body is woven fabric/carbon source by weight.
Carbon source is preferably 90/10 to 45/55, preferably 75/2
5-45/55 is best. Next, the molded body is fired at 400 to 1000°C in a non-oxidizing atmosphere to carbonize the carbon source and fill the voids of the ceramic fiber multi-woven fabric as a carbon matrix, and the ceramic fibers are combined to form a composite of ceramic fibers and carbon. get. The ratio of ceramic fiber/carbon in this composite is preferably 90/10 to 55/45 by weight and the porosity is 5 to 25%, and the ratio is 75/25.
It is more preferable if the porosity is 10 to 20%. For this purpose, it is preferable to perform the impregnation and firing two or more times.

【0008】上記セラミック繊維と炭素の複合体に溶融
金属を含浸固化して本発明の複合材料とされる。含浸す
る金属としてはアルミニウム又はその合金、アンチモン
、潤滑性を有する銅系の合金等が用いられる。含浸量は
得られる複合材料に対して重量で3〜35%が好ましい
。含浸は減圧加圧含浸が好ましい。
The composite material of the present invention is prepared by impregnating and solidifying the composite of ceramic fibers and carbon with molten metal. As the metal to be impregnated, aluminum or its alloy, antimony, a copper-based alloy having lubricating properties, etc. are used. The amount of impregnation is preferably 3 to 35% by weight based on the composite material obtained. The impregnation is preferably carried out under reduced pressure.

【0009】かくして得られるセラミック繊維織布強化
複合材料は、組成が重量でセラミック繊維40〜65%
、炭素マトリックス10〜50%及び金属マトリックス
3〜35%、密度が1.55〜2.75で気孔率0.5
〜25%のものが好ましい。
The ceramic fiber woven reinforced composite material thus obtained has a composition of 40 to 65% ceramic fibers by weight.
, carbon matrix 10-50% and metal matrix 3-35%, density 1.55-2.75 and porosity 0.5
~25% is preferred.

【0010】0010

【実施例】次に本発明の実施例を説明する。[Example] Next, an example of the present invention will be described.

【0011】実施例1 アルミナ及びシリカを主成分とするセラミック繊維(ニ
チアス製、ファインフレックスバルクファイバー、TO
MBO  T/#5300)90重量%及びスフ10重
量%を混綿機で混綿し、これをカーディングマシン、コ
ンデンサーにかけてスライバーとし、次いでリング精紡
機により撚りをかけてセラミック繊維85重量%及びス
フ15重量%のセラミック紡糸とした。この糸は10±
1.5g/mの重量で50回/mのS撚りがかかってい
る。この紡糸を2本Z撚り(50回/m)を加え、20
〜25g/mのヤーンとした。このヤーンを自動車ウー
ブンライニングの織布製造に使用されている多重織布織
機にかけ、厚さ方向にヤーンが5層に重ねられ、三次元
(縦、横、厚さ方向)にヤーンが織り込められた幅30
cm、厚さ3cmの織布を織り上げた。この織布の見掛
密度は0.45g/cm3であった。
Example 1 Ceramic fibers mainly composed of alumina and silica (manufactured by Nichias, Fineflex Bulk Fiber, TO
MBO T/#5300) 90% by weight and 10% by weight of staple fibers are blended using a cotton blending machine, passed through a carding machine and condenser to form a sliver, and then twisted by a ring spinning machine to produce 85% by weight of ceramic fibers and 15% by weight of staple fibers. % ceramic spinning. This thread is 10±
S twist is applied at a weight of 1.5 g/m at a rate of 50 turns/m. Two of these spun fibers were Z-twisted (50 times/m) and twisted for 20
~25g/m yarn. This yarn is run on a multi-woven fabric loom used to manufacture woven automobile lining fabrics, and the yarn is stacked in five layers in the thickness direction, and the yarn is woven in three dimensions (vertical, horizontal, and thickness direction). width 30
A woven fabric with a thickness of 3 cm and a thickness of 3 cm was woven. The apparent density of this woven fabric was 0.45 g/cm3.

