JPH04183774A - Friction material - Google Patents

Friction material

Info

Publication number
JPH04183774A
JPH04183774A JP31342590A JP31342590A JPH04183774A JP H04183774 A JPH04183774 A JP H04183774A JP 31342590 A JP31342590 A JP 31342590A JP 31342590 A JP31342590 A JP 31342590A JP H04183774 A JPH04183774 A JP H04183774A
Authority
JP
Japan
Prior art keywords
sodium silicate
friction material
impregnated
carbon
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31342590A
Other languages
Japanese (ja)
Inventor
Toru Honma
透 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP31342590A priority Critical patent/JPH04183774A/en
Publication of JPH04183774A publication Critical patent/JPH04183774A/en
Pending legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)

Abstract

PURPOSE:To obtain a friction material having excellent high-temperature oxidation resistance and improved strength and frictional coefficient under low temperature and low load condition by coating the whole surface of the wall of pores in a carbon fiber-reinforced composite material with sodium silicate film. CONSTITUTION:An aqueous solution of sodium silicate is impregnated into the whole surface of wall constituting pores 4 of a carbon fiber-reinforced composite material 2 produced by bonding carbon fibers with carbon and a sodium silicate film 3 is formed on the wall surface by baking the impregnated product to obtain the objective friction material suitable as a material for brake and clutch of automobile, bicycle, railway vehicle, aircraft, industrial machine, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車、二輪車、鉄道車両、航空機、産業機
械等のブレーキやクラッチに用いられる摩擦材料に関し
、特に、炭素繊維強化複合材料(以下、C/Cコンポジ
ットという)を用いた摩擦材料に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to friction materials used in brakes and clutches of automobiles, motorcycles, railway vehicles, aircraft, industrial machinery, etc. , C/C composite).

〔従来の技術] 一般に、車両等に使用される摩擦材料には、耐熱性、耐
摩耗性、相手攻撃性の低いこと、また、摩擦係数が高い
こと等、様々な機能が要求される。
[Prior Art] In general, friction materials used in vehicles and the like are required to have various functions, such as heat resistance, wear resistance, low aggressiveness, and high coefficient of friction.

このため、単一素材のみでは、これらの機能を果たすこ
とができず、各種の素材の長所と短所を補いつつ、複数
の素材を組み合わせ使用する必要かある。例えば、自動
車のブレーキパッドやライニングには、石綿、レジン(
結合剤)を主成分に、有機、無機、金属質等の各種摩擦
摩耗調整剤を配合した有機系摩擦材や石綿を金属繊維で
置換したセミメタリック摩擦材が用いられている。
Therefore, a single material alone cannot fulfill these functions, and it is necessary to use a combination of multiple materials while compensating for the strengths and weaknesses of various materials. For example, automobile brake pads and linings contain asbestos, resin (
Semi-metallic friction materials in which asbestos is replaced with metal fibers are used, as well as organic friction materials containing a binder as the main component and various friction and wear modifiers such as organic, inorganic, and metallic agents.

また、近年では、上記摩擦材料の他に、航空機のブレー
キ用摩擦材として使用されていたC/Cコンポジットが
、高温下での耐摩耗性、摩擦係数安定性に優れるという
点に着目され、ラリー車、レーシングカー等の特殊車両
のブレーキに使用されるようになってきている。
In addition to the above-mentioned friction materials, in recent years, C/C composites, which were used as friction materials for aircraft brakes, have attracted attention for their excellent wear resistance and friction coefficient stability under high temperatures. It is increasingly being used for the brakes of special vehicles such as cars and racing cars.

このC/Cコンポジットは、炭素繊維を炭素で接合した
炭素繊維強化複合材料である。
This C/C composite is a carbon fiber reinforced composite material in which carbon fibers are bonded with carbon.

このC/Cコンポジットは製造時、高温で加熱処理がな
されるために、バインダーである樹脂が分解または変質
し、その結果、C/Cコンポジントによる摩擦材料は、
低温低負荷での耐摩耗性が著しく劣るという欠点がある
Because this C/C composite is heat-treated at high temperatures during manufacturing, the binder resin decomposes or changes in quality, and as a result, the friction material made of the C/C composite becomes
It has the disadvantage of extremely poor wear resistance at low temperatures and low loads.

この欠点を克服するために、特開昭63−149440
号公報には、C/Cコンポジットに液状樹脂を含浸、硬
化させたことを特徴とする摩擦材料が開示されている。
In order to overcome this drawback, Japanese Patent Application Laid-Open No. 63-149440
The publication discloses a friction material characterized by impregnating and curing a C/C composite with a liquid resin.

