JPH0435722A - Co2 recovery device utilizing molten carbonate-type fuel cell and operation thereof - Google Patents

Co2 recovery device utilizing molten carbonate-type fuel cell and operation thereof

Info

Publication number
JPH0435722A
JPH0435722A JP2140397A JP14039790A JPH0435722A JP H0435722 A JPH0435722 A JP H0435722A JP 2140397 A JP2140397 A JP 2140397A JP 14039790 A JP14039790 A JP 14039790A JP H0435722 A JPH0435722 A JP H0435722A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
molten carbonate
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2140397A
Other languages
Japanese (ja)
Other versions
JP2932613B2 (en
Inventor
Kenzo Nakazawa
中沢 健三
Kokichi Uematsu
宏吉 上松
Satoshi Hatori
聡 羽鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2140397A priority Critical patent/JP2932613B2/en
Priority to US07/584,209 priority patent/US5232793A/en
Priority to CA002025654A priority patent/CA2025654C/en
Priority to EP90118035A priority patent/EP0418864B1/en
Priority to CN90107752A priority patent/CN1037941C/en
Priority to DE69008090T priority patent/DE69008090T2/en
Publication of JPH0435722A publication Critical patent/JPH0435722A/en
Application granted granted Critical
Publication of JP2932613B2 publication Critical patent/JP2932613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To generate electric power and to recover CO2 by supplying a gas to be treated contg. CO2 before being discharged into the atmosphere to the cathode of a molten carbonate-type fuel cell along with fresh air to cause a galvanic reaction to concentrate CO2 and generate power and then recovering the CO2. CONSTITUTION:An oxidizing gas is supplied to the cathode 3 of a molten carbonate-type fuel cell 1 from a line 8, and a reformed raw gas is supplied to the anode 4 from a line 16. A molten carbonate-type fuel cell power generating system I for generating power by the galvanic reaction on the cathode 3 side and on the anode 4 side and a CO2 separator II for separating and discharging the CO2 in the gas are provided. A gas to be treated contg. CO2 and air are supplied to the cathode 3 from the line 8, and a line 25 for introducing the CO2-enriched gas into the separator II from the anode 4 is provided. Namely, power generation and CO2 recovery are simultaneously carried out, concd. CO2 is recovered, and the power required to separate CO2 is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は炭酸ガス(CO2)を多く含む燃焼排ガス(処
理ガス)を大気へ放出する前に処理ガス中に含まれる炭
酸ガスを回収すると同時に発電を行わせるために用いる
溶融炭酸塩型燃料電池を利用したCO2回収装置とその
運転方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention collects carbon dioxide contained in the combustion exhaust gas (processed gas) containing a large amount of carbon dioxide (CO2) before releasing it into the atmosphere. The present invention relates to a CO2 recovery device using a molten carbonate fuel cell used to generate electricity and a method of operating the same.

[従来の技術] 天然ガス(NG)を燃料とする火力発電所等から排出さ
れる処理ガス中には、多くのCO2が含まれているが、
従来は、上記処理ガス中のC07を除去することなく、
そのまま大気へ放出させているのか実状である。
[Conventional technology] Processed gas discharged from thermal power plants, etc. that use natural gas (NG) as fuel contains a large amount of CO2.
Conventionally, without removing C07 from the processing gas,
The reality is that it is being released directly into the atmosphere.

[発明か解決しようとする課題1 ところか、上記CO7を含む処理ガスをそのまま大気中
へ放出させると、地球表面からの長波長輻射が、大気中
に放出されて存在するCO2に吸収されて大気中に透過
しにくくなるため、その分だけ地表及び下層大気か暖ま
って地球を温暖化させる結果となっている。近年、この
CO2による地球温暖化は大きな問題となってあり、地
球温暖化を緩和させることが不可欠である。
[Problem to be solved by the invention 1 However, if the treated gas containing CO7 is directly released into the atmosphere, long-wavelength radiation from the earth's surface will be absorbed by the CO2 that is emitted into the atmosphere and will be absorbed into the atmosphere. Since it becomes difficult for the air to penetrate into the atmosphere, the surface of the earth and the lower atmosphere become warmer, resulting in global warming. In recent years, global warming caused by CO2 has become a major problem, and it is essential to alleviate global warming.

そこで、本発明は、天然ガス火力発電所等から排出され
る処理ガス中のCO2を回収すると共に発電させるよう
にしようとするものである。
Therefore, the present invention aims to recover CO2 in the treated gas discharged from natural gas-fired power plants and the like, and to generate electricity at the same time.

