JPH0426074A - Fully solid secondary battery - Google Patents

Fully solid secondary battery

Info

Publication number
JPH0426074A
JPH0426074A JP2129624A JP12962490A JPH0426074A JP H0426074 A JPH0426074 A JP H0426074A JP 2129624 A JP2129624 A JP 2129624A JP 12962490 A JP12962490 A JP 12962490A JP H0426074 A JPH0426074 A JP H0426074A
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
solid
solid electrolyte
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2129624A
Other languages
Japanese (ja)
Inventor
Shigeko Takahashi
高橋 滋子
Kanji Takada
寛治 高田
Yasuhiko Mifuji
靖彦 美藤
Shuji Ito
修二 伊藤
Sukeyuki Murai
村井 祐之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2129624A priority Critical patent/JPH0426074A/en
Publication of JPH0426074A publication Critical patent/JPH0426074A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve a high rate characteristic by forming an electron collecting layer of graphite further on an electrode layer which is a mixture of a silver ion conductive solid electrolyte and a specified electrode active substance. CONSTITUTION:An electron collecting layer which is a molded graphite having excellent electron transmitting property is formed on both sides of an electrode which is a mixture of a silver ion conductive solid electrolyte, e.g. 4AgI.Ag2 WO4, and an electrode active mass of a composite oxide consisting of silver and vanadium oxide shown as AgxV2O5-y (0.6<=X<=0.8, (y) shows oxygen defficiency). Conditions for collecting electron sufficiently from the whole surface of the electrode are produced and the contact resistance is improved to lower the inner resistance of a battery. Consequently, a high rate characteristic is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電極活物質として正極、負極とも同し銀バナ
ジウム酸化物を用い、固体電解質として銀イオン導電性
固体電解質を用いる全固体二次電池に関するものであり
、特にハイレート特性に優れた全固体二次電池を提供す
ることを目的としたものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an all-solid-state secondary battery that uses silver vanadium oxide for both the positive and negative electrodes as the electrode active material and a silver ion conductive solid electrolyte as the solid electrolyte. The purpose is to provide an all-solid-state secondary battery with particularly excellent high-rate characteristics.

従来の技術 近年、電子機器のマイクロエレクトロニクス化が急速に
進展し、それら機器に使用される電池に対して高信頼性
、使用温度範囲の拡大等が強く要望されてきている。し
かし、従来の酸、アルカリ等の液状の電解液を使用する
電池では、電解液の漏液やガス発生による電池の膨張7
破裂の危険性があり、使用機器への絶対的信頼性を確保
することは不可能である。これに対して固体電解質電池
は液状電解液を全く使用しないため、上記のような問題
がなく、高い信頼性を具備するものにできる可能性を有
している。また、固体電解質は液状電解液で起こる氷結
、蒸発がなく、広い使用温度範囲が期待できる。このた
め、液状電解液に代えて固体電解質を使用する全固体電
池の開発が盛んに行われている。例えば、水分、酸素、
熱に対して安定な4 A g I−A g2W04等を
銀イオン導電性固体電解質として用い、電極活物質とし
て銀バナジウム酸化物を正極、および負極に用いる全固
体二次電池が提案されている(特願平1−67068)
BACKGROUND OF THE INVENTION In recent years, the use of microelectronic devices in electronic devices has rapidly progressed, and there has been a strong demand for batteries used in these devices to have high reliability, an expanded operating temperature range, and the like. However, with conventional batteries that use liquid electrolytes such as acids and alkalis, the battery expands due to electrolyte leakage and gas generation.
There is a risk of explosion and it is impossible to ensure absolute reliability of the equipment used. On the other hand, since solid electrolyte batteries do not use any liquid electrolyte, they do not have the above problems and have the potential to be highly reliable. In addition, solid electrolytes do not cause freezing or evaporation that occurs with liquid electrolytes, and can be expected to be used over a wide temperature range. For this reason, all-solid-state batteries that use solid electrolytes instead of liquid electrolytes are being actively developed. For example, moisture, oxygen,
An all-solid-state secondary battery has been proposed that uses thermally stable 4A g I-A g2W04 etc. as a silver ion conductive solid electrolyte and silver vanadium oxide as an electrode active material for the positive and negative electrodes ( Patent application Hei 1-67068)
.

