JP2006196268A - Power generation facility and power generation method - Google Patents

Power generation facility and power generation method Download PDF

Info

Publication number
JP2006196268A
JP2006196268A JP2005005463A JP2005005463A JP2006196268A JP 2006196268 A JP2006196268 A JP 2006196268A JP 2005005463 A JP2005005463 A JP 2005005463A JP 2005005463 A JP2005005463 A JP 2005005463A JP 2006196268 A JP2006196268 A JP 2006196268A
Authority
JP
Japan
Prior art keywords
power
power generation
load
fuel
demand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005005463A
Other languages
Japanese (ja)
Inventor
Akinori Yoshimitsu
昭典 吉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2005005463A priority Critical patent/JP2006196268A/en
Publication of JP2006196268A publication Critical patent/JP2006196268A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To make load change rate higher so as to be able to rapidly cope with increase in demanded load on a demand side. <P>SOLUTION: When the demanded load on a consumption side 2 is increased, by a switching means 6, in order to follow up the increase in the load corresponding to the rise in the demanded load on the consumption side 2, the supply of power to a load means 4 is stopped, the power consumed by the load means 4 is added to the supply power to the consumption side 2, the increase rate of the power is made higher by sending the power consumed by the load means 4 to the consumption side 2, and the load change rate is made higher so as to be able to rapidly cope with the increase in the load demand on the demand side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、需要側の要求負荷の増加に迅速に対応できるように負荷変化率を高くできる発電設備及び発電方法に関する。   The present invention relates to a power generation facility and a power generation method capable of increasing a load change rate so as to quickly cope with an increase in demand load on a demand side.

昼間の電力需要に対して夜間の電力需要は少なく、昼夜の電力需要の格差は大きなものとなっている。電力は貯蔵することができないため、需要に合った発電をする必要があり、発電所の出力変化(負荷変化率)は早い(高い)方が望ましい。一般に電力会社では、火力、水力、原子力等の発電所を所有しており、水力、原子力をベースの電力源として火力(石炭や天然ガスを燃料)発電所の運転の負荷を変動させて需要に応じた発電を実施している。   There is little nighttime power demand compared to daytime power demand, and the gap between daytime and nighttime power demand is large. Since power cannot be stored, it is necessary to generate power that meets demand, and it is desirable that the output change (load change rate) of the power plant be fast (high). In general, electric power companies own power plants such as thermal power, hydro power, and nuclear power, and the demand of power is changed by changing the operation load of the thermal power (coal and natural gas as fuel) power sources based on hydro power and nuclear power. Power generation is implemented accordingly.

火力発電所の負荷変化率は、水力発電所や原子力発電所に比べて高いものの、1分間に数%程度であるのが現状である。従って、電力需要がピークになる時刻を予め認識してピーク時刻に合わせて出力を上げる場合、長時間を要しているのが現状である。   Although the rate of load change of thermal power plants is higher than that of hydropower plants and nuclear power plants, the current rate is about several percent per minute. Therefore, in the current situation, it takes a long time to recognize the time when power demand peaks and to increase the output in accordance with the peak time.

一方、高温形燃料電池として、溶融炭酸塩形燃料電池(MCFC)が知られている。MCFCは、例えば、ニッケル多孔質体の燃料極(アノード)と、例えば、酸化ニッケル多孔質体の空気極(カソード)との間に、電解質(炭酸塩)が挟まれて構成されている。そして、天然ガス等の燃料や水の電気分解で得られた水素(H)をアノードに供給すると共に、アノードで生成された二酸化炭素(CO)及び空気(O)をカソードに供給することで、HとOの電気化学反応により発電が行われる。MCFCは高温で作動するため高効率で、COを回収分離できるため環境への影響が少ない等の特徴を有している。このため、近年は、水力、火力、原子力に続く発電システムとして注目されてきている。 On the other hand, a molten carbonate fuel cell (MCFC) is known as a high temperature fuel cell. The MCFC is configured, for example, by sandwiching an electrolyte (carbonate) between a fuel electrode (anode) of a nickel porous body and an air electrode (cathode) of a nickel oxide porous body, for example. Then, hydrogen (H 2 ) obtained by electrolysis of fuel such as natural gas or water and water is supplied to the anode, and carbon dioxide (CO 2 ) and air (O 2 ) generated at the anode are supplied to the cathode. Thus, power generation is performed by an electrochemical reaction between H 2 and O 2 . MCFC operates at a high temperature, has high efficiency, and can recover and separate CO 2 , so that it has a less environmental impact. For this reason, in recent years, it has attracted attention as a power generation system following hydropower, thermal power, and nuclear power.

火力発電所の発電設備とMCFC等の高温形燃料電池とを併設して発電所の出力を増加させることが従来から提案されている(例えば、特許文献1参照)。また、夜間電力を利用して水電解装置により水素と酸素を製造して貯蔵し、貯蔵された水素を昼間に燃料電池に供給して発電する技術が従来から提案されている(例えば、特許文献2、3参照)。   Conventionally, it has been proposed to increase the output of a power plant by providing a power generation facility of a thermal power plant and a high-temperature fuel cell such as MCFC (see, for example, Patent Document 1). In addition, a technique has been conventionally proposed in which hydrogen and oxygen are produced and stored by a water electrolysis apparatus using nighttime power, and the stored hydrogen is supplied to a fuel cell in the daytime to generate electric power (for example, Patent Documents). 2 and 3).

発電所の出力を増加させることで、負荷変化率が1分間に数%程度の発電所であっても比較的短時間でピーク電力に対応した出力を得ることができる。また、夜間電力で水素を製造して昼間に燃料電池で発電を行うことにより、昼夜の発電負荷の平準化を図ることができる。   By increasing the output of the power plant, an output corresponding to the peak power can be obtained in a relatively short time even in a power plant having a load change rate of about several percent per minute. Also, by producing hydrogen with nighttime power and generating power with a fuel cell in the daytime, it is possible to level the power generation load during the day and night.

しかし、従来提案されている技術は、燃料電池を併設することでベースとなる出力を上げたり、昼夜の発電負荷の差を小さくする技術である。このため、負荷変化率に関しては言及されておらず、需要側の要求負荷の増加に対して最小限の発電出力で迅速に対応できるようにはなっていない。   However, the conventionally proposed technology is a technology for increasing the base output by installing a fuel cell or reducing the difference in power generation load between day and night. For this reason, the load change rate is not mentioned, and it is not possible to respond quickly to the increase in demand load on the demand side with the minimum power generation output.

特開平11−67239号公報JP 11-67239 A 特開2002−56879号公報JP 2002-56879 A 特開2002−56880号公報JP 2002-56880 A

本発明は上述した事情に鑑みてなされたもので、需要側の要求負荷の増加に迅速に対応できるように負荷変化率を高くできる発電設備及び発電方法を提供することを目的とする。   This invention is made | formed in view of the situation mentioned above, and it aims at providing the power generation equipment and power generation method which can make a load change rate high so that it can respond to the increase in the request | requirement load of a demand side rapidly.

上記課題を解決する本発明の第1の態様は、電力を需要側に出力する発電手段を備える一方、電力を消費する負荷手段を備え、需要側の要求負荷上昇に合わせた負荷増加状況に追従するため負荷手段への電力供給を停止すると共に負荷手段が消費していた電力を需要側への供給電力に付加する切換手段を備えたことを特徴とする発電設備にある。   The first aspect of the present invention that solves the above-described problem includes a power generation unit that outputs power to the demand side, and a load unit that consumes power, and follows a load increase situation in accordance with a demand load increase on the demand side. Therefore, the power generation facility includes a switching means for stopping the power supply to the load means and adding the power consumed by the load means to the power supplied to the demand side.

