JPH04348527A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04348527A
JPH04348527A JP12052591A JP12052591A JPH04348527A JP H04348527 A JPH04348527 A JP H04348527A JP 12052591 A JP12052591 A JP 12052591A JP 12052591 A JP12052591 A JP 12052591A JP H04348527 A JPH04348527 A JP H04348527A
Authority
JP
Japan
Prior art keywords
diffusion
irradiation
amount
heavy metal
lifetime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12052591A
Other languages
Japanese (ja)
Inventor
Tsunehiro Nakajima
経宏 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12052591A priority Critical patent/JPH04348527A/en
Publication of JPH04348527A publication Critical patent/JPH04348527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE:To settle problems that the amount of leak current increases when the amount of Au diffusion is increased and variation in characteristics is caused when the amount of Pt diffusion is increased for the sake of lifetime control, an irradiation effect is diminished when the annealing after irradiation of a particle beam is carried out at high temperature and the characteristic varies when the annealing is carried out at low temperature. CONSTITUTION:The life is controlled through heavy metal diffusion together with irradiation of a particle beam so that a desirable switching speed is obtained. By using Pt as heavy metal, the leak current is diminished at the amount of diffusion is reduced so that the variation in characteristics can be controlled. Through the heavy metal diffusion, the life can be reduced to a certain extent, and thereby the annealing temperature can be raised after irradiation with an electron beam and the like. Consequently, the deterioration of characteristics can be prevented in fabrication or reliability test processes.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、モータ制御の電源装置
内のインバータ回路などに組入れ高速スイッチングを可
能にするため、ライフタイムを短くした半導体基体を用
いる半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device using a semiconductor substrate with a shortened lifetime in order to enable high-speed switching when incorporated into an inverter circuit or the like in a power supply device for motor control.

【0002】0002

【従来の技術】半導体基体のライフタイムを短くするに
は、金(Au),白金(Pt)等の重金属をライフタイ
ムキラーとして拡散する方法、あるいは電子線, X線
等の放射線あるいはイオンビーム等の粒子線の照射によ
り結晶に欠陥を生成する方法が従来より用いられている
[Prior Art] In order to shorten the lifetime of a semiconductor substrate, there is a method of diffusing heavy metals such as gold (Au) and platinum (Pt) as a lifetime killer, or radiation such as electron beams, X-rays, ion beams, etc. Conventionally, a method has been used in which defects are generated in crystals by irradiation with particle beams.

【0003】0003

【発明が解決しようとする課題】ライフタイムキラーと
してはAuが古くから用いられ、ライフタイム制御のメ
カニズムについても良く知られているが、スイッチング
速度を高めるために多量に拡散するにつれて半導体装置
のもれ電流を大きくしてしまう欠点もまたよく知られて
いる。
[Problems to be Solved by the Invention] Au has been used as a lifetime killer for a long time, and the lifetime control mechanism is well known, but as it is diffused in large quantities to increase switching speed, The disadvantage of increasing stray current is also well known.

【0004】もれ電流に対する影響の少ないものとして
PtがAuの代わりに使用されることがある。しかし、
Ptも多量に拡散すると、例えばコンタクト層形成のた
めに高濃度で導入したPなどの不純物と結合してしまい
、ライフタイムにばらつきが生じ、スイッチング速度を
ばらつかせてしまう欠点がある。
Pt is sometimes used in place of Au as it has less influence on leakage current. but,
If a large amount of Pt is diffused, it will combine with impurities such as P introduced at a high concentration to form a contact layer, resulting in variations in lifetime and switching speed.

【0005】粒子線を照射した場合、ライフタイムの均
一化のために行うアニールの温度は、高温度にするとラ
イフタイムが短時間で回復してしまい、ライフタイム制
御の効果がなくなってしまうので、300 ℃前後の低
温度にしなければならない。そのため、その後の半導体
装置の組立ての際にろう付けなどで350 ℃程度に温
度が上がった場合に特性が変動してしまう。あるいは温
度は150 ℃程度であるが、半導体装置に電圧を印加
する信頼性の試験でも特性が変動してしまう。このため
、例えばダイオードの順電圧VF と逆回復時間trr
との間のトレードオフ関係が重金属拡散による場合より
も悪くなるという欠点があった。
When particle beam irradiation is performed, if the annealing temperature is set to a high temperature to make the lifetime uniform, the lifetime will recover in a short time and the lifetime control effect will be lost. The temperature must be kept low, around 300°C. Therefore, when the temperature rises to about 350° C. due to brazing or the like during subsequent assembly of the semiconductor device, the characteristics will change. Alternatively, although the temperature is about 150° C., the characteristics vary even in a reliability test in which a voltage is applied to the semiconductor device. For this reason, for example, the forward voltage VF of the diode and the reverse recovery time trr
There was a drawback that the trade-off relationship between heavy metal diffusion was worse than that due to heavy metal diffusion.