しかし、この電池も、安定した電池特性と優れた高温特
性は有するが、0.1mA以上の電流で使用する場合の
容量低下が大きく、ハイレート特性に問題を有していた
However, although this battery also has stable battery characteristics and excellent high-temperature characteristics, it suffers from a large capacity drop when used at a current of 0.1 mA or more, and has problems with high-rate characteristics.

発明が解決しようとする課題 電極活物質として、銀バナジウム酸化物を用い、4Ag
l−Ag2W04等で表わされる組成の固体電解質を用
いる全固体電池は、固体電解質が水分、酸素、熱に対し
て安定で、また高温においても電子伝導性が殆どないた
め、低温から100℃を超える高温まで、広い温度範囲
で安定に動作する特性を有する二次電池である。しかし
ながら、固体電解質層を介して配した正極および負極に
取り付ける端子は従来、導伝性カーボンペーストで直接
電極面に接合していたため、電極面における接合状態が
不十分で、電池の内部抵抗が高く、大電流で使用する場
合の容量低下が大きくなり、ハイレート特性に問題を有
していた。
Problems to be Solved by the Invention Using silver vanadium oxide as an electrode active material, 4Ag
All-solid-state batteries that use a solid electrolyte with a composition such as l-Ag2W04 are stable against moisture, oxygen, and heat, and have almost no electronic conductivity even at high temperatures. This is a secondary battery that operates stably over a wide temperature range, up to high temperatures. However, conventionally, the terminals attached to the positive and negative electrodes arranged through the solid electrolyte layer were directly bonded to the electrode surface using conductive carbon paste, which resulted in insufficient bonding on the electrode surface and a high internal resistance of the battery. However, when used at a large current, the capacity decreases significantly, resulting in problems with high-rate characteristics.

本発明は、安定した特性を保持させた状態で、上記の問
題点を解決し、ハイレート特性に優れた全固体二次電池
を提供するものである。
The present invention solves the above problems while maintaining stable characteristics, and provides an all-solid-state secondary battery with excellent high-rate characteristics.

課題を解決するための手段 本発明は、電極が4Ag I・A g =W 04等で
表わされる銀イオン導電性固体電解質と A g >V2O5−y (0,6≦x≦0.8、 y
は酸素欠損)で表わされる銀とバナジウム酸化物よりな
る複合酸化物の電極活物質の混合物である全固体二次電
池のハイレート特性を向上させるために゛、前記電極の
両側に電子伝導性に優れた黒鉛を成型した集電層を配し
、電極と集電体の間の抵抗を低減させたものである。
Means for Solving the Problems The present invention provides an electrode using a silver ion conductive solid electrolyte represented by 4AgI.Ag=W04, etc.
In order to improve the high-rate characteristics of an all-solid-state secondary battery, which is a mixture of electrode active materials of composite oxides consisting of silver and vanadium oxides (expressed by oxygen vacancies), a layer with excellent electron conductivity is placed on both sides of the electrode. A current collecting layer made of molded graphite is arranged to reduce the resistance between the electrode and the current collector.

作用 A gxV20s−y (0,6≦x ≦0.8、yは
酸素欠損)で表わされる銀とバナジウム酸化物よりなる
複合酸化物は、電気化学的に銀のインター力レーシジン
、デインター力レーションヲ行ワセルことができる。し
たがって、銀イオン導電性固体電解質との併用により全
固体二次電池を構成することができる。
A composite oxide consisting of silver and vanadium oxide expressed by the formula A gxV20s-y (0,6≦x≦0.8, y is oxygen deficiency) electrochemically suppresses the interaction and deinteraction of silver. The line can be washed. Therefore, an all-solid-state secondary battery can be constructed by using it in combination with a silver ion conductive solid electrolyte.

