JPH04346651A - Metallizing method - Google Patents

Metallizing method

Info

Publication number
JPH04346651A
JPH04346651A JP11988191A JP11988191A JPH04346651A JP H04346651 A JPH04346651 A JP H04346651A JP 11988191 A JP11988191 A JP 11988191A JP 11988191 A JP11988191 A JP 11988191A JP H04346651 A JPH04346651 A JP H04346651A
Authority
JP
Japan
Prior art keywords
metal
layer
substrate
adhesion
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11988191A
Other languages
Japanese (ja)
Inventor
Kokichi Ohata
大畠 耕吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11988191A priority Critical patent/JPH04346651A/en
Publication of JPH04346651A publication Critical patent/JPH04346651A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a method for treating an organic material such as plastics having a surface layer of metal excellent in adhesion. CONSTITUTION:The surface of a substrate 8 of plastics is irradiated with ion beams 4 while metallic vapor is vapor-deposited thereon to form a mixed layer of metal and an organic material, on which a layer of metal is furthermore formed. An organic material such as plastics in which the mixed layer of which the boundary between the substrate and the layer of metal is unclear is interposed and excellent in adhesion (peeling resistance) and its treating method are realized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、材料表面の改質に係り
、特に、有機材料の表面をメタライジングする方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the modification of the surface of materials, and more particularly to a method of metallizing the surface of organic materials.

【0002】0002

【従来の技術】従来、アルミナのようなセラミックスの
メタライジング法として、1000℃を越える加熱プロ
セスが実用化されている。この高温プロセスでは、室温
まで冷却する間に金属とセラミックスとの間に熱膨張率
の差によるストレスが発生し、両者の密着強度に限界が
あった。それに対して、最近イオン照射を利用した低温
プロセスによるメタライジング法が研究されている。例
えば、第5回イオン注入表層処理シンポジウム論文集(
1989年11月)の講演番号C−11にはダイナミッ
クミキシング法によるALNのCuメタライジング法が
、同じくC−12にはIVDによるセラミックスのメタ
ライジング法が記載されている。
2. Description of the Related Art Hitherto, a heating process exceeding 1000° C. has been put into practical use as a metallizing method for ceramics such as alumina. In this high-temperature process, stress occurs between the metal and ceramic due to the difference in coefficient of thermal expansion during cooling to room temperature, which limits the adhesion strength between the two. In contrast, metallizing methods using low-temperature processes using ion irradiation have recently been studied. For example, Proceedings of the 5th Ion Implantation Surface Treatment Symposium (
Lecture number C-11 (November 1989) describes a Cu metallizing method for ALN using a dynamic mixing method, and C-12 describes a method for metallizing ceramics using IVD.

【0003】0003

【発明が解決しようとする課題】この論文集によるメタ
ライジング法はセラミックスを対象にしており、プラス
チックスなどの有機材料を対象にしたものではない。近
年、デバイスの基板として、ガラスやセラミックスのよ
うな重くて破壊しやすい無機材料ではなく、軽くて可撓
性のあるシート状のプラスチックスのような有機材料が
有望視されているが、有機材料のメタライジング法はま
だ提案されていない。有機材料にメタライジングする方
法あるいは金属薄膜を形成する方法として、これまでの
技術の延長線上に、いわゆる真空蒸着法がある。この真
空蒸着による膜は、単に基材の表面に形成されるだけで
、基材との密着性が悪く、剥離しやすいという欠点があ
る。本発明の目的は、基材と金属の層との境界が不明瞭
な混合層を介在させて、密着性(耐剥離性)がすぐれる
表面層をもつプラスチックスなどの有機材料およびその
処理法を提供することにある。
[Problems to be Solved by the Invention] The metallizing method described in this collection of papers is intended for ceramics, not for organic materials such as plastics. In recent years, organic materials such as light and flexible sheet plastics have been seen as promising as device substrates, rather than heavy and easily broken inorganic materials such as glass and ceramics. No metallizing method has been proposed yet. As a method of metallizing organic materials or forming a thin metal film, there is a so-called vacuum evaporation method that is an extension of conventional technology. This vacuum-deposited film is simply formed on the surface of the base material, and has the disadvantage that it has poor adhesion to the base material and is easily peeled off. The object of the present invention is to provide an organic material such as plastics that has a surface layer with excellent adhesion (peeling resistance) by interposing a mixed layer with an unclear boundary between the base material and the metal layer, and a method for treating the same. Our goal is to provide the following.