[課題を解決するための手段] 本発明は、上記課題を解決するために、溶融炭酸塩をし
み込ませた電解質板をカソードとアノードの画電極で挟
んでなるものを1セルとする溶融炭酸塩型燃料電池のカ
ソードに酸化ガスを供給すると共にアノードに改質原料
ガスを改質して供給するようにしてカソード側とアノー
ド側での電池反応で発電するようにしてある溶融炭酸塩
型燃料電池発電システムと、ガス中のCQを分離してC
0を回収できるようにしたCO2分離装置とを設け、上
記溶融炭酸塩型燃料電池のカソードに、CO?を含む処
理ガスを空気とともに供給するようにし、且つ上記アノ
ードからCO?の濃縮したガスをCO2分離装置に導入
する導入ラインを設けた構成とする。又、上記カソード
へ供給する処理ガス/空気のモル比を1〜0.65の範
囲とし、且つアノードから排出されてCO2分離装置へ
導入されるCO2量に対してCO2分離装置で回収する
CO?量の比を0.2〜O14の範囲のCO2回収率と
する条件で運転するようにする。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a molten carbonate cell in which one cell is formed by sandwiching an electrolyte plate impregnated with molten carbonate between cathode and anode picture electrodes. A molten carbonate fuel cell in which an oxidizing gas is supplied to the cathode of the fuel cell, and reformed raw material gas is supplied to the anode to generate electricity through a cell reaction between the cathode and anode sides. Power generation system and separating CQ in gas
A CO2 separator capable of recovering CO2 is installed at the cathode of the molten carbonate fuel cell. A processing gas containing CO? is supplied together with air, and CO? is supplied from the anode. The configuration includes an introduction line for introducing the concentrated gas into the CO2 separation device. Further, the molar ratio of the processing gas/air supplied to the cathode is in the range of 1 to 0.65, and the amount of CO2 recovered by the CO2 separator is adjusted to the amount of CO2 discharged from the anode and introduced into the CO2 separator. The system is operated under conditions such that the CO2 recovery rate is in the range of 0.2 to 0.14.

[作   用1 CO2を含む処理ガスと新鮮空気を溶融炭酸塩型燃料電
池のカソードに供給し、アノードに燃料ガスを供給する
と、カソード側とアノード側で電池反応か行われて発電
か行われると共に、カソードに供給された処理ガス中の
CO2は炭酸イオンとしてアノード側へ運ばれ、C0は
濃縮されてアノードから排出される。このCO2が濃縮
されたガスは、CO2分離装置へ導かれ、CO2は分離
して回収される。COの回収はC02S度を高めてから
行われることから、CO2分離に必要な動力か少なくて
すむ。
[Action 1] When a process gas containing CO2 and fresh air are supplied to the cathode of a molten carbonate fuel cell, and fuel gas is supplied to the anode, a cell reaction occurs on the cathode side and the anode side, generating electricity. , CO2 in the process gas supplied to the cathode is carried to the anode side as carbonate ions, and CO2 is concentrated and discharged from the anode. This CO2-enriched gas is led to a CO2 separator, where CO2 is separated and recovered. Since CO recovery is performed after increasing the CO2S degree, less power is required for CO2 separation.

[実 施 例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明のCO,回収装置の一実施例を示すもの
で、天然ガス火力発電所5から排出されたCO2を含む
処理ガスbを新鮮空気aとともに溶融炭酸塩型燃料電池
1のカソードに供給するようにし、且つ改質原料ガスと
しての天然ガスを改質してアノードに供給するようにし
てある溶融炭酸塩型燃料電池発電システム■と、CO2
を含むガスからCO2を分離するようにしてあるC0分
離装置■とからなる構成としである。
FIG. 1 shows an embodiment of the CO recovery device of the present invention, in which a treated gas b containing CO2 discharged from a natural gas-fired power plant 5 is sent to the cathode of a molten carbonate fuel cell 1 along with fresh air a. A molten carbonate fuel cell power generation system (■) that is configured to supply CO2 to
This is a configuration consisting of a CO separator (2) which is designed to separate CO2 from a gas containing CO2.