前記全固体二次電池は、銀イオン導電性固体電解質を介
してその両端に銀イオン導電性固体電解質粉末と銀バナ
ジウム酸化物粉末の混合物よりなる電極を配して構成す
る。また、実用電池とするためにニッケル線等のリード
端子を前記電池の電極面に取り付ける。
The all-solid-state secondary battery is constructed by disposing electrodes made of a mixture of a silver ion-conductive solid electrolyte powder and a silver vanadium oxide powder at both ends of the silver ion-conductive solid electrolyte. Further, in order to make the battery practical, a lead terminal such as a nickel wire is attached to the electrode surface of the battery.

しかしながら、従来リード端子と電極の間の接合を直接
カーボンペーストで行っていたため電極との接合状態が
不十分で、カーボンペースト中に含まれるバインダーが
電極面の一部分に介在することになり、電極の全面から
集電できない状態を形成し、また導電ペースト中のカー
ボンと電極との接合が弱く、接触抵抗が高くなり、電池
の内部抵抗が高くなっていたため、ハイレート充放電に
おいて十分な特性が得られなかった。
However, since conventionally the lead terminal and the electrode were bonded directly using carbon paste, the bond with the electrode was insufficient, and the binder contained in the carbon paste was interposed on a part of the electrode surface, causing the electrode to This created a condition in which current could not be collected from the entire surface, and the bond between the carbon in the conductive paste and the electrode was weak, resulting in high contact resistance and high internal resistance of the battery, making it impossible to obtain sufficient characteristics for high-rate charging and discharging. There wasn't.

本発明は、正極および負極の電極に、さらに電子伝導性
に優れた黒鉛を成型した集電層を圧接して電極の全面か
ら充分に集電できる状態を形成し、接触抵抗を大幅に改
善して電池の内部抵抗を低減し、ハイレート特性の優れ
た全固体二次電池を完成させたものである。
In the present invention, a current collecting layer made of molded graphite with excellent electronic conductivity is pressed into contact with the positive and negative electrodes to form a state in which current can be sufficiently collected from the entire surface of the electrode, thereby significantly improving contact resistance. The internal resistance of the battery was reduced, and an all-solid-state secondary battery with excellent high-rate characteristics was completed.

以下実施例により詳細に説明する。This will be explained in detail below using examples.

実施例 まず、Ag I、Ag2O,WO2をモル比で411の
比となるように秤量し、アルミナ乳鉢で混合した。この
混合物を加圧成型しベレット状とした後、バイレックス
管に減圧封入し、400℃の温度で17時間溶融2反応
させた。その反応物を乳鉢で粉砕1分級して200メツ
シユ以下の4 A g I−A g 2WO4で表わさ
れる銀イオン導電性固体電解質粉末を得た。
Example First, Ag I, Ag2O, and WO2 were weighed to have a molar ratio of 411, and mixed in an alumina mortar. This mixture was molded under pressure to form a pellet, then sealed in a Vilex tube under reduced pressure, and melted and reacted for 17 hours at a temperature of 400°C. The reaction product was pulverized in a mortar into one classification to obtain a silver ion conductive solid electrolyte powder represented by 4A g I-A g 2WO4 having a size of 200 mesh or less.

次に、V2O5で表わされるバナジウム酸化物と金属銀
の粉末をモル比で10.7となるよう秤量し、乳鉢で混
合した。その混合物を加圧成型しベレット状とした後、
石英管中に減圧封入し、600℃の温度で48時間反応
させ、その反応物を乳鉢で粉砕、分級しで200メツン
ユ以下のA、 g O,7V = 05で表わされる銀
バナジウム酸化物の電極活物質粉末を得た。
Next, vanadium oxide represented by V2O5 and metallic silver powder were weighed so that the molar ratio was 10.7, and mixed in a mortar. After pressure-molding the mixture into a pellet shape,
The electrode was sealed in a quartz tube under reduced pressure and reacted at a temperature of 600°C for 48 hours, and the reaction product was crushed in a mortar and classified to produce an electrode of silver vanadium oxide expressed by A, g O, 7V = 05 with a mass of 200 or less. An active material powder was obtained.