【0012】この織布を25cm平方に切断し、120
℃で2時間乾燥して脱水後、オートクレーブに入れて5
mmHgまで減圧してから水溶性フェノール樹脂(日立
化成工業製、PR524)のワニスを注入し2時間保持
した。この後常圧に戻し24時間保持し、次いで6Kg
/cm2の空圧をかけ、160℃で6時間保持して織布
/炭素源が重量で60/40の成形体とした。この成形
体の特性を表1に示す。この成形体を鉄製の焼成缶に入
れ、周囲に1〜2mmφの炭素粒を充填し、蓋をして焼
成し、樹脂を炭化させた。焼成は、室温から500℃ま
でを毎時5℃で昇温して500℃で6時間保持し、50
0℃から900℃までを毎時10℃で昇温して900℃
で5時間保持する方法によった。上記したフェノール樹
脂の含浸及び焼成炭化を更に4回繰返して、セラミック
繊維/炭素マトリックスが重量で55/45の複合体を
得た。この複合体の特性を表1に示す。
[0012] This woven fabric was cut into 25 cm square pieces.
After drying at ℃ for 2 hours to dehydrate, place in an autoclave for 5 minutes.
After reducing the pressure to mmHg, a varnish of water-soluble phenol resin (manufactured by Hitachi Chemical, PR524) was injected and maintained for 2 hours. After this, the pressure was returned to normal pressure and maintained for 24 hours, and then 6 kg
A pneumatic pressure of /cm2 was applied and the mixture was maintained at 160° C. for 6 hours to obtain a molded article having a ratio of woven fabric/carbon source of 60/40 by weight. Table 1 shows the properties of this molded product. This molded body was placed in an iron firing can, the surrounding area was filled with carbon grains of 1 to 2 mmφ, the lid was closed, and firing was performed to carbonize the resin. Firing was performed by increasing the temperature from room temperature to 500°C at a rate of 5°C per hour and holding it at 500°C for 6 hours.
Increase the temperature from 0℃ to 900℃ at a rate of 10℃ per hour to 900℃
A method of holding the sample for 5 hours was used. The above phenolic resin impregnation and firing carbonization were repeated four more times to obtain a ceramic fiber/carbon matrix composite of 55/45 by weight. The properties of this composite are shown in Table 1.

【0013】含浸槽の底部に金属アンチモン及び上部の
網の上に前記複合体を載置し、槽を密閉して5mmHg
まで減圧し、同時に加熱してアンチモンを溶融し、槽を
反転して複合体を溶融金属中に浸漬して常圧に戻し、更
に6Kg/cm2の空圧をかけて30分保持後、再度槽
を反転して金属含浸複合体を融液から分離して冷却固化
し、アンチモンを31.5重量%含有する複合材料を得
た。この複合材料の特性を表1に示す。
[0013] The above composite was placed on the metal antimony at the bottom of the impregnation tank and the mesh at the top, and the tank was sealed and the temperature was adjusted to 5 mmHg.
The pressure is reduced to 6 kg/cm2, the antimony is melted by heating at the same time, the tank is turned over, the composite is immersed in the molten metal, the pressure is returned to normal pressure, an air pressure of 6 kg/cm2 is applied, the temperature is maintained for 30 minutes, and the tank is returned to the tank. The metal-impregnated composite was separated from the melt by inverting and solidified by cooling to obtain a composite material containing 31.5% by weight of antimony. Table 1 shows the properties of this composite material.

【0014】実施例2 実施例1におけるアンチモンの代りにアルミニウムを含
浸した以外は実施例1と全く同様にして、アルミニウム
を14.7重量%含有するセラミック繊維織布強化複合
材料を得た。この複合材料の特性を表1に示す。表中、
酸化消耗率は500℃で10時間加熱したときの重量減
少率を示す。
Example 2 A ceramic fiber woven reinforced composite material containing 14.7% by weight of aluminum was obtained in exactly the same manner as in Example 1, except that aluminum was impregnated instead of antimony in Example 1. Table 1 shows the properties of this composite material. In the table,
The oxidation consumption rate indicates the weight loss rate when heated at 500°C for 10 hours.

【0015】[0015]

【表1】[Table 1]

【0016】表1から、本発明の複合材料は金属を含浸
しているのでC/Cコンポよりは重いが鋳鉄よりは遥か
に軽量であり、酸化消耗率が小さく、強度も充分である
Table 1 shows that the composite material of the present invention is impregnated with metal, so it is heavier than a C/C composite but much lighter than cast iron, has a low oxidative consumption rate, and has sufficient strength.

【0017】実施例3 実施例1におけるアンチモンの代りに亜鉛を15重量%
含浸したセラミック繊維織布強化複合材料を得た。
Example 3 15% by weight of zinc was used instead of antimony in Example 1.
An impregnated ceramic fiber woven reinforced composite material was obtained.