詳述すると、上記溶融炭酸塩型燃料電池発電システムは
、電解質として溶融炭酸塩をしみ込ませてなる電解質板
2をカソード(酸素極)3とアノード(燃料極)4で両
面から挟んでなるものを1セルとする溶融炭酸塩型燃料
電池10カンード3に、新鮮空気aをフィルタ6を通し
た後、圧縮@7で圧縮して空気供給ライン8を通して供
給するようにすると共に、カソード3から排出されたカ
ソードガスは、カソードガス出ロライン9よりタービン
10に導入した後に大気へ放出させるようにし、カソー
ドガスの一部は、分岐ライン11を通して改質器12の
燃焼室12bへ導入させるようにし、該改質器12の燃
焼室12bから排出された排ガスはブロワ13で昇圧し
てライン14によりカソード3へ供給されるようにしで
ある。一方、アノード4には、天然ガスNGを天然ガス
予熱器15で予熱した後、天然ガス供給うイン16を通
して改質器12の改質器12aに導入し、ここで燃料ガ
スFGに改質して燃料ガス供給ライン17より燃料ガス
FGを供給するようにし、アノード4がら排出されたア
ノードガスは、熱交換器18、蒸発器19、凝縮器2゜
を経て気液分離器21へ導き、ここでアノードガス中の
水(H2O)を分離し、cQ2を含むガスは、導入ライ
ン25よりCO?分離装置■へ導いてC0を分離して回
収させるようにし、上記気液分離器21で分離されたH
2Oは、ポンプ22て加圧して液留容器23に入れた後
、上記蒸発器19で蒸発させ蒸気として天然ガス供給ラ
イン16の途中に混入されるようにしてあり、空気供給
ライン8のフィルタ6人口側に、天然ガス火力発電所5
からの処理ガスを処理ガスライン24により供給するよ
うにしてある。
To be more specific, the molten carbonate fuel cell power generation system is constructed by sandwiching an electrolyte plate 2 impregnated with molten carbonate as an electrolyte between a cathode (oxygen electrode) 3 and an anode (fuel electrode) 4. Fresh air a is passed through a filter 6 to a molten carbonate fuel cell 10 cand 3, which is made up of one cell, and then compressed by compression @ 7 and supplied through an air supply line 8, and the air is discharged from the cathode 3. The cathode gas is introduced into the turbine 10 through the cathode gas outlet line 9 and then released into the atmosphere, and a part of the cathode gas is introduced into the combustion chamber 12b of the reformer 12 through the branch line 11. Exhaust gas discharged from the combustion chamber 12b of the reformer 12 is pressurized by a blower 13 and is supplied to the cathode 3 via a line 14. On the other hand, for the anode 4, natural gas NG is preheated by a natural gas preheater 15, and then introduced into the reformer 12a of the reformer 12 through the natural gas supply inlet 16, where it is reformed into fuel gas FG. The fuel gas FG is supplied from the fuel gas supply line 17, and the anode gas discharged from the anode 4 is guided to the gas-liquid separator 21 through the heat exchanger 18, evaporator 19, and condenser 2°. The water (H2O) in the anode gas is separated, and the gas containing cQ2 is introduced from the introduction line 25 into CO? The H separated by the gas-liquid separator 21 is
After the 2O is pressurized by the pump 22 and put into the liquid distillation container 23, it is evaporated by the evaporator 19 and mixed into the natural gas supply line 16 as steam, and the filter 6 of the air supply line 8 On the population side, natural gas-fired power plant 5
A processing gas is supplied from the processing gas line 24.

又、CO2分離装置■は、上記気液分離器21で水と分
離された後のガス中のC02を分離して、分離したcQ
2を回収ライン26より取り出して回収し、CO2処理
装置29へ送るようにすると共に、GO,を回収後、残
りのガスはライン27より溶融炭酸塩型燃料電池発電シ
ステム■に戻し、ブロワ28より熱交換器18を経て改
質器12の燃焼室12bに導入するようにしてある。こ
のCO7分離装置装置は、CO2をガスのまま回収する
ようにしたものと、C0を低温流体により冷却して液体
として回収するようにしたものがある。
In addition, the CO2 separator (2) separates the CO2 in the gas after it has been separated from water in the gas-liquid separator 21, and converts it into separated cQ.
2 is taken out from the recovery line 26, collected, and sent to the CO2 processing device 29, and after collecting GO, the remaining gas is returned to the molten carbonate fuel cell power generation system (■) through the line 27, and is sent to the CO2 processing device 29 through the blower 28. The fuel is introduced into the combustion chamber 12b of the reformer 12 via the heat exchanger 18. There are two types of CO7 separator devices: one that recovers CO2 as a gas, and one that cools CO2 with a low-temperature fluid and recovers it as a liquid.