このようにして得た固体電解質と電極活物質を用いて、
以下の方法により全固体二次電池を作製した。最初に、
固体電解質粉末と電極活物質を1・1の重量比で混合し
、この電極材料を100■秤量し、4ton/carの
圧力で加圧成型し、直径が10mの正極ベレットを作製
した。一方、正極と同一の電極材料を250■秤量し、
4ton/cnfの圧力で加圧成型し、直径が10m+
nの負極ペレ。
Using the solid electrolyte and electrode active material obtained in this way,
An all-solid-state secondary battery was produced by the following method. At first,
A solid electrolyte powder and an electrode active material were mixed at a weight ratio of 1:1, 100 μm of this electrode material was weighed, and pressure molded at a pressure of 4 tons/car to produce a positive electrode pellet with a diameter of 10 m. On the other hand, weigh 250 μ of the same electrode material as the positive electrode,
Pressure molded at a pressure of 4ton/cnf, diameter 10m+
n's negative electrode Pele.

トを作製した。以上のようにして得られた正極。We created a The positive electrode obtained as described above.

負極ベレットを300■の固体電解質を介して配し、正
極側および負極側ともその上にさらに後記の表に示すよ
うに10■〜40■の鱗状黒鉛を10+o+nの直径に
成型したものを配して、全体を4ton/ajの圧力で
加圧圧接して、黒鉛集電層が接合された直径が10+a
mのペレット状全固体二次電池を作製した。この全固体
二次電池の充放電特性を確認するため、ペレットの両側
にさらに錫メツキした銅線を導電性のカーボンペースト
(日本アチソン株式会社製109B)で接合し、全体を
エポキシ樹脂系の粉体塗料(日東電工株式会社製ニトロ
ンC−7200A)を150℃の温度で塗装した。さら
に、本発明の実施例以外に電極の両側に成型黒鉛の集電
層を配しない従来例を比較用として作製した。
A negative electrode pellet was placed through a 300cm solid electrolyte, and on both the positive and negative electrode sides, 10cm to 40cm flaky graphite molded to a diameter of 10+o+n was placed as shown in the table below. Then, the whole was pressure-welded at a pressure of 4 tons/aj, and the diameter of the graphite current collecting layer was 10+a.
A pellet-like all-solid-state secondary battery of m was produced. In order to confirm the charging and discharging characteristics of this all-solid-state secondary battery, tin-plated copper wires were further bonded to both sides of the pellet with conductive carbon paste (109B manufactured by Acheson Japan Co., Ltd.), and the whole was coated with epoxy resin powder. A body paint (Nitron C-7200A manufactured by Nitto Denko Corporation) was applied at a temperature of 150°C. Furthermore, in addition to the examples of the present invention, a conventional example in which a current collecting layer of molded graphite was not disposed on both sides of the electrode was prepared for comparison.

試作した全固体二次電池の定電流充放電の5サイクル目
の放電容量を20℃の温度雰囲気で評価した結果を法衣
に示す。なお実施例として作製した全固体二次電池の定
電流充放電は、充電電圧500mV、放電下限電圧25
0mVの間で行い、ハイレート特性を確認するため電流
値は500μAとした。また比較用の従来例の固体電解
質二次電池は実施例と同一の充放電電圧範囲で、まず容
量を確認するため50μAの定電流充放電を行いさらに
500μAの電流値における5サイクル目の放電容量を
評価した。
The results of evaluating the discharge capacity of the prototype all-solid-state secondary battery at the 5th cycle of constant current charging and discharging in a temperature atmosphere of 20°C are shown on the robe. The constant current charging and discharging of the all-solid-state secondary battery prepared as an example was performed at a charging voltage of 500 mV and a lower discharge limit voltage of 25 mV.
The current value was 500 μA to confirm high rate characteristics. In addition, a conventional solid electrolyte secondary battery for comparison was first charged and discharged at a constant current of 50 μA to confirm the capacity in the same charging/discharging voltage range as the example, and then the discharge capacity at the 5th cycle at a current value of 500 μA. was evaluated.