【0018】実施例4 実施例1におけるアンチモンの代りに14Sn青銅合金
を12重量%含浸したセラミック繊維織布強化複合材料
を得た。
Example 4 A ceramic fiber woven reinforced composite material was obtained which was impregnated with 12% by weight of 14Sn bronze alloy instead of antimony in Example 1.

【0019】上記実施例1における成形体及び複合体並
びに実施例1〜4の各種金属を含浸したセラミック繊維
織布強化複合材料についてJIS  D4411により
摩擦特性を評価した。即ち、相手金属をFC25とし、
100℃及び250℃における摩擦係数及び摩耗量(m
m)を測定した。この結果を表2に示す。
Frictional properties of the molded body and composite in Example 1 and the ceramic fiber woven reinforced composite materials impregnated with various metals of Examples 1 to 4 were evaluated according to JIS D4411. That is, the mating metal is FC25,
Friction coefficient and wear amount (m
m) was measured. The results are shown in Table 2.

【0020】[0020]

【表2】[Table 2]

【0021】表2から、いずれも摩擦係数が高くかつ摩
耗量が小さくて、摩擦特性は実用上充分であることが示
される。
[0021] Table 2 shows that all have a high coefficient of friction and a small amount of wear, and the friction characteristics are sufficient for practical use.

【0022】実施例5 シリカガラスの平織布(日本無機製、BCA−430A
D、SiO2分96%以上)を30cm平方に切断した
ものを10枚積層し、2枚のステンレス板治具で挾んで
厚さ5mmになるように固定し、これを水溶性フェノー
ル樹脂(日立化成工業製、PR524)のワニスに浸漬
してワニスを充分に織布に浸透させた。次いで、治具の
ままオートクレーブに入れ、6Kg/cm2の空圧をか
けて160℃で6時間保持して織布/炭素源が重量で6
0/40の成形体とした。この成形体の特性を表3に示
す。
Example 5 Plain woven silica glass fabric (BCA-430A manufactured by Nihon Muki Co., Ltd.)
D, SiO2 content of 96% or more) cut into 30cm squares are stacked together, and then sandwiched between two stainless steel plate jigs and fixed to a thickness of 5mm. The woven fabric was dipped in varnish (manufactured by Kogyo, PR524) to sufficiently penetrate the varnish. Next, the jig was placed in an autoclave, and an air pressure of 6 kg/cm2 was applied to keep it at 160°C for 6 hours to reduce the weight of the woven fabric/carbon source to 6 kg/cm2.
It was made into a molded body of 0/40. Table 3 shows the properties of this molded product.

【0023】この成形体を、治具が装着されている状態
で鉄製の焼成缶に入れ、周囲に1〜2mmφの炭素粒を
充填し、蓋をして焼成し、樹脂を炭化させた。焼成は、
室温から200℃までを毎時5℃で昇温して200℃で
5時間保持し、200℃から500℃までを毎時10℃
で昇温して500℃で10時間保持後、500℃から9
00℃までを毎時5℃で昇温して900℃で10時間保
持する方法によった。この焼成品を加圧含浸層に入れて
5mmHgまで減圧し、この中に350℃に加熱溶融し
たタールピッチ(川崎製鉄製、PK−L)を注入して常
圧に戻し、更に6Kg/cm2の空圧をかけて1時間保
持して冷却後取り出し、鉄製の焼成缶に入れて周囲に1
〜2mmφの炭素粒を充填し、室温から500℃までを
毎時10℃で昇温して500℃で10時間保持し、50
0℃から900℃までを毎時5℃で昇温して900℃で
10時間保持してタールピッチを焼成炭化した。このタ
ールピッチの含浸及び焼成炭化を更に2回繰返して、セ
ラミック繊維/炭素マトリックスが重量で50/50の
複合体を得た。この複合体の特性を表3に示す。
[0023] This molded body was placed in an iron firing can with a jig attached, and the surrounding area was filled with carbon grains of 1 to 2 mmφ, the lid was closed, and firing was performed to carbonize the resin. The firing is
Raise the temperature from room temperature to 200℃ at a rate of 5℃ per hour, hold at 200℃ for 5 hours, and increase the temperature from 200℃ to 500℃ by 10℃ per hour.
After raising the temperature at 500℃ for 10 hours, the temperature was increased from 500℃ to 9
A method was used in which the temperature was raised at a rate of 5°C per hour up to 00°C and held at 900°C for 10 hours. This fired product was placed in a pressurized impregnated layer, the pressure was reduced to 5 mmHg, and tar pitch (PK-L, manufactured by Kawasaki Steel Corporation) heated and melted at 350°C was injected into the layer to return to normal pressure, and the pressure was further reduced to 6 kg/cm2. Apply air pressure and hold it for 1 hour, then take it out after cooling, put it in an iron baking can, and place it in the surrounding area.
Filled with carbon grains of ~2 mmφ, heated from room temperature to 500°C at a rate of 10°C per hour, held at 500°C for 10 hours,
The temperature was raised from 0°C to 900°C at a rate of 5°C per hour and held at 900°C for 10 hours to burn and carbonize the tar pitch. This tar pitch impregnation and calcined carbonization was repeated two more times to obtain a 50/50 ceramic fiber/carbon matrix composite by weight. The properties of this composite are shown in Table 3.