第1の態様では、需要側の要求負荷上昇に合わせて切換手段により負荷手段が消費していた電力を需要側への供給電力に付加することで、電力の増加率を高くすることができ、需要側の要求負荷の増加に迅速に対応できるように負荷変化率を高くすることができる。   In the first aspect, the rate of increase in power can be increased by adding the power consumed by the load means to the power supplied to the demand side by the switching means in accordance with the demand load increase on the demand side, The load change rate can be increased so that the demand load on the demand side can be quickly coped with.

上記課題を解決する本発明の第2の態様は、電力を需要側に出力する火力発電手段を備える一方、火力発電手段の排ガスが空気極に送られる燃料電池を設け、電力の消費により水を電気分解して水素を得ると共に得られた水素が燃料電池の燃料極に送られる水電解装置を設け、需要側の要求負荷上昇に合わせた負荷増加状況に追従するため水電解装置への電力供給を停止すると共に水電解装置が消費していた電力を需要側への供給電力に付加する切換手段を備えたことを特徴とする発電設備にある。   The second aspect of the present invention that solves the above problem comprises a thermal power generation means that outputs electric power to the demand side, while providing a fuel cell in which the exhaust gas of the thermal power generation means is sent to the air electrode, A water electrolysis device is provided that obtains hydrogen by electrolysis and the obtained hydrogen is sent to the fuel electrode of the fuel cell, and supplies power to the water electrolysis device to follow the load increase situation in accordance with the demand load increase on the demand side And a switching means for adding the power consumed by the water electrolysis device to the power supplied to the demand side.

第2の態様では、需要側の要求負荷上昇に合わせて切換手段により水電解装置が消費していた電力を需要側への供給電力に付加することで、電力の増加率を高くすることができ、更に、燃料電池で発電された電力の分の出力が得られ、需要側の要求負荷の増加に迅速に対応できるように負荷変化率を高くすることができる。   In the second aspect, the rate of increase in power can be increased by adding the power consumed by the water electrolysis device to the supply power to the demand side by the switching means in accordance with the increase in demand load on the demand side. Furthermore, an output corresponding to the electric power generated by the fuel cell can be obtained, and the load change rate can be increased so that the demand load on the demand side can be quickly coped with.

本発明の第3の態様は、第2の態様において、水素成分を含有する燃料を改質して水素を得る燃料改質手段を備え、燃料電池には燃料改質手段で得られた水素が燃料極に送られることを特徴とする発電設備にある。   According to a third aspect of the present invention, there is provided a fuel reforming means for reforming a fuel containing a hydrogen component to obtain hydrogen in the second aspect, wherein the hydrogen obtained by the fuel reforming means is contained in the fuel cell. The power generation facility is characterized by being sent to the fuel electrode.

第3の態様では、水電解装置が消費していた電力を需要側への供給電力に付加した際に、燃料改質手段で得られた水素により燃料電池を作動させることができる。   In the third aspect, when the power consumed by the water electrolysis apparatus is added to the power supplied to the demand side, the fuel cell can be operated by the hydrogen obtained by the fuel reforming means.

上記課題を解決する本発明の第4の態様は、電力を需要側に出力する火力発電手段を備える一方、火力発電手段の排ガスが空気極に送られる燃料電池を設け、水素成分を含有する燃料を電力の消費により改質して水素を得ると共に得られた水素が燃料電池の燃料極に送られる燃料改質装置を設け、需要側の要求負荷上昇に合わせた負荷増加状況に追従するため燃料改質装置への電力供給を停止すると共に燃料改質装置が消費していた電力を需要側への供給電力に付加する切換手段を備えたことを特徴とする発電設備にある。   A fourth aspect of the present invention that solves the above-described problem is a fuel that includes a thermal power generation unit that outputs electric power to the demand side, a fuel cell in which exhaust gas from the thermal power generation unit is sent to the air electrode, and contains a hydrogen component A fuel reformer is provided to obtain hydrogen by reforming the fuel by consuming electric power, and the obtained hydrogen is sent to the fuel electrode of the fuel cell, so as to follow the load increase situation in accordance with the demand load increase on the demand side The power generation facility includes a switching unit that stops the power supply to the reformer and adds the power consumed by the fuel reformer to the power supplied to the demand side.

第4の態様では、需要側の要求負荷上昇に合わせて切換手段により燃料改質装置が消費していた電力を需要側への供給電力に付加することで、電力の増加率を高くすることができ、更に、燃料電池で発電された電力の分の出力が得られ、需要側の要求負荷の増加に迅速に対応できるように負荷変化率を高くすることができる。   In the fourth aspect, the rate of increase in power can be increased by adding the power consumed by the fuel reformer to the power supplied to the demand side by the switching means in accordance with the increase in demand load on the demand side. In addition, an output corresponding to the power generated by the fuel cell can be obtained, and the load change rate can be increased so that the demand load on the demand side can be quickly coped with.

本発明の第5の態様は、第4の態様において、電力の消費による燃料の改質は、電力の消費により燃料を加熱するヒータであることを特徴とする発電設備にある。   According to a fifth aspect of the present invention, in the power generation facility according to the fourth aspect, the reforming of the fuel by the consumption of electric power is a heater that heats the fuel by the consumption of electric power.

第5の態様では、ヒータによる加熱で燃料の改質が行える。   In the fifth aspect, the fuel can be reformed by heating with a heater.

本発明の第6の態様は、第2〜5の態様の何れかにおいて、燃料電池は溶融炭酸塩形燃料電池であることを特徴とする発電設備にある。   According to a sixth aspect of the present invention, in any one of the second to fifth aspects, the fuel cell is a molten carbonate fuel cell.

第6の態様では、溶融炭酸塩形燃料電池により発電を行うことが可能となる。   In the sixth aspect, power generation can be performed by a molten carbonate fuel cell.

本発明の第7の態様は、第6の態様において、溶融炭酸塩形燃料電池の排ガスから二酸化炭素を回収する二酸化炭素回収処理手段を設けたことを特徴とする発電設備にある。   According to a seventh aspect of the present invention, there is provided a power generation facility according to the sixth aspect, further comprising carbon dioxide recovery processing means for recovering carbon dioxide from the exhaust gas of the molten carbonate fuel cell.

第7の態様では、溶融炭酸塩形燃料電池の排ガスから二酸化炭素を回収して環境に二酸化炭素を放出しない発電設備とすることができる。   In the seventh aspect, the power generation facility can recover the carbon dioxide from the exhaust gas of the molten carbonate fuel cell and does not release the carbon dioxide to the environment.

本発明の第8の態様は、第2〜5の態様の何れかにおいて、燃料電池は固体酸化物形燃料電池であることを特徴とする発電設備にある。   According to an eighth aspect of the present invention, in any one of the second to fifth aspects, the fuel cell is a solid oxide fuel cell.

第8の態様では、固体酸化物形燃料電池により高温の排気ガスを得て発電を行うことができる。   In the eighth aspect, high-temperature exhaust gas can be obtained from the solid oxide fuel cell to generate electric power.