なお、放電容量の評価結果は、それぞれ5個の電池の平
均値を示した。
In addition, the evaluation results of discharge capacity each showed the average value of five batteries.

(以  下  余  白) この表にみられるように、電極中に黒鉛を含有していな
い従来例(7)を50μへの電流で充放電させた場合、
5サイクル目の放電容量が1960μAh得られたが、
同一の構成の従来例(6)を500μAの電流で充放電
させた場合、得られる容量は845μAhにすぎず、5
0μAの場合の43.1%まで低下し、従来例では大電
流で充放電した場合大幅に容量か低下し、ハイレート特
性に問題のあることが判る。これに対して、電極層の上
にさらに黒鉛の集電層を設けた本発明の実施例+11〜
(5)はいずれも 500μAの定電流充放電における
容量が従来例より大きく、黒鉛を圧接することによる電
極と集電体の間の抵抗の低減化がノ\イレート特性向上
に効果のあることが判る。実施例の中で、黒鉛の重量が
15■から40■の場合(2)〜(5)は5サイクル目
の放電容量が1440〜1495μAhの間にありほぼ
均一であるが、10■の場合(1)では1330μAh
となり、若干容量が低下するが、従来例(6)と比較す
るとなお大幅に容量が向上している。なお、黒鉛の重量
が10■未満の場合の検討も行ったが、黒鉛成型体とす
るときに崩れやすく安定した成型体が得られにくい。ま
た黒鉛の重量が40■を超えると黒鉛成型体とする場合
の成型体は良好であるが、黒鉛集電層を接合した全固体
二次電池とするときに黒鉛層の厚みが大きいため、電極
層との間で剥離が発生する場合があり、直径が10mm
の前記全固体二次電池を構成する場合には使用する黒鉛
の重量は10■から40■の範囲とすることが望ましい
(Left below) As shown in this table, when the conventional example (7), which does not contain graphite in the electrode, is charged and discharged with a current of 50μ,
A discharge capacity of 1960 μAh was obtained in the 5th cycle, but
When conventional example (6) with the same configuration is charged and discharged with a current of 500 μA, the obtained capacity is only 845 μAh, which is 5
This decreases to 43.1% of that in the case of 0 μA, and in the conventional example, when charging and discharging with a large current, the capacity decreases significantly, indicating that there is a problem in high rate characteristics. On the other hand, Examples +11~ of the present invention in which a graphite current collecting layer was further provided on the electrode layer.
In both cases (5), the capacity at constant current charging and discharging of 500 μA is larger than that of the conventional example, and the reduction in resistance between the electrode and the current collector by press-contacting the graphite is effective in improving the noir rate characteristics. I understand. In the examples, in cases (2) to (5) when the weight of graphite is between 15 and 40cm, the discharge capacity at the 5th cycle is between 1440 and 1495μAh and is almost uniform, but when the weight is 10cm ( 1) is 1330μAh
Although the capacity is slightly reduced, the capacity is still significantly improved compared to the conventional example (6). A study was also conducted in the case where the weight of graphite was less than 10 cm, but when it was made into a graphite molded product, it was easy to crumble and it was difficult to obtain a stable molded product. In addition, when the weight of graphite exceeds 40 cm, the graphite molded product is good, but when making an all-solid-state secondary battery with a graphite current collecting layer bonded, the thickness of the graphite layer is large, so the electrode Peeling may occur between the layers, and the diameter is 10 mm.
When constituting the all-solid-state secondary battery described above, it is desirable that the weight of the graphite used is in the range of 10 to 40 cm.