【0006】本発明の目的は、上記の欠点を除き、特性
の低下あるいはばらつきを招くことなくライフタイムを
制御してスイッチング速度を高めることのできる半導体
装置の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that eliminates the above-mentioned drawbacks and can control lifetime and increase switching speed without causing deterioration or variation in characteristics.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の半導体装置の製造方法は、半導体基体に
重金属を拡散する工程と、半導体基体に粒子線を照射す
る工程とを含むことにより半導体基体のライフタイムを
制御するものとする。そして重金属としてPtを用いる
こと、粒子線として電子線を用いることが有効である。
[Means for Solving the Problems] In order to achieve the above object, a method for manufacturing a semiconductor device of the present invention includes the steps of diffusing heavy metals into a semiconductor substrate and irradiating the semiconductor substrate with a particle beam. By this, the lifetime of the semiconductor substrate is controlled. It is effective to use Pt as the heavy metal and to use an electron beam as the particle beam.

【0008】[0008]

【作用】半導体装置のスイッチング速度を高めるために
、拡散によって重金属原子を半導体結晶内に介在させる
ことと粒子線の照射により半導体結晶に欠陥を生じさせ
ることの双方により半導体基体のライフタイムを短くす
れば、重金属の拡散量をもれ電流の増大あるいは特性の
ばらつきが起こらない程度に抑えることができる。また
、粒子線照射後のアニール温度を、装置の組立て時の温
度上昇や信頼性試験の環境で特性の変動が起きない程度
に上げておくことができ、トレードオフの関係も改善で
きる。
[Operation] In order to increase the switching speed of semiconductor devices, the lifetime of the semiconductor substrate is shortened by both intervening heavy metal atoms in the semiconductor crystal by diffusion and creating defects in the semiconductor crystal by irradiation with particle beams. For example, the amount of diffusion of heavy metals can be suppressed to an extent that does not cause an increase in leakage current or variations in characteristics. In addition, the annealing temperature after particle beam irradiation can be raised to a level that does not cause variations in characteristics due to temperature increases during device assembly or reliability test environments, and the trade-off relationship can also be improved.

【0009】[0009]

【実施例】以下、例えばモータの回転制御のために電源
装置内のインバータ回路に使用される絶縁ゲート型バイ
ポーラトランジスタ (IGBT) の高速化における
本発明の一実施例について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below, in which the speed of an insulated gate bipolar transistor (IGBT) used in an inverter circuit in a power supply device for controlling the rotation of a motor, for example, is increased.

【0010】半導体基体シリコン基板上のn− 層の表
面層内のp+ 層およびそれらの表面層内のn+ エミ
ッタ層形成のための1100℃程度の温度での高温拡散
、p− 層のn−層およびn+ 層にはさまれた領域上
のゲート酸化膜を介してのゲート電極の形成の工程を経
たのち、Ptを半導体基体に拡散する。拡散温度は80
0 〜900 ℃の間で特性のばらつきが大きくならな
い程度に従来の温度より20℃程度低くし、拡散時間も
同様に特性ばらつきが大きくならない程度に2〜3時間
に短くした。そのあと、表面電極付けなどの工程を終え
、裏面電極付けの終わらない時点のようになるべく製造
工程の終り方で半導体基体に電子線を照射した。照射条
件は、高速化のレベルに応じたライフタイムが得られる
ように定めた。当然、電子線照射のみでライフタイム制
御するときより照射量は少なくなる。次いでライフタイ
ムを安定せせるためのアニールを400 ℃のような組
立て温度や信頼性試験の温度よりも高い温度で行ったが
、ライフタイムの回復はわずかであった。
[0010] High-temperature diffusion at a temperature of about 1100° C. to form a p+ layer in the surface layer of the n- layer on a semiconductor substrate silicon substrate and an n+ emitter layer in those surface layers; After passing through the steps of forming a gate electrode through the gate oxide film on the region sandwiched between the n+ layer and the n+ layer, Pt is diffused into the semiconductor substrate. Diffusion temperature is 80
The temperature was set at about 20° C. lower than the conventional temperature between 0 and 900° C. so as not to increase the variation in characteristics, and the diffusion time was also shortened to 2 to 3 hours so as not to increase the variation in characteristics. Thereafter, the semiconductor substrate was irradiated with an electron beam as close to the end of the manufacturing process as possible, such as after completing processes such as attaching front electrodes and before attaching back electrodes. The irradiation conditions were determined to provide a lifetime that corresponds to the level of speedup. Naturally, the amount of irradiation is smaller than when lifetime control is performed using only electron beam irradiation. Next, annealing was performed to stabilize the lifetime at a temperature higher than the assembly temperature or reliability test temperature, such as 400°C, but the recovery in lifetime was slight.