上記課題を解決する本発明の第9の態様は、電力を需要側に出力する火力発電手段を備える一方、電力の消費により水を電気分解して水素消費側に供給される水素を得る水電解装置を備え、需要側の要求負荷上昇に合わせた負荷増加状況に追従するため水電解装置への電力供給を停止すると共に水電解装置が消費していた電力を需要側への供給電力に付加する切換手段を備えたことを特徴とする発電設備にある。   A ninth aspect of the present invention that solves the above-described problem is water electrolysis that includes thermal power generation means for outputting electric power to the demand side, while electrolyzing water by consumption of electric power to obtain hydrogen supplied to the hydrogen consumption side Equipped with a device to stop the power supply to the water electrolysis device to follow the load increase situation according to the demand load increase on the demand side, and add the power consumed by the water electrolysis device to the supply power to the demand side The power generation facility is characterized by comprising switching means.

第9の態様では、需要側の要求負荷上昇に合わせて切換手段により燃料改質装置が消費していた電力を需要側への供給電力に付加することで、電力の増加率を高くすることができ、更に、燃料電池で発電された電力の分の出力が得られ、需要側の要求負荷の増加に迅速に対応できるように負荷変化率を高くすることができる。   In the ninth aspect, the rate of increase in power can be increased by adding the power consumed by the fuel reformer to the power supplied to the demand side by the switching means in accordance with the demand load increase on the demand side. In addition, an output corresponding to the power generated by the fuel cell can be obtained, and the load change rate can be increased so that the demand load on the demand side can be quickly coped with.

本発明の第10の態様は、第9の態様において、水素消費側は、水電解装置で得られた水素を膨張して駆動力を得る水素タービンであることを特徴とする発電設備にある。   A tenth aspect of the present invention is the power generation facility according to the ninth aspect, wherein the hydrogen consuming side is a hydrogen turbine that obtains a driving force by expanding hydrogen obtained by the water electrolysis apparatus.

第10の態様では、水素タービンの駆動により電力を得ることが可能となる。   In the tenth aspect, electric power can be obtained by driving the hydrogen turbine.

上記課題を解決する本発明の第11の態様は、発電手段で電力を得ると同時に負荷手段で電力を消費し、需要側の要求負荷の増加に応じて負荷手段で消費していた電力を需要側に供給することで負荷変化率を高くしたことを特徴とする発電方法にある。   The eleventh aspect of the present invention that solves the above problem is that power is obtained by the power generation means and at the same time the power is consumed by the load means, and the power consumed by the load means according to the increase in demand load on the demand side is demanded. The power generation method is characterized in that the load change rate is increased by supplying to the side.

第11の態様では、需要側の要求負荷の増加に迅速に対応できるように負荷変化率を高くできる発電方法となる。   In the eleventh aspect, the power generation method is capable of increasing the load change rate so as to be able to quickly cope with an increase in demand load on the demand side.

本発明によれば、需要側の要求負荷の増加に迅速に対応できるように負荷変化率を高くできる発電設備及び発電方法となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes a power generation equipment and power generation method which can make a load change rate high so that it can respond rapidly to the increase in the demand side demand.

図1には本発明の発電設備の概略構成を表す概念を示してある。   FIG. 1 shows a concept representing a schematic configuration of the power generation facility of the present invention.

本発明の発電設備1には、電力を需要側である消費側2に出力する発電手段としての火力発電設備3(例えば、石炭焚き)が備えられ、火力発電設備3に隣接して電力を消費する負荷手段4が備えられている。火力発電設備3で発電された電力5は、切換手段6によって負荷手段4及び消費側2に供給される。   The power generation facility 1 of the present invention is equipped with a thermal power generation facility 3 (for example, coal burning) as power generation means for outputting electric power to a consumer side 2 that is a demand side, and consumes power adjacent to the thermal power generation facility 3. Load means 4 is provided. Electric power 5 generated by the thermal power generation equipment 3 is supplied to the load means 4 and the consumption side 2 by the switching means 6.

切換手段6は、通常時には負荷手段4及び消費側2に電力を供給するようになっている。消費側2の要求負荷が上昇した場合、消費側2の要求負荷上昇に合わせた負荷増加に追従するため、切換手段6は、負荷手段4への電力供給を停止すると共に、負荷手段4が消費している電力を消費側2への供給電力に付加するようになっている。   The switching means 6 supplies power to the load means 4 and the consuming side 2 at normal times. When the demand load on the consumer side 2 rises, the switching means 6 stops power supply to the load means 4 and the load means 4 consumes power to follow the load increase in accordance with the demand load rise on the consumer side 2. The added power is added to the power supplied to the consumer 2.

このため、負荷手段4が消費している電力が消費側2に送られて電力の増加率を高くすることができ、需要側の要求負荷の増加に迅速に対応できるように負荷変化率を高くすることができる。   For this reason, the power consumed by the load means 4 is sent to the consuming side 2 to increase the power increase rate, and the load change rate is increased so that the demand side demand load can be increased quickly. can do.

図2乃至図4に基づいて本発明の第1実施形態例を具体的に説明する。   A first embodiment of the present invention will be specifically described with reference to FIGS.

図2には本発明の第1実施形態例に係る発電方法を実施する発電設備の概略系統、図3には発電設備の出力状況の概要、図4には要求出力と時刻との関係を示してある。   FIG. 2 shows a schematic system of a power generation facility that implements the power generation method according to the first embodiment of the present invention, FIG. 3 shows an overview of the output status of the power generation facility, and FIG. 4 shows a relationship between required output and time. It is.

図2に示すように、第1実施形態例の発電設備11には、火力発電手段としての火力発電設備12(例えば、石炭炊き)が備えられ、また、燃料電池としての溶融炭酸塩形燃料電池(MCFC)13が備えられている。火力発電設備12の排ガスの一部が脱硫手段14で脱硫され、MCFC13の空気極(カソード)に送られる。脱硫手段14に送られた残りの排ガスは煙突15から大気に放出される。   As shown in FIG. 2, the power generation facility 11 of the first embodiment is provided with a thermal power generation facility 12 (for example, coal-fired) as thermal power generation means, and a molten carbonate fuel cell as a fuel cell. (MCFC) 13 is provided. Part of the exhaust gas from the thermal power generation facility 12 is desulfurized by the desulfurization means 14 and sent to the air electrode (cathode) of the MCFC 13. The remaining exhaust gas sent to the desulfurization means 14 is released from the chimney 15 to the atmosphere.

一方、電力の消費により水を電気分解して水素(H)を得る負荷手段としての水電解装置16が設けられると共に、水素成分を含有する燃料である液化天然ガス(LNG)を改質して水素(H)を得る燃料改質手段17が設けられている。水電解装置16で得られたH及び燃料改質手段17で得られたHはMCFC13の燃料極(アノード)に送られ、電気化学反応により電力が得られる。 On the other hand, a water electrolysis device 16 is provided as a load means for electrolyzing water by consumption of electricity to obtain hydrogen (H 2 ), and reforms liquefied natural gas (LNG), which is a fuel containing hydrogen components. Thus, a fuel reforming means 17 for obtaining hydrogen (H 2 ) is provided. H 2 obtained in H 2 and fuel reforming means 17 obtained in the water electrolysis device 16 is fed to the fuel electrode (anode) of MCFC13, power is obtained by the electrochemical reaction.

MCFC13の排気側には二酸化炭素回収処理手段(CO回収処理手段)18が備えられ、反応を終えた排気ガス中の二酸化炭素(CO)が回収される。このため、環境にCOを放出しない発電設備11とすることができる。 A carbon dioxide recovery processing means (CO 2 recovery processing means) 18 is provided on the exhaust side of the MCFC 13 to recover carbon dioxide (CO 2 ) in the exhaust gas after the reaction. Therefore, it is possible to power plant 11 which does not release CO 2 into the environment.