なお、本発明の実施例の電池(1)〜(5)について二
次電池としての特性を確認するために、上記充放電サイ
クル試験を継続して、300サイクル目の放電容量を確
認したがいずれも5サイクル目とほぼ同一であった。さ
らに、ハイレート特性かさらに優れている+2+、 +
3+および(4)について、同一の構成の電池を作製し
、500μAの電流値で定電流充放電を110℃の温度
で実施し、100サイクル目の放電容量を確認したが、
初期の容量と殆と変化がなく二次電池として安定した特
性を有することを確認した。
In addition, in order to confirm the characteristics of batteries (1) to (5) of Examples of the present invention as secondary batteries, the above-mentioned charge/discharge cycle test was continued and the discharge capacity at the 300th cycle was confirmed. It was also almost the same as the 5th cycle. Furthermore, the high rate characteristics are even better +2+, +
For 3+ and (4), batteries with the same configuration were produced, constant current charging and discharging was performed at a temperature of 110°C with a current value of 500 μA, and the discharge capacity at the 100th cycle was confirmed.
It was confirmed that the battery had stable characteristics as a secondary battery, with almost no change in capacity from its initial capacity.

以上のように、本発明は、電極層の上に、さらに電子伝
導性に優れた黒鉛を設け、ハイレート特性の優れた全固
体二次電池を実現させたものである なお、実施例においては、銀イオン導電性固体電解質と
してA、gl、Ag−:OlW O3を合成して作製し
た4Agl・Ag2WOイで表わされる固体電解質で説
明したが、吸湿性をもたない5109M OO3、V 
205から選ばれる化合物とAg1A、g、Oから合成
される固体電解質、さらに合成されたものが吸湿性をも
たないCr O3,P2O5B2O3から選ばれる化合
物とAgl、Ag2Oがら合成される固体電解質のいず
れを使用しても、上記とほぼ同様に、ハイレート特性か
向上することを確認している。
As described above, the present invention further provides graphite with excellent electronic conductivity on the electrode layer to realize an all-solid-state secondary battery with excellent high rate characteristics. Although the solid electrolyte represented by 4Agl・Ag2WO produced by synthesizing A, gl, Ag-:OlWO3 as a silver ion conductive solid electrolyte was explained, 5109M OO3, V which does not have hygroscopicity
A solid electrolyte synthesized from a compound selected from 205 and Ag1A, g, and O, and a solid electrolyte synthesized from a compound selected from CrO3, P2O5B2O3 whose synthesized material does not have hygroscopicity, Agl, and Ag2O. It has been confirmed that high-rate characteristics can be improved in almost the same way as above.

さらに、実施例では、電極活物質としてAgo7V20
sで表わされる組成のもので説明したが、銀のインター
力し・−ジョン、デインターカレーション反応がほぼ同
様に行われる A g o、 eV=05およびA g08V205の
銀と銀バナジウムよりなる複合酸化物を電極活物質とし
た場合でも、はぼ同様の効果が得られることを確認して
いる。
Furthermore, in the example, Ago7V20 was used as the electrode active material.
Although the explanation has been made using the composition represented by s, composites made of silver and silver vanadium of Ago, eV=05 and Ag08V205, in which silver intercalation and deintercalation reactions occur in almost the same way. It has been confirmed that similar effects can be obtained even when an oxide is used as the electrode active material.

発明の効果 以上のように、本発明によれば銀イオン導電性固体電解
質と、A g +1’ V 205−ア(0,6≦x≦
0.8、yは酸素欠損)で表わされる電極活物質を混合
した電極層の上に、さらに黒鉛の集電層を設けることに
より、ハイレート特性の優れた全固体二次電池を得るこ
とができる。
Effects of the Invention As described above, according to the present invention, a silver ion conductive solid electrolyte and A g +1' V 205-a (0,6≦x≦
By further providing a current collecting layer of graphite on the electrode layer containing an electrode active material represented by 0.8, y is oxygen deficiency), an all-solid-state secondary battery with excellent high-rate characteristics can be obtained. .