〔解決しようとする課題〕[Problem to be solved]

さらに、C/Cコンポジットには、次のような問題点が
ある。つまり、このC/Cコンポジットをディスクブレ
ーキ等に使用した場合、冷却のために風をあてるよう設
計せざるを得ない。炭素は、大気中で高温になると酸化
することは避けられず、C/Cコンポジットも同様に高
温になると酸化することは避けられない。
Furthermore, the C/C composite has the following problems. In other words, when this C/C composite is used in disc brakes or the like, it is necessary to design it so that air is applied to it for cooling. Carbon inevitably oxidizes at high temperatures in the atmosphere, and C/C composites also inevitably oxidize at high temperatures.

一旦、酸化が始まると発熱し、さらに酸化が促進され、
最悪では燃焼状態となり、ブレーキとして致命的な損傷
を受ける。また、燃焼に至らなくても酸化により、炭素
が気体(二酸化炭素、−酸化炭素等)になり、摩耗が急
増し寿命を著しく低下させる。
Once oxidation begins, heat is generated and oxidation is further accelerated.
In the worst case scenario, it will burn out and cause fatal damage to the brakes. Furthermore, even if combustion does not occur, carbon becomes a gas (carbon dioxide, carbon oxide, etc.) due to oxidation, leading to rapid wear and a significant reduction in service life.

特に、C/Cコンポジットは、炭素繊維や炭素粉等の炭
素材料を、炭化率の高い樹脂若しくはピッ千等の結合剤
で固めたものを焼成するため、結合剤からの揮発成分が
気化し気孔を残す。また、C/Cコンポジット中の気孔
は、前述したように揮発成分の気化に起因するところか
ら、摩擦材料内部に向かって連続しているのが特徴であ
る。
In particular, in C/C composites, carbon materials such as carbon fibers and carbon powder are hardened with a resin with a high carbonization rate or a binder such as Pisen, and then fired. Therefore, volatile components from the binder vaporize and create pores. leave. Furthermore, the pores in the C/C composite are characterized by being continuous toward the interior of the friction material because they are caused by the vaporization of volatile components as described above.

前記した特開昭63−149440号公報には、C/C
コンポジット中の気孔に液状樹脂を含浸、硬化させてい
るため、使用時、高温になると有機成分である樹脂が分
解してしまい、結果として、気孔表面が部分的に露出し
てしまい、C/Cコンポシフトの酸化が進行してしまう
。また、液状樹脂ではその粘度が高いため、摩擦材料内
部に続く気孔の内面全てを覆うことはできず、高温時に
おける酸化を防止することはできない。
In the above-mentioned Japanese Patent Application Laid-open No. 63-149440, C/C
Since the pores in the composite are impregnated with liquid resin and hardened, the resin, which is an organic component, decomposes when the temperature reaches high temperatures during use, resulting in the pore surface being partially exposed. Composhift oxidation progresses. Furthermore, since the liquid resin has a high viscosity, it cannot cover all the inner surfaces of the pores continuing inside the friction material, and cannot prevent oxidation at high temperatures.

そこで、本発明は、C/Cコンポジットの気孔の表面を
非有機材料で覆うことにより、C/Cコンポジットの高
温時における酸化を防止することを目的とする。
Therefore, an object of the present invention is to prevent oxidation of the C/C composite at high temperatures by covering the surface of the pores of the C/C composite with an inorganic material.

〔手段〕〔means〕

上記目的を達成するために、本発明は、炭素繊維強化複
合材料内部の気孔を形成する壁面の全面がケイ酸ナトリ
ウム膜で覆われていることを特徴とする摩擦材料を提供
する。
In order to achieve the above object, the present invention provides a friction material characterized in that the entire wall surface forming pores inside a carbon fiber reinforced composite material is covered with a sodium silicate film.

C/Cコンポシフトに含浸するケイ酸ナトリウム水溶液
の濃度は、5〜20%が望ましい。濃度が5%より低い
と付着するケイ酸ナトリウムが少なく耐酸化性の効果を
果たし得なくなる。また、20%より多いと水溶液粘度
が高くなりすぎ、気孔の全表面をケイ酸ナトリウムで被
覆することが困難となる。
The concentration of the sodium silicate aqueous solution impregnated into the C/C Composhift is preferably 5 to 20%. If the concentration is lower than 5%, the amount of sodium silicate deposited will be small and the oxidation resistance effect will not be achieved. Moreover, if it exceeds 20%, the viscosity of the aqueous solution becomes too high, making it difficult to cover the entire surface of the pores with sodium silicate.