発電設備11では、火力発電設備12でX(MW)の電力が発電され、MCFC13でY(MW)の電力が発電され、X+Y(MW)の電力19が得られる。電力19は、切換手段20によって水電解装置16及び消費側21に供給される。   In the power generation facility 11, X (MW) power is generated by the thermal power generation facility 12, Y (MW) power is generated by the MCFC 13, and X + Y (MW) power 19 is obtained. The electric power 19 is supplied to the water electrolysis device 16 and the consumption side 21 by the switching means 20.

MCFC13と水電解装置16及び燃料改質手段17における出力の状況は、図3に示すように、燃料改質手段17からのHでの運転の場合、x(MW)の出力が得られ、電力の消費により水を電気分解する水電解装置16で得られたHでの運転の場合、-y(MW)の電力消費となる。尚、y(MW)は、水電解装置16で実際に消費される電力からMCFC13で出力される電力のx(MW)を減じた値である。 As shown in FIG. 3, the MCFC 13, the water electrolysis device 16 and the fuel reforming means 17 output the x (MW) output when operating with H 2 from the fuel reforming means 17, as shown in FIG. In the case of operation with H 2 obtained by the water electrolysis apparatus 16 that electrolyzes water by the consumption of electric power, the electric power consumption is −y (MW). Note that y (MW) is a value obtained by subtracting x (MW) of power output from the MCFC 13 from power actually consumed by the water electrolysis device 16.

切換手段20は、通常時には水電解装置16及び消費側21に電力を供給するようになっている。つまり、発電設備11で発電される電力は、火力発電設備12で発電されるX(MW)と、MCFC13で得られるY(MW)、即ち、水電解装置16で消費される電力を減じた値である電力x(MW)が消費側21に出力される。   The switching means 20 supplies power to the water electrolysis device 16 and the consuming side 21 at normal times. That is, the power generated by the power generation facility 11 is obtained by subtracting X (MW) generated by the thermal power generation facility 12 and Y (MW) obtained by the MCFC 13, that is, the power consumed by the water electrolysis device 16. Is output to the consumer 21.

消費側21の要求負荷が上昇した場合、消費側21の要求負荷上昇に合わせた負荷増加に追従するため、切換手段20は、水電解装置16への電力の供給を停止すると共に、水電解装置16が消費している電力を消費側21への給電電力に付加する。つまり、消費側21には、火力発電設備12で発電されるX(MW)と、水電解装置16が消費していたy+x(MW)と、水電解装置16が運転されていたときにMCFC13で得られるx(MW)とを合わせた出力の電力が供給される。   When the demand load on the consumer side 21 rises, the switching means 20 stops supplying power to the water electrolysis device 16 and follows the water electrolysis device in order to follow the load increase in accordance with the demand load rise on the consumer side 21. The power consumed by 16 is added to the power supplied to the consumer 21. In other words, the consumption side 21 receives MC (MW) generated by the thermal power generation facility 12, y + x (MW) consumed by the water electrolysis device 16, and MCFC 13 when the water electrolysis device 16 is operated. Output power combined with the obtained x (MW) is supplied.

このため、火力発電設備12で発電されるX(MW)と電力x(MW)との合計の電力であった出力が、火力発電設備12で発電されるX(MW)と電力y+x(MW)と電力x(MW)との合計の出力となり、消費側21の要求負荷の増加に迅速に対応できるように負荷変化率を高く(例えば、数%から十数%に上昇)することができる。   For this reason, the output, which is the total power of X (MW) and electric power x (MW) generated by the thermal power generation facility 12, is generated as X (MW) and electric power y + x (MW) generated by the thermal power generation facility 12. And the power x (MW), and the load change rate can be increased (e.g., increased from several percent to several tens percent) so that the required load on the consuming side 21 can be quickly dealt with.

図4に一点鎖線で示すように、負荷変化率が数%であったときに、a(MW)での運転の際に時刻t3での消費側21の要求負荷のA(MW)を満足させる場合、時刻t1から出力を上げる必要がある。これに対して、図4に実線で示すように、本実施形態例のように負荷変化率が十数%であったときに、a(MW)での運転の際に時刻t3での消費側21の要求負荷のA(MW)を満足させる場合、時刻t1よりも遅い時刻t2から出力を上げることで対処できる。従って、短時間での要求負荷に対する対応が可能になる。因みに、負荷変化率が数%であったときに、時刻t2から出力を上げることで対処するには、図4中二点鎖線で示すように、予めa(MW)よりも高い出力b(MW)での運転が必要であり、発電動力が余計に必要となってしまう。   As indicated by the one-dot chain line in FIG. 4, when the load change rate is several percent, the required load A (MW) at the time t3 is satisfied at the time of operation at a (MW). In this case, it is necessary to increase the output from time t1. On the other hand, as shown by a solid line in FIG. 4, when the load change rate is 10% or more as in the present embodiment, the consumption side at time t3 during operation at a (MW). When A (MW) of 21 required loads is satisfied, it can be dealt with by increasing the output from time t2 later than time t1. Therefore, it is possible to cope with the required load in a short time. Incidentally, when the load change rate is several percent, in order to deal with the problem by increasing the output from time t2, the output b (MW) higher than a (MW) in advance as shown by the two-dot chain line in FIG. ) Is necessary, and extra power is required.

図5に基づいて本発明の第2実施形態例を具体的に説明する。   A second embodiment of the present invention will be specifically described with reference to FIG.

図5には本発明の第2実施形態例に係る発電方法を実施する発電設備の概略系統を示してある。尚、図2に示した部材と同一部材には同一符号を付してある。   FIG. 5 shows a schematic system of power generation equipment that implements the power generation method according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same member as the member shown in FIG.

図5に示すように、第2実施形態例の発電設備25には、火力発電手段としての火力発電設備12(例えば、石炭焚き)が備えられ、また、燃料電池としての溶融炭酸塩形燃料電池(MCFC)13が備えられている。火力発電設備12の排ガスの一部が脱硫手段14で脱硫され、MCFC13の空気極(カソード)に送られる。脱硫手段14に送られた残りの排ガスは煙突15から大気に放出される。   As shown in FIG. 5, the power generation facility 25 of the second embodiment is provided with a thermal power generation facility 12 (for example, coal burning) as a thermal power generation means, and a molten carbonate fuel cell as a fuel cell. (MCFC) 13 is provided. Part of the exhaust gas from the thermal power generation facility 12 is desulfurized by the desulfurization means 14 and sent to the air electrode (cathode) of the MCFC 13. The remaining exhaust gas sent to the desulfurization means 14 is released from the chimney 15 to the atmosphere.

一方、水素成分を含有する燃料である液化天然ガス(LNG)を改質して水素(H)を得る電気式燃料改質手段26が設けられている。電気式燃料改質手段26と燃料改質手段17は加熱用の電気ヒータ27が設けられ、電力の消費により電気ヒータ27が作動して電気式燃料改質手段26が加熱されることによりLNGが改質されて水素Hが得られる。つまり、電気式燃料改質手段26及び電気ヒータ27によって燃料改質装置が構成されている。また、電気式燃料改質手段26には、図示しない改質用の蒸気等の熱源が別途供給され、電気ヒータ27の加熱を改質の補助として使用することもできる。 On the other hand, an electric fuel reforming means 26 for reforming liquefied natural gas (LNG), which is a fuel containing a hydrogen component, to obtain hydrogen (H 2 ) is provided. The electric fuel reforming means 26 and the fuel reforming means 17 are provided with an electric heater 27 for heating, and the electric heater 27 is activated by the consumption of electric power and the electric fuel reforming means 26 is heated, so that the LNG is reduced. The hydrogen H 2 is obtained by reforming. That is, the electric fuel reforming means 26 and the electric heater 27 constitute a fuel reformer. Further, a heat source such as reforming steam (not shown) is separately supplied to the electric fuel reforming means 26, and heating of the electric heater 27 can be used as an assist for reforming.