今、火力発電所5から排出された処理ガスb中のCO2
を回収しようとする場合は、上記処理ガスbを処理ガス
ライン24より空気供給ライン8に入れ、空気aととも
に圧縮機7で圧縮してカソード3へ供給するようにし、
一方、CCh分離装置■でガス化された天然ガスNGを
天然ガス供給ライン16に導いて改質器12で改質した
後、燃料ガスFGとしてアノード4に供給して、カソー
ド3とアノード4でそれぞれ電池反応を起こさせ、CO
2を濃縮してアノード4から取り出すようにする。すな
わち、カソード3側では、CO2+ 1/20?+ 2
8−→C03−の反応か行われて、炭酸イオンCO3−
に変えられ、この炭酸イオンは、電解質板2中を泳動し
てアノード4へ運ばれる。アノード4側では、CO3−
+H2−)H20+CO2+2 e−の反応が行われる
Now, CO2 in the treated gas b discharged from the thermal power plant 5
When attempting to recover the gas, the processing gas b is introduced from the processing gas line 24 into the air supply line 8, compressed together with air a by the compressor 7, and supplied to the cathode 3.
On the other hand, the natural gas NG gasified by the CCh separator (2) is led to the natural gas supply line 16 and reformed by the reformer 12, and then supplied to the anode 4 as fuel gas FG. Each causes a battery reaction and CO
2 is concentrated and taken out from the anode 4. In other words, on the cathode 3 side, CO2+ 1/20? +2
8-→C03- reaction is carried out, carbonate ion CO3-
The carbonate ions migrate through the electrolyte plate 2 and are transported to the anode 4. On the anode 4 side, CO3-
+H2-)H20+CO2+2 e- reaction takes place.

上記カソード3側とアノード4側での反応が進むことに
より発電が行われると共に、CO2かカソード3側から
アノード4側へ移動する。アノード4側のガス流量はカ
ソード3側のガス流量に対して数分の1と少ないため、
アノード4側のガス流量が少ない分だけ、アノード4側
へ移動したCO?は濃縮され、数倍のyA度になる。
As the reaction progresses on the cathode 3 side and the anode 4 side, power generation is performed, and CO2 moves from the cathode 3 side to the anode 4 side. Since the gas flow rate on the anode 4 side is a fraction of the gas flow rate on the cathode 3 side,
Did CO move to the anode 4 side due to the small gas flow rate on the anode 4 side? is concentrated and becomes several times more yA degrees.

したがって、溶融炭酸塩型燃料電池1て発電とともにC
Oの濃縮が行われることになる。
Therefore, the molten carbonate fuel cell 1 generates electricity as well as C.
Concentration of O will take place.

アノード4側てCQの濃縮されたアノードガスは、熱交
換器18、蒸発器19、凝縮器2oを経て気液分離器2
1に送られ、ここでH2Oが分離して除去された後、導
入ライン25よりCO2分離装置■に導かれ、ここで、
ガス中のcQ2が分離されて回収ライン26より取り出
されて回収され、回収したcQ2をCO2処理装置29
へ送ること(なる。
The concentrated anode gas of CQ on the anode 4 side passes through the heat exchanger 18, the evaporator 19, and the condenser 2o to the gas-liquid separator 2o.
1, where H2O is separated and removed, and then led from the introduction line 25 to the CO2 separator ■, where:
cQ2 in the gas is separated and taken out and recovered from the recovery line 26, and the recovered cQ2 is sent to the CO2 processing device 29.
to send to (become)

この場合、CO2をガスのまま回収するときは、ガス中
のCO?を分離してそのまま回収すればよく、CO2を
液体の状態で回収するときは、cQを低温流体で冷却し
て液化させるよう番こする。
In this case, when recovering CO2 as a gas, the CO2 in the gas? It is sufficient to separate the CO2 and collect it as is. When recovering CO2 in a liquid state, cQ is cooled with a low-temperature fluid to be liquefied.

co2分離装置■でCo2を回収後、残りのガスは、ラ
イン27より溶融炭酸塩型燃料電池発電システムにおけ
る熱交換器18を通って改質器12の燃焼室12bへと
導かれ、カソード3にリサイクルされる。
After recovering Co2 in the CO2 separator ■, the remaining gas is guided from the line 27 through the heat exchanger 18 in the molten carbonate fuel cell power generation system to the combustion chamber 12b of the reformer 12, and then to the cathode 3. Recycled.