【0024】この複合体を金属含浸槽に入れ、実施例1
と全く同様にしてアンチモンを32重量%含有する複合
材料を得た。この複合材料の特性を表3に示す。
[0024] This composite was placed in a metal impregnating bath, and Example 1
A composite material containing 32% by weight of antimony was obtained in exactly the same manner as above. Table 3 shows the properties of this composite material.

【0025】実施例6 実施例5におけるアンチモンの代りにアルミニウムを含
浸した以外は実施例5と全く同様にして、アルミニウム
を15重量%含有するセラミック繊維織布強化複合材料
を得た。この複合材料の特性を表3に示す。表中、酸化
消耗率は表1と同様500℃で10時間加熱したときの
重量減少率を示す。
Example 6 A ceramic fiber woven reinforced composite material containing 15% by weight of aluminum was obtained in exactly the same manner as in Example 5, except that aluminum was impregnated instead of antimony in Example 5. Table 3 shows the properties of this composite material. In the table, the oxidation consumption rate indicates the weight loss rate when heated at 500° C. for 10 hours as in Table 1.

【0026】表3から、本発明の複合材料は金属を含浸
しているのでC/Cコンポよりは重いが鋳鉄よりは遥か
に軽量であり、酸化消耗率が小さく、強度も充分である
。また表3から、摩擦特性も実用的に充分な値を示して
いる。
Table 3 shows that the composite material of the present invention is impregnated with metal, so it is heavier than a C/C composite, but much lighter than cast iron, has a low oxidation consumption rate, and has sufficient strength. Furthermore, from Table 3, the frictional properties also show practically sufficient values.

【0027】[0027]

【表3】[Table 3]

【0028】[0028]

【発明の効果】本発明によれば、セラミック繊維織布を
骨格として構成しているので、C/Cコンポよりは重い
が鋳鉄よりは遥かに軽量であり、炭素繊維より耐酸化消
耗性の良いセラミック繊維を使用していることと金属を
含浸することにより炭素マトリックスが被覆されるので
、耐酸化消耗性を含めた耐熱性においてC/Cコンポよ
り優れ、更に安価な綿状のセラミック繊維を用いている
ので廉価な複合材料が得られる。
[Effects of the Invention] According to the present invention, since the skeleton is composed of ceramic fiber woven fabric, it is heavier than a C/C component but much lighter than cast iron, and has better oxidation and wear resistance than carbon fiber. Because the carbon matrix is coated by using ceramic fibers and impregnated with metal, it is superior to C/C components in terms of heat resistance including oxidation and wear resistance, and it also uses cheaper cotton-like ceramic fibers. This makes it possible to obtain inexpensive composite materials.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  セラミック繊維多重織布の空隙に炭素
マトリックス及び金属マトリックスを充填してなるセラ
ミック繊維織布強化複合材料。
1. A ceramic fiber woven fabric reinforced composite material obtained by filling the voids of a ceramic fiber multilayer woven fabric with a carbon matrix and a metal matrix.
【請求項2】  セラミック繊維を紡糸し、これを多重
織布とし、液状の炭素源を含浸及び焼成炭化し、次いで
金属を含浸固化することを特徴とするセラミック繊維織
布強化複合材料の製造法。
2. A method for producing a ceramic fiber woven fabric reinforced composite material, which comprises spinning ceramic fibers, making the same into a multilayer woven fabric, impregnating it with a liquid carbon source, firing and carbonizing it, and then impregnating and solidifying it with a metal. .
JP3132513A 1991-06-04 1991-06-04 Ceramic fiber fabric reinforced composite material and production thereof Pending JPH04358031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3132513A JPH04358031A (en) 1991-06-04 1991-06-04 Ceramic fiber fabric reinforced composite material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3132513A JPH04358031A (en) 1991-06-04 1991-06-04 Ceramic fiber fabric reinforced composite material and production thereof