電気式燃料改質手段26で得られたHはMCFC13の燃料極(アノード)に送られ、電気化学反応により電力が得られる。MCFC13の排気側には二酸化炭素回収処理手段(CO回収処理手段)18が備えられ、反応を終えた排気ガス中の二酸化炭素(CO)が回収される。このため、環境にCOを放出しない発電設備25とすることができる。 H 2 obtained by the electric fuel reforming means 26 is sent to the fuel electrode (anode) of the MCFC 13 and electric power is obtained by an electrochemical reaction. A carbon dioxide recovery processing means (CO 2 recovery processing means) 18 is provided on the exhaust side of the MCFC 13 to recover carbon dioxide (CO 2 ) in the exhaust gas after the reaction. Therefore, it is possible to power generation equipment 25 without releasing CO 2 in the environment.

発電設備25では、火力発電設備12でX(MW)の電力が発電され、MCFC13でY(MW)の電力が発電の電力が発電され、X+Y(MW)の電力19が得られる。電力19は、切換手段20によって電気ヒータ27及び消費側21に供給される。   In the power generation facility 25, X (MW) power is generated by the thermal power generation facility 12, and Y (MW) power is generated by the MCFC 13, thereby generating X + Y (MW) power 19. Electric power 19 is supplied to the electric heater 27 and the consumption side 21 by the switching means 20.

切換手段20は、通常時には電気ヒータ27及び消費側21に電力を供給するようになっている。つまり、発電設備11で発電される電力は、火力発電設備12で発電されるX(MW)と、MCFC13で得られるY(MW)、即ち、電気ヒータ27で消費される電力を減じた電力が消費側21に出力される。   The switching means 20 supplies electric power to the electric heater 27 and the consumption side 21 at normal times. That is, the power generated by the power generation facility 11 is X (MW) generated by the thermal power generation facility 12 and Y (MW) obtained by the MCFC 13, that is, the power obtained by subtracting the power consumed by the electric heater 27. It is output to the consumer side 21.

消費側21の要求負荷が上昇した場合、消費側21の要求負荷上昇に合わせた負荷増加に追従するため、切換手段20は、電気ヒータ27への電力の供給を停止すると共に、電気ヒータ27が消費している電力を消費側21への給電電力に付加する。つまり、消費側21には、火力発電設備12で発電されるX(MW)と、電気ヒータ27が消費していた電力と、電気ヒータ27が運転されていたときにMCFC13で得られるY(MW)とを合わせた出力の電力が供給される。   When the demand load on the consumption side 21 rises, the switching means 20 stops supplying power to the electric heater 27 and the electric heater 27 The consumed power is added to the power supplied to the consuming side 21. That is, the consumption side 21 includes X (MW) generated by the thermal power generation facility 12, the electric power consumed by the electric heater 27, and Y (MW) obtained by the MCFC 13 when the electric heater 27 is operating. ) Output power is supplied.

このため、火力発電設備12で発電されるX(MW)と電力Y(MW)との合計の電力であった出力が、火力発電設備12で発電されるX(MW)と、電気ヒータ27が消費していた電力と、電力Y(MW)との合計の出力となり、消費側21の要求負荷の増加に迅速に対応できるように負荷変化率を高く(例えば、数%から十数%に上昇)することができる。   For this reason, the output that is the total power of X (MW) and power Y (MW) generated by the thermal power generation facility 12 is converted into X (MW) generated by the thermal power generation facility 12 and the electric heater 27. The total output of the consumed power and the power Y (MW) is output, and the load change rate is increased (for example, increased from several percent to several tens percent) so that the demanded load on the consuming side 21 can be quickly responded. )can do.

図6に基づいて本発明の第3実施形態例を具体的に説明する。   A third embodiment of the present invention will be specifically described based on FIG.

図6には本発明の第3実施形態例に係る発電方法を実施する発電設備の概略系統を示してある。第3実施形態例の発電設備は、第1実施形態例の発電設備におけるMCFCに代えて固体酸化物形燃料電池(SOFC)を適用した例を示してある。このため、図2に示した部材と同一部材には同一符号を付してある。   FIG. 6 shows a schematic system of power generation equipment that implements the power generation method according to the third embodiment of the present invention. The power generation facility of the third embodiment is an example in which a solid oxide fuel cell (SOFC) is applied instead of the MCFC in the power generation facility of the first embodiment. For this reason, the same members as those shown in FIG.

図6に示すように、第3実施形態例の発電設備31には、火力発電手段としての火力発電設備12(例えば、石炭焚き)が備えられ、また、燃料電池としての固体酸化物形燃料電池(SOFC)32が備えられている。火力発電設備12の排ガスの一部が脱硫手段14で脱硫され、SOFC32の空気極(カソード)に送られる。脱硫手段14に送られた残りの排ガスは煙突15から大気に放出される。   As shown in FIG. 6, the power generation facility 31 of the third embodiment includes a thermal power generation facility 12 (for example, coal fired) as thermal power generation means, and a solid oxide fuel cell as a fuel cell. (SOFC) 32 is provided. Part of the exhaust gas from the thermal power generation facility 12 is desulfurized by the desulfurization means 14 and sent to the air electrode (cathode) of the SOFC 32. The remaining exhaust gas sent to the desulfurization means 14 is released from the chimney 15 to the atmosphere.

一方、電力の消費により水を電気分解して水素(H)を得る負荷手段としての水電解装置16が設けられると共に、水素成分を含有する燃料である液化天然ガス(LNG)を改質して水素(H)を得る燃料改質手段17が設けられている。水電解装置16で得られたH及び燃料改質手段17で得られたHはSOFC32の燃料極(アノード)に送られ、電気化学反応により電力が得られる。SOFC32で反応を終えた高温の排ガスは、例えば、燃焼されてガスタービンに送られたり、熱回収される等してエネルギーが回収される。 On the other hand, a water electrolysis device 16 is provided as a load means for electrolyzing water by consumption of electricity to obtain hydrogen (H 2 ), and reforms liquefied natural gas (LNG), which is a fuel containing hydrogen components. Thus, a fuel reforming means 17 for obtaining hydrogen (H 2 ) is provided. H 2 obtained in H 2 and fuel reforming means 17 obtained in the water electrolysis device 16 is fed to the fuel electrode (anode) of SOFC32, power is obtained by the electrochemical reaction. The high-temperature exhaust gas that has finished the reaction at the SOFC 32 is recovered, for example, by being burned and sent to a gas turbine or by heat recovery.

発電設備31では、火力発電設備12でX(MW)の電力が発電され、SOFC32でZ(MW)の電力が発電され、X+Z(MW)の電力33が得られる。電力33は、切換手段20によって水電解装置16及び消費側21に供給される。電力33は、切換手段20によって水電解装置16及び消費側21に供給される。   In the power generation facility 31, X (MW) power is generated by the thermal power generation facility 12, Z (MW) power is generated by the SOFC 32, and X + Z (MW) power 33 is obtained. The electric power 33 is supplied to the water electrolysis device 16 and the consumption side 21 by the switching means 20. The electric power 33 is supplied to the water electrolysis device 16 and the consumption side 21 by the switching means 20.