上記CO2の回収において、たとえば、全ガス流量に対
して9%のCO?を含む処理ガスを処理するとした場合
についてみると、カソード3に入ったCO2流量は7%
であったものか、アノード4の出口では42%のCO2
量まで濃縮され、更に、CO2導入ライン25からCO
2分離装置装置導入されるガス中のCQは82%となり
、GO2分離装置装置らライン27へ導かれるガス中の
CO2は74%であり、CO2分離装置装置回収される
ガスG、tCO2か100%であり、タービン10を経
て大気中に放出されるガス中のCO2は3%に低減でき
る。
In the above CO2 recovery, for example, 9% CO2 with respect to the total gas flow rate? In the case of processing a processing gas containing
At the exit of anode 4, 42% of CO2
The CO2 is further concentrated to
2 CQ in the gas introduced into the CO2 separation device is 82%, CO2 in the gas led from the GO2 separation device to line 27 is 74%, and the gas G, tCO2 recovered by the CO2 separation device is 100%. Therefore, CO2 in the gas released into the atmosphere via the turbine 10 can be reduced to 3%.

かかる結果が得られるための運転には、カソード3に供
給される処理ガス/新鮮空気のモル比及びGO2分離装
置装置Co2回収率に対して範囲を設けるようにすれば
よい。その条件としては、 ■供給する処理ガスb/空気aのモル比を、第2図に示
す如く、 1〜0.65の範囲とし、■GO分離装置装
置おいて回収ライン26より回収するCO2量が、導入
ライン25よりGO2分離装置装置導入されるCO2量
に対して0.2〜0.4の範囲となるCO2回収率とす
るのか最適である。
In order to achieve such a result, a range may be set for the molar ratio of process gas/fresh air supplied to the cathode 3 and the CO2 recovery rate of the GO2 separator. The conditions are: (1) The molar ratio of processing gas b/air a to be supplied is in the range of 1 to 0.65, as shown in Figure 2, and (2) the amount of CO2 to be recovered from the recovery line 26 in the GO separation device. However, it is optimal to set the CO2 recovery rate to be in the range of 0.2 to 0.4 with respect to the amount of CO2 introduced from the introduction line 25 into the GO2 separator.

これらの運転範囲は、 0)溶融炭酸塩型燃料電池1のカソード3人口における
CO2量と02蟻、及び改質器12の燃焼室12b出口
におけるα量が適正量確保されること、 (へ)本装置より排出するガスのCO2低減率、すなわ
ち、処理ガスb中のCO2量に対してタービン10を経
た後大気へ排出されるCO2量の割り合いが1以下とな
ること、 を満足させるために定めた条件である。
These operating ranges are as follows: 0) The amount of CO2 and 02 at the cathode 3 of the molten carbonate fuel cell 1 and the amount of α at the outlet of the combustion chamber 12b of the reformer 12 must be secured in appropriate amounts; In order to satisfy the CO2 reduction rate of the gas emitted from this device, that is, the ratio of the amount of CO2 emitted to the atmosphere after passing through the turbine 10 to the amount of CO2 in the processed gas b is 1 or less. This is a set condition.

上記運転条件により処理ガス/空気のモル比を第2図の
に)の如く設定し、且つCO2分離装置装置おけるCO
2回収率をS)の如< 0.28〜0.35程度に設定
すると、改質器12の燃焼室出口の02量と、GO−2
低減率は、第3図の(C)と0)に示す如くなり、上、
Jした(イ)(へ)の条件を満足している。
Based on the above operating conditions, the molar ratio of processing gas/air is set as shown in Figure 2), and the CO2 separation equipment is
When the 2 recovery rate is set to about < 0.28 to 0.35 as shown in S), the 02 amount at the combustion chamber outlet of the reformer 12 and the GO-2
The reduction rate is as shown in (C) and 0) in Figure 3.
It satisfies the conditions of (a) and (f).

上記において、CO2回収率を、第2図に示す如く、0
.28〜0,35程度に設定すると、GO7分離装置装
置おいて、CQを液化分離する際の00分圧か高くなり
、必要な動力か少なくてすむ利点がある。
In the above, the CO2 recovery rate is 0 as shown in Figure 2.
.. When the pressure is set to about 28 to 0.35, the partial pressure when liquefying and separating CQ in the GO7 separation device becomes higher, which has the advantage of requiring less power.