【0011】図1は上記のようにして製造したIGBT
と従来のAu拡散のみでライフタイム制御して製造した
IGBTのもれ電流の分布を示す。Auを用いるPtの
拡散と電子線照射を行ったことでもれ電流が少なくなっ
ている。また図2に示すようにコレクタ・エミッタ飽和
電圧 (VCE(sat) ) と下降時間フォールタ
イム (tf ) との間のトレードオフもAu拡散の
みおよび電子線照射のみに比べて良くなる。これはPt
による浅い準位に電子線によって作られる比較的深い準
位が得られるためと考えられる。
FIG. 1 shows an IGBT manufactured as described above.
This shows the distribution of leakage current of an IGBT manufactured by controlling the lifetime using only conventional Au diffusion. Leakage current is reduced by diffusion of Pt using Au and electron beam irradiation. Furthermore, as shown in FIG. 2, the trade-off between the collector-emitter saturation voltage (VCE(sat)) and the fall time (tf) is also better compared to only Au diffusion and only electron beam irradiation. This is Pt
This is thought to be because a relatively deep level created by the electron beam is obtained in the shallow level created by the electron beam.

【0012】図3は、tf が同程度になるように製作
したIGBTに定格の1/2 の電圧を印加し短絡電流
を流したときの破壊するまでの時間によって表わす負荷
短絡耐量を示し、Au拡散のみのIGBTに比して破壊
耐量が向上している。
[0012] Figure 3 shows the load short-circuit withstand capacity expressed by the time until destruction when a voltage of 1/2 of the rated voltage is applied to IGBTs manufactured so that tf is about the same and a short-circuit current is caused to flow. The breakdown resistance is improved compared to IGBTs using only diffusion.

【0013】以上、Pt拡散と電子線照射を併用した実
施例について述べたが、Au拡散と電子線照射の併用で
も、Auの拡散量を減少させることができるためもれ電
流が減るほか、他の特性をAuの拡散のみの場合に比し
て向上する。また電子線のほかに、X線, 中性子線等
の照射を用いることもできる。
[0013] Above, an example in which Pt diffusion and electron beam irradiation are used in combination has been described, but the combination of Au diffusion and electron beam irradiation can also reduce the amount of Au diffusion, thereby reducing leakage current and other effects. characteristics are improved compared to the case where only Au is diffused. In addition to electron beams, irradiation with X-rays, neutron beams, etc. can also be used.

【0014】[0014]

【発明の効果】本発明によれば、ライフタイムの制御に
重金属拡散と粒子線照射の双方を併用することにより、
重金属の拡散量の減少と粒子線の照射量の減少あるいは
アニール温度の上昇が可能となり、もれ電流その他の特
性の低下、特性のばらつきの増大あるいは後工程での特
性の劣化を抑えることができる。そして、重金属拡散に
よりある程度ライフタイムを短くしたのち、粒子線照射
の照射量あるいはアニール時間を調整することによって
要求される任意のスイッチング速度をもつ半導体装置を
容易に製造することができる。
[Effects of the Invention] According to the present invention, by using both heavy metal diffusion and particle beam irradiation for lifetime control,
It is possible to reduce the amount of diffusion of heavy metals, reduce the amount of particle beam irradiation, or increase the annealing temperature, which can suppress the decrease in leakage current and other properties, increase in variation in properties, or deterioration of properties in post-processes. . After the lifetime is shortened to some extent by heavy metal diffusion, a semiconductor device having any required switching speed can be easily manufactured by adjusting the dose of particle beam irradiation or the annealing time.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例によるIGBTと従来例のI
GBTのもれ電流分布図
FIG. 1: IGBT according to an embodiment of the present invention and conventional IGBT
GBT leakage current distribution diagram