切換手段20は、通常時には水電解装置16及び消費側21に電力を供給するようになっている。つまり、発電設備31で発電される電力は、火力発電設備12で発電されるX(MW)と、SOFC32で得られるZ(MW)即ち、水電解装置16で消費される電力を減じた電力が消費側21に出力される。   The switching means 20 supplies power to the water electrolysis device 16 and the consuming side 21 at normal times. That is, the electric power generated by the power generation facility 31 is X (MW) generated by the thermal power generation facility 12 and Z (MW) obtained by the SOFC 32, that is, the power obtained by subtracting the power consumed by the water electrolysis device 16. It is output to the consumer side 21.

消費側21の要求負荷が上昇した場合、消費側21の要求負荷上昇に合わせた負荷増加に追従するため、切換手段20は、水電解装置16への電力の供給を停止すると共に、水電解装置16が消費している電力を消費側21への給電電力に付加する。つまり、消費側21には、火力発電設備12で発電されるX(MW)と、水電解装置16が消費していた電力と、水電解装置16が運転されていたときにSOFC32で得られるZ(MW)とを合わせた出力の電力が供給される。   When the demand load on the consumer side 21 rises, the switching means 20 stops supplying power to the water electrolysis device 16 and follows the water electrolysis device in order to follow the load increase in accordance with the demand load rise on the consumer side 21. The power consumed by 16 is added to the power supplied to the consumer 21. That is, the consumption side 21 includes X (MW) generated by the thermal power generation facility 12, the power consumed by the water electrolysis device 16, and the Z obtained by the SOFC 32 when the water electrolysis device 16 is operated. Output power combined with (MW) is supplied.

このため、火力発電設備12で発電されるX(MW)とSOFC32で得られるZ(MW)との合計の電力であった出力が、火力発電設備12で発電されるX(MW)と、電力Z(MW)と、水電解装置16が消費していた電力との合計の出力となり、消費側21の要求負荷の増加に迅速に対応できるように負荷変化率を高く(例えば、数%から十数%に上昇)することができる。   For this reason, the output that was the total power of X (MW) generated by the thermal power generation facility 12 and Z (MW) obtained by the SOFC 32 is X (MW) generated by the thermal power generation facility 12 and the power The total output of Z (MW) and the power consumed by the water electrolysis device 16 is high, and the load change rate is increased (for example, from several percent to 10%) so that the required load on the consuming side 21 can be quickly coped with. To several percent).

尚、第3実施形態例では、負荷手段として水電解装置16を備えた例を挙げて説明したが、燃料改質手段17に代えて、第2実施形態例で示した燃料改質手段26(図5参照)及び電気ヒータ27(図5参照)を適用することも可能である。   In the third embodiment, the example in which the water electrolysis device 16 is provided as the load means has been described. However, instead of the fuel reforming means 17, the fuel reforming means 26 (in the second embodiment) ( It is also possible to apply the electric heater 27 (see FIG. 5) and the electric heater 27 (see FIG. 5).

図7に基づいて本発明の第4実施形態例を具体的に説明する。   A fourth embodiment of the present invention will be specifically described with reference to FIG.

図7には本発明の第4実施形態例に係る発電方法を実施する発電設備の概略系統を示してある。第4実施形態例の発電設備は、第1実施形態例の火力発電設備に、負荷手段として水電解装置を併設し、水電解装置で得られた水素を水素タービンの駆動源とする設備となっている。このため、図2に示した部材と同一部材には同一符号を付してある。   FIG. 7 shows a schematic system of power generation equipment that implements the power generation method according to the fourth embodiment of the present invention. The power generation facility of the fourth embodiment is a facility in which a water electrolysis device is provided as a load means in addition to the thermal power generation facility of the first embodiment and hydrogen obtained by the water electrolysis device is used as a drive source for the hydrogen turbine. ing. For this reason, the same members as those shown in FIG.

図7に示すように、第4実施形態例の発電設備35には、火力発電手段としての火力発電設備12(例えば、石炭焚き)が備えられ、火力発電設備12の排ガスは煙突15から大気に放出される。また、電力の消費により水を電気分解して水素(H)を得る負荷手段としての水電解装置40が設けられ、水電解装置40で得られたHを膨張することで駆動力を得る水素消費手段としての水素タービン36が備えられている。図中37は水素タービン36に設けられた発電機である。つまり、水素タービン36によっても電力を得ることができる。 As shown in FIG. 7, the power generation facility 35 of the fourth embodiment is provided with a thermal power generation facility 12 (for example, coal burning) as thermal power generation means, and the exhaust gas of the thermal power generation facility 12 is discharged from the chimney 15 to the atmosphere. Released. Further, a water electrolysis device 40 is provided as a load means for electrolyzing water by consumption of electric power to obtain hydrogen (H 2 ), and driving force is obtained by expanding H 2 obtained by the water electrolysis device 40. A hydrogen turbine 36 as a hydrogen consuming means is provided. In the figure, reference numeral 37 denotes a generator provided in the hydrogen turbine 36. That is, electric power can also be obtained by the hydrogen turbine 36.

尚、水素消費手段としては、Hを燃料とする機器や、Hを反応させて化学材料の原材料とする手段等を適用することも可能である。 In addition, as a hydrogen consumption means, it is also possible to apply equipment using H 2 as fuel, means for reacting H 2 and using it as a raw material for chemical materials, and the like.

発電設備35では、火力発電設備12でX(MW)の電力が発電され、X(MW)の電力38が得られる。電力38は切換手段20によって水電解装置40及び消費側21に供給される。切換手段20は、通常時には水電解装置40及び消費側21に電力を供給するようになっている。つまり、発電設備35で発電される電力は、火力発電設備12で発電されるX(MW)から、水電解装置40で消費される電力を減じた電力が消費側21に出力される。場合によって、水素タービン36の駆動によって作動する発電機37の電力が付加される。   In the power generation facility 35, X (MW) power is generated by the thermal power generation facility 12, and X (MW) power 38 is obtained. Electric power 38 is supplied to the water electrolysis device 40 and the consumption side 21 by the switching means 20. The switching means 20 supplies power to the water electrolysis device 40 and the consuming side 21 at normal times. That is, the power generated by the power generation facility 35 is output to the consumption side 21 by subtracting the power consumed by the water electrolysis device 40 from the X (MW) generated by the thermal power generation facility 12. In some cases, electric power of a generator 37 that operates by driving the hydrogen turbine 36 is added.

消費側21の要求負荷が上昇した場合、消費側21の要求負荷上昇に合わせた負荷増加に追従するため、切換手段20は、水電解装置40への電力の供給を停止すると共に、水電解装置40が消費している電力を消費側21への給電電力に付加する。つまり、消費側21には、火力発電設備12で発電されるX(MW)が全て供給される。   When the demand load on the consuming side 21 increases, the switching means 20 stops supplying power to the water electrolysis device 40 in order to follow the load increase in accordance with the increase in the demand load on the consumption side 21, and the water electrolysis device The power consumed by 40 is added to the power supplied to the consumer 21. That is, the X (MW) generated by the thermal power generation facility 12 is all supplied to the consumption side 21.