なお、本発明は上記実施例に限定されるものではなく、
天然ガス火力発電所5から排出される処理ガス中のCQ
を発電に利用して回収する場合を示したか、火力発電所
以外のものから排出される処理ガスでも同様に扱えるこ
と、又、溶融炭酸塩型燃料電池発電システムは一例を示
すもので、これに限定されるものではないこと、タービ
ン10を経て排出される先に別の溶融炭酸塩型燃料電池
を置くようにしてもよい。
Note that the present invention is not limited to the above embodiments,
CQ in treated gas discharged from natural gas-fired power plant 5
We have shown that it can be used in the same manner as treated gas discharged from sources other than thermal power plants, and that a molten carbonate fuel cell power generation system is an example of this. Without limitation, another molten carbonate fuel cell may be placed before exhausting through the turbine 10.

[発明の効果] 以上述へた如く、本発明の溶融炭酸塩型燃料電池を利用
したco2回収装′置装よれば、大気へ放出される前の
COを含む処理ガスを新鮮空気とともに溶融炭酸塩型燃
料電池のカソードに供給して電池反応を起こさせ、発電
と共にCO2を濃縮させるようにし、濃度の高いCO2
をco2分離装置へ導入してCO2回収を行わせるよう
にするので、発電とCO2回収が同時にできると共に、
C02a度を高めてから回収することから、co2分離
に必要な動力か少なくてすむ、等の優れた効果を奏し得
られ、更に、カソード(供給する上記処理ガス/新鮮空
気のモル比を1〜0,65の範囲、CO分離装置のCO
2回収率を、CCh分離装置で回収するco2tiかc
o2分離装置に導入されるco2mに対して0.2〜0
.4の範囲となるように特定して運転することにより、
CO2回収量の増大と効率の高い溶融炭酸塩型燃料電池
発電を確保することができる、という効果も奏し得られ
る。
[Effects of the Invention] As described above, according to the CO2 recovery device using the molten carbonate fuel cell of the present invention, the process gas containing CO before being released into the atmosphere is converted into molten carbon dioxide together with fresh air. It is supplied to the cathode of a salt-type fuel cell to cause a cell reaction, and the CO2 is concentrated while generating electricity.
Since CO2 is introduced into the CO2 separator and CO2 is recovered, power generation and CO2 recovery can be performed at the same time.
Since the CO2a degree is increased before recovery, excellent effects such as less power required for CO2 separation can be achieved. CO in the range 0,65, CO separator
2 recovery rate, co2ti or c recovered by CCh separator
0.2 to 0 for the CO2m introduced into the O2 separator
.. By specifying and driving within the range of 4,
It is also possible to achieve the effects of increasing the amount of CO2 recovered and ensuring highly efficient molten carbonate fuel cell power generation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概要図、第2図は処理
ガスと空気のモル比及びCO2回収率の運転範囲を示す
図、第3図は第2図の運転範囲にあける改質器燃焼全出
口のO?量及びCO:!低減率を示す図である。 ■・・・溶融炭酸塩型燃料電池発電システム、■・・・
CO2分離装置、1・・・溶融炭酸塩型燃料電池、2・
・・電解質板、3・・・カソード、4・・・アノード、
8・・・空気供給ライン、12・・・改質器、16・・
・天然ガス供給ライン、21・・・気液分離器、25・
・・導入ライン、26・・・回収ライン、a・・・空気
、b・・・処理ガス、NG・・・天然ガス。 第1図
Figure 1 is a schematic diagram showing an embodiment of the present invention, Figure 2 is a diagram showing the operating range of the molar ratio of process gas to air and CO2 recovery rate, and Figure 3 is a diagram showing changes made to the operating range of Figure 2. O at all outlets of the combustion chamber? Amount and CO:! It is a figure showing a reduction rate. ■... Molten carbonate fuel cell power generation system, ■...
CO2 separation device, 1... molten carbonate fuel cell, 2.
... Electrolyte plate, 3... Cathode, 4... Anode,
8... Air supply line, 12... Reformer, 16...
・Natural gas supply line, 21... Gas-liquid separator, 25.
...Introduction line, 26...Recovery line, a...Air, b...Processing gas, NG...Natural gas. Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)溶融炭酸塩型燃料電池のカソードに酸化ガスを供
給すると共にアノードに改質原料ガスを改質して供給す
るようにして、カソード側とアノード側での電池反応で
発電するようにしてある溶融炭酸塩型燃料電池発電シス
テムと、ガス中のCO_2を分離して取出せるようにし
たCO_2分離装置とを設け、上記溶融炭酸塩型燃料電
池のカソードに、CO_2を含む処理ガスを空気ととも
に供給するようにし、且つ上記アノードからCO_2の
濃縮したガスをCO_2分離装置に導入する導入ライン
を設けてなることを特徴とする溶融炭酸塩型燃料電池を
利用したCO_2回収装置。