また、ケイ酸ナトリウムのC/Cコンポジットへの含浸
量は、0.01〜5.0%が好ましい。
Further, the amount of sodium silicate impregnated into the C/C composite is preferably 0.01 to 5.0%.

0.01%以下では耐酸化特性が認められず5゜0%よ
り多いと摩擦特性に悪影響を及ぼす。
If it is less than 0.01%, oxidation resistance is not observed, and if it is more than 5.0%, it will adversely affect the friction properties.

−回の操作のみで目標量だけ含浸できないときは、焼成
後、再度含浸を繰り返す必要がある。
- If the target amount cannot be impregnated with only one operation, it is necessary to repeat the impregnation again after firing.

〔作用・効果〕[Action/Effect]

上記のように、C/Cコンポジットにケイ酸ナトリウム
水溶液を含浸させ焼成すると、C/Cコンポジットに形
成されている気孔壁面の全面にケイ酸ナトリウム膜が形
成される。このケイ酸ナトリウムは無機物であるため、
有機物とは異なり高温でも分解せず、高温時の耐酸化性
を確保することができる。さらに、ケイ酸ナトリウムは
、比較的低粘度の流動性に冨んだ液体となるため、C/
Cコンポジットにケイ酸ナトリウム水溶液を含浸させた
とき、連続する気孔の奥まで、ケイ酸ナトリウム膜で覆
うことができるため、耐酸化性の確保を確実にすること
ができる。
As described above, when the C/C composite is impregnated with an aqueous sodium silicate solution and fired, a sodium silicate film is formed on the entire surface of the pore walls formed in the C/C composite. Since this sodium silicate is an inorganic substance,
Unlike organic substances, it does not decompose even at high temperatures and can ensure oxidation resistance at high temperatures. Furthermore, since sodium silicate is a highly fluid liquid with relatively low viscosity, C/
When the C composite is impregnated with an aqueous sodium silicate solution, the continuous pores can be covered with a sodium silicate film to the depths, so oxidation resistance can be ensured.

また、このように気孔表面をケイ酸ナトリウム膜で被覆
することにより、材料としての強度も向上することとな
る。そのため、−船釣に機械的特性が比較的低い、とい
うC/Cコンポジットの特性を改善することができる。
Furthermore, by coating the pore surfaces with a sodium silicate film in this manner, the strength of the material is also improved. Therefore, it is possible to improve the characteristics of the C/C composite, which has relatively low mechanical properties for boat fishing.

さらに、摩耗により、摩擦面に露出したケイ酸ナトリウ
ムのアブレーシブ作用により、低温・低負荷における摩
擦係数の向上を図ることができる。
Furthermore, due to the abrasive action of sodium silicate exposed on the friction surface due to wear, it is possible to improve the coefficient of friction at low temperatures and low loads.

〔実施例] 第1図は、本発明に係る摩擦材料1を示す部分拡大図で
ある。図示されるように、炭素繊維2同土間の気孔4の
壁面がケイ酸ナトリウム膜3で覆われている。
[Example] FIG. 1 is a partially enlarged view showing a friction material 1 according to the present invention. As shown in the figure, the walls of the pores 4 between the carbon fibers 2 and the soil are covered with a sodium silicate film 3.

詳述すると、本発明に係る摩擦材料2は、以下の製造法
により、製造される。
Specifically, the friction material 2 according to the present invention is manufactured by the following manufacturing method.

(1)炭素繊維2の東を積層して、直交組織を構成する
(1) The east side of the carbon fibers 2 are laminated to form an orthogonal structure.

(2)上記(1)の摩擦材料(成形体)に樹脂を含浸さ
せる。なお、炭素繊維をより合わせた束に樹脂を含浸さ
せ、これを直交組織を構成するよう積層して成形体とし
てもよい。
(2) The friction material (molded body) of (1) above is impregnated with a resin. Note that a bundle of twisted carbon fibers may be impregnated with resin and then laminated to form an orthogonal structure to form a molded body.

(3)1000°C程度に加熱し、含浸させた樹脂を炭
素化する。
(3) Heat to about 1000°C to carbonize the impregnated resin.

(4)上記樹脂を再び含浸させる。(4) Impregnate the resin again.