このため、火力発電設備12で発電されるX(MW)から水電解装置16で消費される電力を減じた電力であった出力が、火力発電設備12で発電されるX(MW)が全て出力となり、消費側21の要求負荷の増加に迅速に対応できるように負荷変化率を高くすることができる。   For this reason, the output that is the power obtained by subtracting the power consumed by the water electrolysis device 16 from the X (MW) generated by the thermal power generation facility 12 is all output from the X (MW) generated by the thermal power generation facility 12. Thus, the load change rate can be increased so that the demanded load on the consuming side 21 can be quickly dealt with.

上述した各実施形態例では、要求負荷が増加した際には、負荷手段が消費している電力が消費側に送られて電力の増加率を高くすることができ、消費側の要求負荷の増加に迅速に対応できるように負荷変化率を高くすることができる。   In each embodiment described above, when the required load increases, the power consumed by the load means can be sent to the consumer side to increase the rate of increase in power, and the demand load on the consumer side increases. It is possible to increase the load change rate so as to respond quickly.

本発明は、需要側の要求負荷の増加に迅速に対応できるように負荷変化率を高くできる発電設備及び発電方法の技術分野で利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in the technical field of power generation equipment and a power generation method that can increase the load change rate so that it can quickly respond to an increase in demand load on the demand side.

本発明の発電設備の概略構成を表す概念図である。It is a conceptual diagram showing schematic structure of the power generation equipment of this invention. 本発明の第1実施形態例に係る発電方法を実施する発電設備の概略系統図である。1 is a schematic system diagram of a power generation facility that performs a power generation method according to a first embodiment of the present invention. 発電設備の出力状況の概要図である。It is an outline figure of the output situation of power generation equipment. 要求出力と時刻との関係のグラフである。It is a graph of the relationship between request output and time. 本発明の第2実施形態例に係る発電方法を実施する発電設備の概略系統図である。It is a schematic system diagram of the power generation equipment which implements the power generation method according to the second embodiment of the present invention. 本発明の第3実施形態例に係る発電方法を実施する発電設備の概略系統図である。It is a schematic system diagram of the power generation equipment which implements the power generation method according to the third embodiment of the present invention. 本発明の第4実施形態例に係る発電方法を実施する発電設備の概略系統図である。It is a schematic system diagram of the power generation equipment which implements the power generation method according to the fourth embodiment of the present invention.

符号の説明Explanation of symbols

1,11,25,31,35 発電設備
2,21 消費側
3,12 火力発電設備
4 負荷手段
5,19,33,38 電力
6,20 切換手段
13 溶融炭酸塩形燃料電池(MCFC)
14 脱硫手段
15 煙突
16,40 水電解装置
17 燃料改質手段
18 二酸化炭素回収処理手段(CO回収処理手段)
26 電気式燃料改質手段
27 電気ヒータ
32 固体酸化物形燃料電池(SOFC)
36 水素タービン
37 発電機
1,11,25,31,35 Power generation facility 2,21 Consumption side 3,12 Thermal power generation facility 4 Load means 5, 19, 33, 38 Electric power 6,20 Switching means 13 Molten carbonate fuel cell (MCFC)
14 Desulfurization means 15 Chimney 16, 40 Water electrolysis device 17 Fuel reforming means 18 Carbon dioxide recovery processing means (CO 2 recovery processing means)
26 Electric Fuel Reformer 27 Electric Heater 32 Solid Oxide Fuel Cell (SOFC)
36 Hydrogen turbine 37 Generator

Claims (11)

電力を需要側に出力する発電手段を備える一方、電力を消費する負荷手段を備え、需要側の要求負荷上昇に合わせた負荷増加状況に追従するため負荷手段への電力供給を停止すると共に負荷手段が消費していた電力を需要側への供給電力に付加する切換手段を備えたことを特徴とする発電設備。   While having power generation means for outputting power to the demand side, it has load means for consuming power, and stops supplying power to the load means in order to follow the load increase situation according to the demand load increase on the demand side and load means A power generation facility comprising switching means for adding the power consumed by the power to the power supplied to the demand side. 電力を需要側に出力する火力発電手段を備える一方、火力発電手段の排ガスが空気極に送られる燃料電池を設け、電力の消費により水を電気分解して水素を得ると共に得られた水素が燃料電池の燃料極に送られる水電解装置を設け、需要側の要求負荷上昇に合わせた負荷増加状況に追従するため水電解装置への電力供給を停止すると共に水電解装置が消費していた電力を需要側への供給電力に付加する切換手段を備えたことを特徴とする発電設備。   While providing thermal power generation means for outputting electric power to the demand side, a fuel cell is provided in which the exhaust gas of the thermal power generation means is sent to the air electrode, and water is obtained by electrolyzing water by consumption of electric power, and the obtained hydrogen is used as fuel. A water electrolysis device sent to the fuel electrode of the battery is installed, and power supply to the water electrolysis device is stopped and the power consumed by the water electrolysis device is stopped to follow the load increase situation in accordance with the demand load increase on the demand side. A power generation facility comprising switching means for adding to power supplied to a demand side. 請求項2において、水素成分を含有する燃料を改質して水素を得る燃料改質手段を備え、燃料電池には燃料改質手段で得られた水素が燃料極に送られることを特徴とする発電設備。   3. The fuel reformer according to claim 2, further comprising fuel reforming means for reforming a fuel containing a hydrogen component to obtain hydrogen, wherein the hydrogen obtained by the fuel reforming means is sent to the fuel electrode. Power generation equipment. 電力を需要側に出力する火力発電手段を備える一方、火力発電手段の排ガスが空気極に送られる燃料電池を設け、水素成分を含有する燃料を電力の消費により改質して水素を得ると共に得られた水素が燃料電池の燃料極に送られる燃料改質装置を設け、需要側の要求負荷上昇に合わせた負荷増加状況に追従するため燃料改質装置への電力供給を停止すると共に燃料改質装置が消費していた電力を需要側への供給電力に付加する切換手段を備えたことを特徴とする発電設備。   While providing thermal power generation means that outputs electric power to the demand side, a fuel cell is provided in which the exhaust gas of the thermal power generation means is sent to the air electrode, and a fuel containing hydrogen components is reformed by the consumption of electric power to obtain hydrogen. A fuel reformer that sends the generated hydrogen to the fuel electrode of the fuel cell is installed, and power supply to the fuel reformer is stopped and fuel reformed in order to follow the load increase situation according to the demand load increase on the demand side A power generation facility comprising switching means for adding the power consumed by the apparatus to the power supplied to the demand side. 請求項4において、電力の消費による燃料の改質は、電力の消費により燃料を加熱するヒータであることを特徴とする発電設備。   5. The power generation facility according to claim 4, wherein the reforming of the fuel by the consumption of electric power is a heater for heating the fuel by the consumption of electric power. 請求項2〜5の何れかにおいて、燃料電池は溶融炭酸塩形燃料電池であることを特徴とする発電設備。   6. The power generation facility according to claim 2, wherein the fuel cell is a molten carbonate fuel cell. 請求項6において、溶融炭酸塩形燃料電池の排ガスから二酸化炭素を回収する二酸化炭素回収処理手段を設けたことを特徴とする発電設備。   7. The power generation facility according to claim 6, further comprising carbon dioxide recovery processing means for recovering carbon dioxide from the exhaust gas of the molten carbonate fuel cell. 請求項2〜5の何れかにおいて、燃料電池は固体酸化物形燃料電池であることを特徴とする発電設備。   6. The power generation facility according to claim 2, wherein the fuel cell is a solid oxide fuel cell. 電力を需要側に出力する火力発電手段を備える一方、電力の消費により水を電気分解して水素消費側に供給される水素を得る水電解装置を備え、需要側の要求負荷上昇に合わせた負荷増加状況に追従するため水電解装置への電力供給を停止すると共に水電解装置が消費していた電力を需要側への供給電力に付加する切換手段を備えたことを特徴とする発電設備。   While equipped with thermal power generation means that outputs electric power to the demand side, it also has a water electrolysis device that electrolyzes water by power consumption to obtain hydrogen supplied to the hydrogen consumption side, and loads that meet the demand load increase on the demand side A power generation facility comprising switching means for stopping power supply to a water electrolysis apparatus to follow an increase state and adding power consumed by the water electrolysis apparatus to power supplied to a demand side. 請求項9において、水素消費側は、水電解装置で得られた水素を膨張して駆動力を得る水素タービンであることを特徴とする発電設備。   The power generation facility according to claim 9, wherein the hydrogen consuming side is a hydrogen turbine that obtains driving force by expanding hydrogen obtained by the water electrolysis apparatus. 発電手段で電力を得ると同時に負荷手段で電力を消費し、需要側の要求負荷の増加に応じて負荷手段で消費していた電力を需要側に供給することで負荷変化率を高くしたことを特徴とする発電方法。   The load change rate was increased by obtaining power with the power generation means and simultaneously consuming power with the load means and supplying the power consumed by the load means to the demand side as the demand load on the demand side increased. A power generation method characterized.
JP2005005463A 2005-01-12 2005-01-12 Power generation facility and power generation method Pending JP2006196268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005005463A JP2006196268A (en) 2005-01-12 2005-01-12 Power generation facility and power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005005463A JP2006196268A (en) 2005-01-12 2005-01-12 Power generation facility and power generation method