(1) Oxidizing gas is supplied to the cathode of the molten carbonate fuel cell, and reformed raw material gas is supplied to the anode, so that power is generated through cell reactions between the cathode and anode sides. A molten carbonate fuel cell power generation system and a CO_2 separation device capable of separating and extracting CO_2 from the gas are installed, and a process gas containing CO_2 is delivered to the cathode of the molten carbonate fuel cell together with air. A CO_2 recovery device using a molten carbonate fuel cell, characterized in that it is provided with an introduction line for supplying CO_2 and introducing concentrated CO_2 gas from the anode to the CO_2 separation device.
(2)溶融炭酸塩型燃料電池のカソードに供給するCO
_2を含む処理ガス/空気のモル比を1〜0.65の範
囲として運転し、溶融炭酸塩型燃料電池のアノードから
排出されたアノードガスを水を分離した後、CO_2分
離装置に導入し、該CO_2分離装置でCO_2を分離
して回収するように運転することを特徴とする溶融炭酸
塩型燃料電池を利用したCO_2回収装置の運転方法。
(2) CO supplied to the cathode of a molten carbonate fuel cell
operating with a molar ratio of process gas/air containing _2 in the range of 1 to 0.65, and introducing the anode gas discharged from the anode of the molten carbonate fuel cell into a CO_2 separator after separating water; A method of operating a CO_2 recovery device using a molten carbonate fuel cell, characterized in that the CO_2 separation device is operated to separate and recover CO_2.
(3)溶融炭酸塩型燃料電池のカソードに、CO_2を
含む処理ガスを空気とともに供給し、溶融炭酸塩型燃料
電池のアノードから排出されたアノードガスを水を分離
した後にCO_2分離装置に導入し、該CO_2分離装
置でCO_2を分離して回収するとき、CO_2分離装
置で回収するCO_2量がアノードから出てCO_2分
離装置へ導入されるCO_2量に対して0.2〜0.4
の範囲の回収率となるように運転することを特徴とする
溶融炭酸塩型燃料電池を利用したCO_2回収装置の運
転方法。
(3) A process gas containing CO_2 is supplied together with air to the cathode of the molten carbonate fuel cell, and the anode gas discharged from the anode of the molten carbonate fuel cell is introduced into the CO_2 separation device after separating water. When CO_2 is separated and recovered by the CO_2 separator, the amount of CO_2 recovered by the CO_2 separator is 0.2 to 0.4 with respect to the amount of CO_2 released from the anode and introduced into the CO_2 separator.
A method for operating a CO_2 recovery device using a molten carbonate fuel cell, characterized by operating the CO_2 recovery device so that the recovery rate is in the range of .
(4)溶融炭酸塩型燃料電池のカソードに供給するCO
_2を含む処理ガス/空気のモル比を1〜0.65の範
囲とし、且つCO_2を分離するCO_2分離装置で回
収するCO_2量がアノードから出てCO_2分離装置
へ導入されるCO_2量に対して0.2〜0.4の範囲
のCO_2回収率となるように運転することを特徴とす
る溶融炭酸塩型燃料電池を利用したCO_2回収装置の
運転方法。
(4) CO supplied to the cathode of a molten carbonate fuel cell
The molar ratio of process gas/air containing _2 is in the range of 1 to 0.65, and the amount of CO_2 recovered by the CO_2 separator that separates CO_2 is relative to the amount of CO_2 that comes out from the anode and is introduced into the CO_2 separator. 1. A method of operating a CO_2 recovery device using a molten carbonate fuel cell, characterized by operating the CO_2 recovery rate in a range of 0.2 to 0.4.
JP2140397A 1989-09-19 1990-05-30 Operating method of CO 2 recovery device using molten carbonate fuel cell Expired - Lifetime JP2932613B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2140397A JP2932613B2 (en) 1990-05-30 1990-05-30 Operating method of CO 2 recovery device using molten carbonate fuel cell
US07/584,209 US5232793A (en) 1989-09-19 1990-09-18 Method of and apparatus for utilizing and recovering co2 in combustion exhaust gas
CA002025654A CA2025654C (en) 1989-09-19 1990-09-18 Method of and apparatus for utilizing and recovering co2 combustion exhaust gas
EP90118035A EP0418864B1 (en) 1989-09-19 1990-09-19 Method of and apparatus for utilizing and recovering carbondioxide in combustion exhaust gas
CN90107752A CN1037941C (en) 1989-09-19 1990-09-19 Method of and apparatus for utilizing and recovering CO2 in combustion exhaust gas
DE69008090T DE69008090T2 (en) 1989-09-19 1990-09-19 Method and device for using and recovering carbon dioxide in a combustion exhaust gas.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2140397A JP2932613B2 (en) 1990-05-30 1990-05-30 Operating method of CO 2 recovery device using molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH0435722A true JPH0435722A (en) 1992-02-06
JP2932613B2 JP2932613B2 (en) 1999-08-09