【0004】0004

【課題を解決するための手段】上記目的を達成するため
に、本発明は金属をプラスチックスなどの有機材料の表
面に蒸着させながら、加速したイオンを有機材料の表面
に照射または注入して、金属と有機材料との混合層を形
成し、さらにその上に金属の層を形成した。すなわち、
蒸着金属粒子は、有機材料の基材へ付着する前に加速さ
れたイオンと衝突して運動エネルギを得て基材に注入さ
れるか、または基材表面に付着した後にイオンに押し込
まれるようにして表面層を形成する。従って、金属が基
材表面に注入された状態になるために、基材と金属の層
は原子的結合状態となり、基材との密着性は非常に良好
であり、従来の課題を解決することができる。
[Means for Solving the Problems] In order to achieve the above object, the present invention deposits metal onto the surface of an organic material such as plastics while irradiating or injecting accelerated ions onto the surface of the organic material. A mixed layer of metal and organic material was formed, and a metal layer was further formed on top of the mixed layer. That is,
The deposited metal particles are either collided with accelerated ions to gain kinetic energy and implanted into the substrate before being attached to the organic material substrate, or they are forced into the ions after being attached to the substrate surface. to form a surface layer. Therefore, since the metal is injected into the surface of the base material, the base material and the metal layer are in an atomic bond state, and the adhesion with the base material is very good, which solves the conventional problems. Can be done.

【0005】ここで、金属を蒸着しながらイオンを照射
するということは、これらを同時に併用または交互に行
うことを指している。
[0005] Here, irradiation with ions while depositing a metal means to perform both simultaneously or alternately.

【0006】[0006]

【作用】本発明の有機材料にメタライジングあるいは金
属薄膜を形成した部材は、その表面に金属の層が形成さ
れており、金属の層は基材近傍で濃度が減少して基材と
の混合物層となり、さらに内部は基材になっている。す
なわち、金属粒子は、蒸発して有機材料の基材表面へ付
着する前に加速されたイオンと衝突して運動エネルギを
得て基材に注入されるか、または基材表面に付着した後
にイオンに押し込まれるようにして表面層を形成する。 従って、金属が基材表面に注入された状態の混合層を介
して金属の層を形成するために、基材との密着力が大き
くなり、非常に耐剥離性の優れた状態になる。
[Function] The member of the present invention in which metallization or a metal thin film is formed on the organic material has a metal layer formed on its surface, and the concentration of the metal layer decreases near the base material and becomes a mixture with the base material. It becomes a layer, and the inside is a base material. That is, the metal particles either collide with accelerated ions and gain kinetic energy and are injected into the substrate before evaporating and adhering to the surface of the organic material, or the metal particles are injected into the substrate after adhering to the surface of the substrate. A surface layer is formed by being pushed into the surface. Therefore, since the metal layer is formed via the mixed layer in which the metal is injected onto the surface of the base material, the adhesion to the base material is increased, resulting in a state of extremely excellent peeling resistance.

【0007】[0007]

【実施例】以下、本発明を実施例により具体的に述べる
[Examples] The present invention will be specifically described below with reference to Examples.

【0008】図1は本発明の一実施例における有機材料
にメタライジングあるいは金属薄膜を形成する方法を示
す説明図である。
FIG. 1 is an explanatory diagram showing a method of metallizing or forming a metal thin film on an organic material in one embodiment of the present invention.

【0009】図1に示すように、真空ポンプ1により真
空排気するチャンバ2内で水冷回転式の基板ホルダ3に
対して互いに45゜の角度からイオンビーム4を照射す
るイオン源5と金属蒸気6を蒸発する蒸発源7を設け、
基板8の表面に金属を蒸着させながら、イオンビームを
照射して、基板8の表面に金属の層を形成する。基板は
直径25mm厚さ1mmのポリカーボネート板であり、
処理条件は銀の蒸着速度5Å/秒、加速電圧20KV、
窒素イオン電流15〜30mA、膜厚1μである。これ
らの条件で作製した試料について、オージェ電子分光分
析装置で表面から基材側へ分析し、ついで、表面に直径
0.5mm のスタッドをはんだ付けして引っ張って膜
の密着力を測定した。これらの比較には、この処理条件
でイオンを照射しないもの、すなわち、銀を蒸着しただ
けのものを用いた。
As shown in FIG. 1, an ion source 5 and a metal vapor 6 irradiate a water-cooled rotary substrate holder 3 with an ion beam 4 at an angle of 45° to each other in a chamber 2 that is evacuated by a vacuum pump 1. An evaporation source 7 is provided to evaporate the
While depositing metal on the surface of the substrate 8, an ion beam is irradiated to form a metal layer on the surface of the substrate 8. The substrate is a polycarbonate plate with a diameter of 25 mm and a thickness of 1 mm.
The processing conditions were a silver deposition rate of 5 Å/sec, an acceleration voltage of 20 KV,
The nitrogen ion current was 15 to 30 mA, and the film thickness was 1 μm. The samples prepared under these conditions were analyzed from the surface to the substrate side using an Auger electron spectrometer, and then a stud with a diameter of 0.5 mm was soldered to the surface and the adhesion of the film was measured by pulling. For these comparisons, we used samples that were not irradiated with ions under these processing conditions, that is, samples that were only vapor-deposited with silver.