【図2】本発明の一実施例によるIGBTと従来例のI
GBTのVCE(sat) −tf トレードオフ線図
FIG. 2: IGBT according to an embodiment of the present invention and conventional IGBT
GBT VCE(sat)-tf trade-off diagram

【図3】本発明の一実施例によるIGBTと従来のIG
BTの負荷短絡耐量分布図
FIG. 3: IGBT according to an embodiment of the present invention and conventional IG
BT load short-circuit tolerance distribution diagram

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基体に重金属を拡散する工程と、半
導体基体に粒子線を照射する工程とを含むことにより半
導体基体のライフタイムを制御することを特徴とする半
導体装置の製造方法。
1. A method for manufacturing a semiconductor device, comprising the steps of diffusing a heavy metal into the semiconductor substrate and irradiating the semiconductor substrate with a particle beam, thereby controlling the lifetime of the semiconductor substrate.
【請求項2】重金属として白金を用いる請求項1記載の
半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein platinum is used as the heavy metal.
【請求項3】粒子線として電子線を用いる請求項1ある
いは2記載の半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein an electron beam is used as the particle beam.
JP12052591A 1991-05-27 1991-05-27 Manufacture of semiconductor device Pending JPH04348527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12052591A JPH04348527A (en) 1991-05-27 1991-05-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12052591A JPH04348527A (en) 1991-05-27 1991-05-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04348527A true JPH04348527A (en) 1992-12-03

Family

ID=14788421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12052591A Pending JPH04348527A (en) 1991-05-27 1991-05-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04348527A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717244A (en) * 1994-10-25 1998-02-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having layers with varying lifetime characteristics
US7485920B2 (en) * 2000-06-14 2009-02-03 International Rectifier Corporation Process to create buried heavy metal at selected depth
JP2017059667A (en) * 2015-09-16 2017-03-23 富士電機株式会社 Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717244A (en) * 1994-10-25 1998-02-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having layers with varying lifetime characteristics
US7485920B2 (en) * 2000-06-14 2009-02-03 International Rectifier Corporation Process to create buried heavy metal at selected depth
JP2017059667A (en) * 2015-09-16 2017-03-23 富士電機株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP5320679B2 (en) Semiconductor device and manufacturing method thereof
US6617641B2 (en) High voltage semiconductor device capable of increasing a switching speed
US7485920B2 (en) Process to create buried heavy metal at selected depth
JP5104314B2 (en) Semiconductor device and manufacturing method thereof
US8999826B2 (en) Method of producing a vertically inhomogeneous platinum or gold distribution in a semiconductor substrate and in a semiconductor device
CN106887385B (en) Method for manufacturing semiconductor device
US20090224284A1 (en) Semiconductor device and method of producing the same
JPH07107935B2 (en) Semiconductor device
JP6109432B2 (en) Method for manufacturing power semiconductor device
KR950014279B1 (en) Semiconductor device and its making method
JPS5819125B2 (en) Manufacturing method of semiconductor device
JP3495819B2 (en) High speed power diode
US7612388B2 (en) Power semiconductor element with an emitter region and a stop zone in front of the emitter region
JPH04348527A (en) Manufacture of semiconductor device
JP2617497B2 (en) Semiconductor device
JP2963204B2 (en) Manufacturing method of insulated gate bipolar transistor
JPH0671078B2 (en) Semiconductor device
JPH0982955A (en) Manufacture of semiconductor device
JPH10199894A (en) Semiconductor device and manufacture thereof
JPH07321304A (en) Insulated gate bipolar transistor and its manufacture
JP2753331B2 (en) Semiconductor device
JP2818959B2 (en) Insulated gate bipolar transistor
JPH04252078A (en) Manufacture of switching semiconductor device
JP3185445B2 (en) Method for manufacturing semiconductor device
JP5446158B2 (en) Semiconductor device and manufacturing method thereof