Family

ID=15267843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2140397A Expired - Lifetime JP2932613B2 (en) 1989-09-19 1990-05-30 Operating method of CO 2 recovery device using molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP2932613B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196268A (en) * 2005-01-12 2006-07-27 Chugoku Electric Power Co Inc:The Power generation facility and power generation method
JP2009240881A (en) * 2008-03-31 2009-10-22 Chugoku Electric Power Co Inc:The Method of desulfurizing exhaust gas, exhaust gas desulfurizer, and carbon dioxide-recovering fuel cell power generation system equipped with the exhaust gas desulfurizer
JP5282103B2 (en) * 2008-11-18 2013-09-04 東京瓦斯株式会社 Hydrogen recycling type MCFC power generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196268A (en) * 2005-01-12 2006-07-27 Chugoku Electric Power Co Inc:The Power generation facility and power generation method
JP2009240881A (en) * 2008-03-31 2009-10-22 Chugoku Electric Power Co Inc:The Method of desulfurizing exhaust gas, exhaust gas desulfurizer, and carbon dioxide-recovering fuel cell power generation system equipped with the exhaust gas desulfurizer
JP5282103B2 (en) * 2008-11-18 2013-09-04 東京瓦斯株式会社 Hydrogen recycling type MCFC power generation system

Also Published As

Publication number Publication date
JP2932613B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
JP3038393B2 (en) Molten carbonate fuel cell power generator with CO 2 separation device using LNG cold energy
CA1291787C (en) Recovery of carbon dioxide from fuel cell exhaust
US5232793A (en) Method of and apparatus for utilizing and recovering co2 in combustion exhaust gas
JP2819730B2 (en) Operating method of molten carbonate fuel cell
US4921765A (en) Combined goal gasifier and fuel cell system and method
US3401100A (en) Electrolytic process for concentrating carbon dioxide
JP2006509345A (en) Exhaust gas treatment method for solid oxide fuel cell power plant
JP5496494B2 (en) Power generation system
CA2042853A1 (en) Oxygen extraction from externally fired gas turbines
JP3392055B2 (en) Solid electrolyte membrane system for use in furnaces
US4430293A (en) Containment hydrogen removal system for a nuclear power plant
JPS5828176A (en) Fuel-cell generation system
JPH0435722A (en) Co2 recovery device utilizing molten carbonate-type fuel cell and operation thereof
JPH02503968A (en) A device that generates electrical energy from fuel using an electrochemically operated fuel cell.
JPH05347161A (en) Power generation system by fuel cell
EP0521185B1 (en) Power generation method using molten carbonate fuel cells
JP3281728B2 (en) Deuterium production equipment
JP2595579B2 (en) Power generator for molten carbonate fuel cell
JPH03236166A (en) Power generating method for molten carbonate fuel cell
JPH01105475A (en) Natural gas reforming fused carbonate type fuel cell power generator
JPH04206158A (en) Separation-recovery of carbon dioxide by use of molten carbonate type fuel cell and device thereof
JPH1128331A (en) Method for electrochemically separating carbon dioxide
JPS63141268A (en) Generating unit for natural-gas reformed molten carbonate type fuel cell
JP5292865B2 (en) Water recovery method for fuel cell power generator and fuel cell power generator
JPH034453A (en) Method and device for separating carbonic acid gas from anode outlet gas