【0010】オージェ電子分光分析装置により表面から
基材側への断面を分析した結果、図2に示すように、表
面には銀の層が形成されており、表面から基材までの間
で銀が徐々に減少して(炭素が徐々に増加:これは図示
せず)いる部分が比較的長く形成されている。これは表
面層と基材との間に銀と基材の主成分である炭素との混
合層が形成されていることを示している。これに対して
、比較材のイオンを照射せずに蒸着しただけでは、急激
に銀の層が減少して、混合層の形成がなく、ほとんど機
械的にしか付着していないことがわかる。
[0010] As a result of analyzing the cross section from the surface to the substrate side using an Auger electron spectrometer, it was found that a silver layer was formed on the surface, and the silver layer was formed between the surface and the substrate, as shown in Figure 2. A relatively long portion is formed in which carbon gradually decreases (carbon gradually increases; this is not shown). This indicates that a mixed layer of silver and carbon, which is the main component of the base material, is formed between the surface layer and the base material. On the other hand, when the comparative material was simply deposited without ion irradiation, the silver layer rapidly decreased, no mixed layer was formed, and it was found that the silver layer was almost only mechanically deposited.

【0011】また、膜の密着力を測定した結果、図3に
示すように、イオンを照射せずに蒸着しただけでは殆ん
ど密着力はないが、イオンを照射することによって密着
力を著しく高められることがわかる。
Furthermore, as a result of measuring the adhesion of the film, as shown in FIG. 3, there is almost no adhesion when the film is deposited without ion irradiation, but the adhesion is significantly increased by ion irradiation. I know it can be improved.

【0012】本発明は上述のもののみに制限されるもの
ではなく、例えば、絶縁材としてのポリイミドと配線材
としての銅やアルミニウムとの接着性を改善して薄膜の
多層基板を開発すること、プラスチックスの装飾品や建
築材料に耐剥離性や耐侯性をもたせて長寿命化を図るこ
と、等々への適用も可能である。また、蒸着金属として
銀の実施例を示したが、銅,金,チタン,アルミニウム
,鉄,コバルト,ニッケル,シリコン,クロム,マンガ
ン,モリブデン,タングステンなどについても同様であ
る。さらに、イオン種として窒素の例を示したが、水素
,ヘリウム,アルゴン,キセノンなどの気体やこれらの
金属についても同じである。
The present invention is not limited to the above, but includes, for example, developing a thin-film multilayer substrate by improving the adhesion between polyimide as an insulating material and copper or aluminum as a wiring material; It can also be applied to plastic ornaments and building materials to make them peel-resistant and weather-resistant to extend their lifespan. Further, although silver has been shown as an example as the vapor-deposited metal, the same applies to copper, gold, titanium, aluminum, iron, cobalt, nickel, silicon, chromium, manganese, molybdenum, tungsten, and the like. Furthermore, although nitrogen has been shown as an example of the ionic species, the same applies to gases such as hydrogen, helium, argon, and xenon, and to these metals.

【0013】[0013]

【発明の効果】本発明によれば、基材と金属の層との境
界が不明瞭な混合層を介在させて密着性(耐剥離性)が
すぐれる表面層をもつプラスチックスなどの有機材料、
密着性がすぐれる金属の導電層とプラスチックスなどの
絶縁をもつ薄膜多層材料、およびその処理法が実現でき
る。
Effects of the Invention According to the present invention, organic materials such as plastics have a surface layer with excellent adhesion (peeling resistance) by interposing a mixed layer with an unclear boundary between the base material and the metal layer. ,
A thin film multilayer material with a conductive layer made of metal and an insulating layer made of plastic etc. with excellent adhesion, and its processing method can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例のダイナミックミキシングに
よるメタライジン法を示す説明図。
FIG. 1 is an explanatory diagram showing a metallizing method using dynamic mixing according to an embodiment of the present invention.

【図2】本発明の一実施例のメタライジン法による膜、
およびイオンを照射せずに蒸着しただけの膜について、
オージェ電子分光分析装置により表面から基材側への断
面を分析した結果を示す特性図。
FIG. 2: A film produced by the metallizing method according to an embodiment of the present invention.
and for films simply deposited without ion irradiation.
FIG. 3 is a characteristic diagram showing the results of analyzing a cross section from the surface to the base material side using an Auger electron spectrometer.