(5)2000〜3000°C程度で焼成し、含浸させ
た樹脂を黒鉛化して炭素繊維同士を接合する。
(5) Calcinate at about 2000 to 3000°C to graphitize the impregnated resin and join the carbon fibers together.

(61CVD(化学蒸着)法による炭素の沈着化を行う
(Carbon is deposited by the 61CVD (chemical vapor deposition) method.

(7)切削加工により、所望の形状の摩擦材とする(8
)上記摩擦材にケイ酸ナトリウム水溶液を含浸させ、焼
成する。
(7) Cut the friction material into the desired shape (8
) The above friction material is impregnated with an aqueous sodium silicate solution and fired.

尚、上記(7)と(8)の工程は、順序が逆であっても
よい。また、上記(6)の工程は、省略可能である。
Note that the steps (7) and (8) above may be performed in the reverse order. Further, the step (6) above can be omitted.

尚、説明中の「%」は、特に断らない限り″重量%」を
表す。
In addition, "%" in the description represents "% by weight" unless otherwise specified.

カーボンファイバー(径20μm)を用いて、摩擦材料
を作製した。C/Cコンポジットに含浸されるケイ酸ナ
トリウムの含浸量を順次変えた複数の摩擦材料を用意し
、各摩擦材料について、以下に示す二種類の実験を行っ
た。
A friction material was produced using carbon fiber (diameter 20 μm). A plurality of friction materials were prepared in which the amount of sodium silicate impregnated into the C/C composite was sequentially changed, and the following two types of experiments were conducted for each friction material.

■耐酸化性の評価 700°Cの電気炉中に、60分間放置した後の酸化に
よる摩擦材料の重量減少割合を第2図に示す。C/Cコ
ンポジットは炭素で構成されているため、空気中の酸素
と反応すると、−酸化炭素・二酸化炭素として消耗され
、C/Cコンポジットの重量は減少する。従って、重量
減少割合が多いほど耐酸化性が劣ることを意味す−る。
■Evaluation of oxidation resistance Figure 2 shows the rate of weight loss of the friction material due to oxidation after it was left in an electric furnace at 700°C for 60 minutes. Since the C/C composite is composed of carbon, when it reacts with oxygen in the air, it is consumed as carbon oxide and carbon dioxide, and the weight of the C/C composite decreases. Therefore, it means that the greater the weight loss rate, the poorer the oxidation resistance.

第2図かられかるように、ケイ酸ナトリウムの含浸量が
0゜01%以上であれば全く含浸させないときと比較し
、重量減少割合が小さくなり、耐酸化性の向上に効果が
あることが認められる。
As can be seen from Figure 2, if the amount of sodium silicate impregnated is 0.01% or more, the weight loss rate will be smaller than when it is not impregnated at all, and it is effective in improving oxidation resistance. Is recognized.

■摩擦係数の測定 制動前のブレーキ温度が400 ’Cのときの摩擦係数
を第3図に示す。尚、制動中には摩擦材表面は摩擦熱に
より、はるかに高温となる。第3図かられかるように、
ケイ酸ナトリウムの含浸量を多くすればするほど摩擦係
数は小さくなる。含浸量を5%より多くすると摩擦係数
が小さくなりすぎ通常の摩擦材料としては使えない。
■Measurement of friction coefficient Figure 3 shows the friction coefficient when the brake temperature before braking is 400'C. Note that during braking, the surface of the friction material becomes much hotter due to frictional heat. As you can see from Figure 3,
The greater the amount of sodium silicate impregnated, the smaller the friction coefficient becomes. If the impregnated amount is more than 5%, the coefficient of friction becomes too small to be used as a normal friction material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の摩擦材料の構造(直交組織)を示す
部分拡大図である。 第2図は、電気炉中に、60分間放置した後の酸化によ
る摩擦材料の重量減少割合と、ケイ酸ナトリウム含浸量
との関係を示すグラフである。 第3図は、制動前のブレーキ温度が400°Cのときの
摩擦係数とケイ酸ナトリウム含浸量との関係を示すグラ
フである。 1−−一一一摩擦材料 2 −−−−一炭素繊維 3 −−一一−ケイ酸ナトリウム膜 4−−−一気孔
FIG. 1 is a partially enlarged view showing the structure (orthogonal structure) of the friction material of the present invention. FIG. 2 is a graph showing the relationship between the rate of weight loss of the friction material due to oxidation after being left in an electric furnace for 60 minutes and the amount of sodium silicate impregnated. FIG. 3 is a graph showing the relationship between the friction coefficient and the amount of sodium silicate impregnated when the brake temperature before braking is 400°C. 1--11-Friction material 2--1 Carbon fiber 3--11-Sodium silicate membrane 4--1 pore