Claims (2)

【特許請求の範囲】[Claims] (1)銀イオン導電性固体電解質を介して、前記固体電
解質と、Ag_xV_2O_5_−_y(0.6≦x≦
0.8、yは酸素欠損)で表わされる銀とバナジウム酸
化物よりなる複合酸化物を混合した電極を配する全固体
二次電池において、前記電極にはさらに成型黒鉛の集電
層を配したことを特徴とする全固体二次電池。
(1) Ag_xV_2O_5_-_y (0.6≦x≦
In an all-solid-state secondary battery having an electrode made of a mixed oxide of silver and vanadium oxide represented by 0.8, y is oxygen deficiency), the electrode is further provided with a current collecting layer of shaped graphite. An all-solid-state secondary battery characterized by:
(2)前記銀イオン導電性固体電解質が、 Ag_6I_4WO_4で表わされることを特徴とする
特許請求の範囲第1項記載の全固体二次電池。
(2) The all-solid-state secondary battery according to claim 1, wherein the silver ion conductive solid electrolyte is represented by Ag_6I_4WO_4.
JP2129624A 1990-05-18 1990-05-18 Fully solid secondary battery Pending JPH0426074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2129624A JPH0426074A (en) 1990-05-18 1990-05-18 Fully solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129624A JPH0426074A (en) 1990-05-18 1990-05-18 Fully solid secondary battery

Publications (1)

Publication Number Publication Date
JPH0426074A true JPH0426074A (en) 1992-01-29

Family

ID=15014086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129624A Pending JPH0426074A (en) 1990-05-18 1990-05-18 Fully solid secondary battery

Country Status (1)

Country Link
JP (1) JPH0426074A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024926A1 (en) * 2012-08-09 2014-02-13 トヨタ自動車株式会社 All-solid-state battery and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024926A1 (en) * 2012-08-09 2014-02-13 トヨタ自動車株式会社 All-solid-state battery and method for manufacturing same
JP2014035888A (en) * 2012-08-09 2014-02-24 Toyota Motor Corp Solid state battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4395898B2 (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using these anode materials
US20130260258A1 (en) Electrode body and all solid state battery
WO2003049217A1 (en) Positive electrode active matter and secondary battery using this
EP0743692B1 (en) A material for use in the positive electrodes of lithium batteries, its manufacture, and lithium batteries incorporating this material
WO1997001193A1 (en) Nonaqueous electrolyte secondary battery
CN101707247A (en) Anode and battery
CN102844911B (en) Negative electrode active material for electricity storage device and use its electrical storage device negative material and electrical storage device negative pole
JPH11176436A (en) Alkaline storage battery
US6083645A (en) Secondary battery using system and material for negative electrode of secondary battery
JP2002373648A (en) Negative electrode, nonaqueous electrolyte secondary battery, and method for producing the negative electrode
JP2003217663A (en) Nonaqueous electrolyte battery
JP3016627B2 (en) Non-aqueous solvent secondary battery
EP0459451B1 (en) Solid-state voltage storage cell
JP2004111202A (en) Anode material and battery using the same
JPH0426074A (en) Fully solid secondary battery
JP3144832B2 (en) Non-aqueous solvent secondary battery
JP3198891B2 (en) Positive electrode for alkaline storage battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
US20240204244A1 (en) Solid-state battery and method for producing solid-state battery
JP2019129096A (en) All-solid battery and method for manufacturing the same
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JP3278837B2 (en) Non-aqueous electrolyte secondary battery
JP2836379B2 (en) Non-aqueous electrolyte secondary battery
JPH03291859A (en) Fully solid secondary cell