【図3】本発明の一実施例のメタライジン法による膜の
密着力、およびイオンを照射せずに蒸着しただけの膜の
密着力を測定した結果を示す特性図。
FIG. 3 is a characteristic diagram showing the results of measuring the adhesion of a film formed by the metallizing method of one embodiment of the present invention and the adhesion of a film simply deposited without ion irradiation.

【符号の説明】[Explanation of symbols]

1…真空ポンプ、2…真空チャンバ、3…基板ホルダ、
4…イオンビーム、5…イオン源、6…金属蒸気、7…
蒸発源。
1... Vacuum pump, 2... Vacuum chamber, 3... Substrate holder,
4...Ion beam, 5...Ion source, 6...Metal vapor, 7...
Evaporation source.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】基材表面に、金属を蒸着しながら加速した
粒子を同時に照射することにより、前記基材表面に前記
金属が形成されており、前記金属が前記基材表面から内
部にわたって濃度を減少させることを特徴とするメタラ
イジング法。
1. The metal is formed on the surface of the substrate by simultaneously irradiating accelerated particles while vapor depositing the metal on the surface of the substrate, and the metal is concentrated from the surface to the inside of the substrate. A metallizing method characterized by reducing
【請求項2】請求項1において、前記基材が、有機材料
であるメタライジング法。
2. The metallizing method according to claim 1, wherein the base material is an organic material.
JP11988191A 1991-05-24 1991-05-24 Metallizing method Pending JPH04346651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11988191A JPH04346651A (en) 1991-05-24 1991-05-24 Metallizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11988191A JPH04346651A (en) 1991-05-24 1991-05-24 Metallizing method

Publications (1)

Publication Number Publication Date
JPH04346651A true JPH04346651A (en) 1992-12-02

Family

ID=14772552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11988191A Pending JPH04346651A (en) 1991-05-24 1991-05-24 Metallizing method

Country Status (1)

Country Link
JP (1) JPH04346651A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526147A (en) * 2004-03-02 2007-09-13 イスト・イオーネンシュトラールテヒノロギー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Joined composite and method for producing the same
JP2008246894A (en) * 2007-03-30 2008-10-16 Lintec Corp Gas barrier film and its manufacturing method
KR101349859B1 (en) * 2012-04-19 2014-01-16 주식회사 신기인터모빌 A Plastic Component And Surface Treatment Method of the same
JP2016159606A (en) * 2015-03-05 2016-09-05 住友電気工業株式会社 Laminated structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526147A (en) * 2004-03-02 2007-09-13 イスト・イオーネンシュトラールテヒノロギー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Joined composite and method for producing the same
JP2012020583A (en) * 2004-03-02 2012-02-02 Ist Ionenstrahltechnologie Gmbh Bond complex body and method of producing the same
JP2008246894A (en) * 2007-03-30 2008-10-16 Lintec Corp Gas barrier film and its manufacturing method
KR101349859B1 (en) * 2012-04-19 2014-01-16 주식회사 신기인터모빌 A Plastic Component And Surface Treatment Method of the same
JP2016159606A (en) * 2015-03-05 2016-09-05 住友電気工業株式会社 Laminated structure

Similar Documents

Publication Publication Date Title
US4886681A (en) Metal-polymer adhesion by low energy bombardment
US4720401A (en) Enhanced adhesion between metals and polymers
JPS582022A (en) Thin film formation
US5217589A (en) Method of adherent metal coating for aluminum nitride surfaces
JPH04346651A (en) Metallizing method
JPS619985A (en) Production of composite metallic material
US5496772A (en) Method of manufacturing film carrier type substrate
JP2600336B2 (en) Method of manufacturing base material for high thermal conductive IC
JP2501791B2 (en) Film carrier type substrate and manufacturing method thereof
JP2875892B2 (en) Method of forming cubic boron nitride film
JPH05287500A (en) Production of film carrier type substrate
JP2743201B2 (en) Metal film formation method on ceramics surface by ion mixing method
JPS6350463A (en) Method and apparatus for ion plating
JPS63238270A (en) Production of thin compound film
JP2844779B2 (en) Film formation method
JPS60131964A (en) Manufacture of film-coated body
JPH05209262A (en) Manufacture of film coating
JP2671350B2 (en) Method for manufacturing TiN film
JP3136764B2 (en) Method for producing chalcopyrite thin film
JPS63206464A (en) Inline type composite surface treatment device
JPS6326347A (en) Production of thin metal boride film
JPH02104660A (en) Laser-beam sputtering method
JPS63213664A (en) Ion plating device
JPS6179767A (en) Formation of film
JP2560451B2 (en) Cu metallization method for Al ceramic material by O ion mixing