Publications (1)

Publication Number Publication Date
JPH04358031A true JPH04358031A (en) 1992-12-11

Family

ID=15083098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3132513A Pending JPH04358031A (en) 1991-06-04 1991-06-04 Ceramic fiber fabric reinforced composite material and production thereof

Country Status (1)

Country Link
JP (1) JPH04358031A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512260A (en) * 1997-03-21 2000-09-19 ダイムラークライスラー アクチエンゲゼルシヤフト Melt infiltrated fiber reinforced composite ceramics
JP2000512257A (en) * 1997-03-21 2000-09-19 ダイムラークライスラー アクチエンゲゼルシヤフト Fiber reinforced composite ceramic and method for producing such
JP2004506590A (en) * 2000-08-22 2004-03-04 ダイテック・コーポレーション・リミテッド Binary continuous complex
US6793873B2 (en) 1997-03-21 2004-09-21 Daimlerchrysler Ag Melted-infiltrated fiber-reinforced composite ceramic
JP2017024978A (en) * 2015-07-13 2017-02-02 ロールス−ロイス ハイ テンプレチャー コンポジッツ,インコーポレイティド Method for producing ceramic matrix composite article
RU2740763C2 (en) * 2015-09-18 2021-01-20 Сафран Эркрафт Энджинз Part from composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512260A (en) * 1997-03-21 2000-09-19 ダイムラークライスラー アクチエンゲゼルシヤフト Melt infiltrated fiber reinforced composite ceramics
JP2000512257A (en) * 1997-03-21 2000-09-19 ダイムラークライスラー アクチエンゲゼルシヤフト Fiber reinforced composite ceramic and method for producing such
US6793873B2 (en) 1997-03-21 2004-09-21 Daimlerchrysler Ag Melted-infiltrated fiber-reinforced composite ceramic
JP2004506590A (en) * 2000-08-22 2004-03-04 ダイテック・コーポレーション・リミテッド Binary continuous complex
JP2017024978A (en) * 2015-07-13 2017-02-02 ロールス−ロイス ハイ テンプレチャー コンポジッツ,インコーポレイティド Method for producing ceramic matrix composite article
RU2740763C2 (en) * 2015-09-18 2021-01-20 Сафран Эркрафт Энджинз Part from composite material

Similar Documents

Publication Publication Date Title
US20080090064A1 (en) Carbon-carbon friction material with improved wear life
US6472058B2 (en) Fiber-composite material and method for producing the same
US6093482A (en) Carbon-carbon composite for friction products and method of making same
US20090148699A1 (en) Carbon fiber containing ceramic particles
KR20130107356A (en) Friction discs having a structured ceramic friction layer
JPS589070B2 (en) Masatsubuzainoseizouhou
JP2015523948A (en) Molded composite material
EP1649183A1 (en) Synchronizer ring
JPH04358031A (en) Ceramic fiber fabric reinforced composite material and production thereof
EP2111382B1 (en) Improvements in or relating to brake and clutch discs
JP3520530B2 (en) Carbon fiber reinforced carbon composite and sliding material
US5554354A (en) Carbon fiber-reinforced carbon composite material and process for producing the same
RU2170220C1 (en) Method of preparing carbon-carbon composite material
JPH04153291A (en) Friction material
US6162544A (en) Kiln tool with good workability
JPH04183774A (en) Friction material
WO2008093078A1 (en) Improvements in or relating to brake and clutch discs
JPS63210065A (en) Carbon-carbon fiber composite material
KR100242963B1 (en) Carbon-carbon composites for friction product and manufacturing method thereof
JP4266056B2 (en) High oxidation resistance Si impregnated composite material and method for producing the same
JPH04219369A (en) Ceramic fiber-reinforced carbon material and its production
JP3560065B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
JPH09278553A (en) Production of carbon composite material reinforced with carbon fiber
JPH04306285A (en) Friction material
US20040077245A1 (en) Friction lining