Claims (1)

【特許請求の範囲】[Claims] (1)炭素繊維強化複合材料内部の気孔を形成する壁面
の全面が、ケイ酸ナトリウム膜で覆われていることを特
徴とする摩擦材料。
(1) A friction material characterized in that the entire wall surface forming pores inside a carbon fiber reinforced composite material is covered with a sodium silicate film.
JP31342590A 1990-11-19 1990-11-19 Friction material Pending JPH04183774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31342590A JPH04183774A (en) 1990-11-19 1990-11-19 Friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31342590A JPH04183774A (en) 1990-11-19 1990-11-19 Friction material

Publications (1)

Publication Number Publication Date
JPH04183774A true JPH04183774A (en) 1992-06-30

Family

ID=18041144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31342590A Pending JPH04183774A (en) 1990-11-19 1990-11-19 Friction material

Country Status (1)

Country Link
JP (1) JPH04183774A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2388560A (en) * 2002-04-26 2003-11-19 Martin John Michael Murphy Carbon-carbon brake disc with protective outer layer on friction surface
JP2010121665A (en) * 2008-11-18 2010-06-03 Mitsubishi Electric Corp Brake lining material, method for manufacturing the same, and brake braking part using the same
US7906176B2 (en) 2004-12-17 2011-03-15 Flexform Technologies, Llc Methods of manufacturing a fire retardant structural board
US8012889B2 (en) 2001-11-07 2011-09-06 Flexform Technologies, Llc Fire retardant panel composition and methods of making the same
US8071491B2 (en) 2001-11-07 2011-12-06 FledForm Technologies, LLC Process, composition and coating of laminate material
US8158539B2 (en) 2001-11-07 2012-04-17 Flexform Technologies, Llc Heat deflection/high strength panel compositions

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012889B2 (en) 2001-11-07 2011-09-06 Flexform Technologies, Llc Fire retardant panel composition and methods of making the same
US8071491B2 (en) 2001-11-07 2011-12-06 FledForm Technologies, LLC Process, composition and coating of laminate material
US8158539B2 (en) 2001-11-07 2012-04-17 Flexform Technologies, Llc Heat deflection/high strength panel compositions
GB2388560A (en) * 2002-04-26 2003-11-19 Martin John Michael Murphy Carbon-carbon brake disc with protective outer layer on friction surface
US7906176B2 (en) 2004-12-17 2011-03-15 Flexform Technologies, Llc Methods of manufacturing a fire retardant structural board
JP2010121665A (en) * 2008-11-18 2010-06-03 Mitsubishi Electric Corp Brake lining material, method for manufacturing the same, and brake braking part using the same

Similar Documents

Publication Publication Date Title
JP4241042B2 (en) Improved oxidation protection of carbon / carbon composite or graphite friction materials
US20080090064A1 (en) Carbon-carbon friction material with improved wear life
JP2004521054A (en) Carbon barrier controlled metal permeation layer for improved oxidation protection
JPH10507733A (en) Friction element
CN102537155A (en) C/C-SiC-ZrC-ZrB2 complex-phase ceramic-based frictional braking material and preparation method thereof
KR20040015667A (en) Friction material with nanoparticles of friction modifying layer
US9709109B2 (en) Preventing carbon AO migration by limiting surface porosity
US20180045260A1 (en) System and Method for Ceramic Doping of Carbon Fiber Composite Structures
JP2009517320A (en) Protection of carbon-containing composites from oxidation
JP2005534598A (en) Coated carbon / brake disc material
US6668985B2 (en) Safety braking device for elevator
Krenkel et al. Ceramic matrix composites for friction applications
JPH04183774A (en) Friction material
JPH03247628A (en) Non-asbestos friction material
JP3520530B2 (en) Carbon fiber reinforced carbon composite and sliding material
JP4765275B2 (en) Antioxidant for carbon material, carbon material excellent in oxidation resistance, and production method thereof
CA2531799C (en) Composite article
JPH04358031A (en) Ceramic fiber fabric reinforced composite material and production thereof
RU2170220C1 (en) Method of preparing carbon-carbon composite material
JPS62255630A (en) Frictional material
JPS63149440A (en) Friction material
JPS62255632A (en) Frictional member
JPS63149439A (en) Friction material
JP3228096B2 (en) Manufacturing method of friction material
JPH05105869A (en) Oxidation-resistant carbonaceous friction material