Publications (1)

Publication Number Publication Date
JP2006196268A true JP2006196268A (en) 2006-07-27

Family

ID=36802176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005005463A Pending JP2006196268A (en) 2005-01-12 2005-01-12 Power generation facility and power generation method

Country Status (1)

Country Link
JP (1) JP2006196268A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074443A1 (en) * 2016-10-19 2018-04-26 三菱重工業株式会社 Carbon dioxide recovery system, thermal power generation facility, and method for recovering carbon dioxide
WO2019038895A1 (en) * 2017-08-24 2019-02-28 アイ’エムセップ株式会社 Carbon dioxide electrolysis/carbon fuel cell-integrated apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251869A (en) * 1988-08-12 1990-02-21 Fuji Electric Co Ltd Fuel cell power generation system
JPH0435722A (en) * 1990-05-30 1992-02-06 Ishikawajima Harima Heavy Ind Co Ltd Co2 recovery device utilizing molten carbonate-type fuel cell and operation thereof
JPH11312527A (en) * 1998-04-28 1999-11-09 Nippon Steel Corp Molten carbonate type fuel cell power generation-exhaust gas recovery combined system using by-product gas in production of iron
JP2002056880A (en) * 2000-08-11 2002-02-22 Kansai Electric Power Co Inc:The Water electrolysis device and solid polymer type fuel cell generating system
JP2003047175A (en) * 2001-07-30 2003-02-14 Toshiba Eng Co Ltd Distributed power supply device and distributed power supply control system
JP2004186074A (en) * 2002-12-05 2004-07-02 Ishikawajima Harima Heavy Ind Co Ltd Method for recovering carbon dioxide using molten carbonate type fuel cell
JP2006518924A (en) * 2003-02-25 2006-08-17 ユーティーシー フューエル セルズ,エルエルシー Constant IDC operation of fuel cell generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251869A (en) * 1988-08-12 1990-02-21 Fuji Electric Co Ltd Fuel cell power generation system
JPH0435722A (en) * 1990-05-30 1992-02-06 Ishikawajima Harima Heavy Ind Co Ltd Co2 recovery device utilizing molten carbonate-type fuel cell and operation thereof
JPH11312527A (en) * 1998-04-28 1999-11-09 Nippon Steel Corp Molten carbonate type fuel cell power generation-exhaust gas recovery combined system using by-product gas in production of iron
JP2002056880A (en) * 2000-08-11 2002-02-22 Kansai Electric Power Co Inc:The Water electrolysis device and solid polymer type fuel cell generating system
JP2003047175A (en) * 2001-07-30 2003-02-14 Toshiba Eng Co Ltd Distributed power supply device and distributed power supply control system
JP2004186074A (en) * 2002-12-05 2004-07-02 Ishikawajima Harima Heavy Ind Co Ltd Method for recovering carbon dioxide using molten carbonate type fuel cell
JP2006518924A (en) * 2003-02-25 2006-08-17 ユーティーシー フューエル セルズ,エルエルシー Constant IDC operation of fuel cell generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074443A1 (en) * 2016-10-19 2018-04-26 三菱重工業株式会社 Carbon dioxide recovery system, thermal power generation facility, and method for recovering carbon dioxide
JPWO2018074443A1 (en) * 2016-10-19 2019-06-24 三菱重工業株式会社 Carbon dioxide recovery system, thermal power generation facility, and carbon dioxide recovery method
US11433350B2 (en) 2016-10-19 2022-09-06 Mitsubishi Heavy Industries, Ltd. Carbon dioxide recovery system, thermal power generation facility, and carbon dioxide recovery method
WO2019038895A1 (en) * 2017-08-24 2019-02-28 アイ’エムセップ株式会社 Carbon dioxide electrolysis/carbon fuel cell-integrated apparatus
US11245127B2 (en) 2017-08-24 2022-02-08 I'msep Co., Ltd. Carbon dioxide electrolysis/carbon fuel cell-integrated apparatus

Similar Documents

Publication Publication Date Title
KR101939687B1 (en) Reformer-electrolyzer-purifier(rep) assembly for hydrogen production, systems incorporating same and method of producing hydrogen
KR100961838B1 (en) External reforming type molten carbonate fuel cell system
JP2009077457A (en) Operation system of distributed type power supply and its operation method
US9601792B2 (en) Fuel cell system and method for driving same
US10680265B2 (en) Energy storage using an REP with an engine
JP2018513915A (en) Method and associated system for thermally managing a system for combined power and heat
JP2014519177A (en) Hybrid system of fuel cell and reciprocating gasoline / diesel engine
JP7351708B2 (en) energy management system
JP2012009424A (en) Fuel cell system
KR101634816B1 (en) Fuel Cell System
KR102436677B1 (en) Load-following power generation and power storage using REP and PEM technologies
JP2006196268A (en) Power generation facility and power generation method
KR20140014950A (en) System for independent start-up of fuel cell for ship
KR101461166B1 (en) Hybrid electric generating system
KR101411543B1 (en) Fuel cell system and operating method there of
JP2015230813A (en) Fuel battery system and operation method for the same
KR20210053367A (en) Electric power generating system using heat and new recycled energy
JP7373054B2 (en) manufacturing system
KR102378796B1 (en) Reversible solid oxide cell system conjunction with thermal battery and the operating method thereof
JP2018131647A (en) Electrolysis system, control device, and program
JP2006134767A (en) Solid oxide fuel cell system
JP6191003B1 (en) High purity nitrogen gas generation system
JPH06295736A (en) Fuel cell device
Fergus High temperature fuel cells for efficient conversion of fossil fuel energy
KR20140066406A (en) Fuel cell generating apparatus and method for lng carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120307