JPH04344406A - Scanning type tunnel microscope - Google Patents

Scanning type tunnel microscope

Info

Publication number
JPH04344406A
JPH04344406A JP3116288A JP11628891A JPH04344406A JP H04344406 A JPH04344406 A JP H04344406A JP 3116288 A JP3116288 A JP 3116288A JP 11628891 A JP11628891 A JP 11628891A JP H04344406 A JPH04344406 A JP H04344406A
Authority
JP
Japan
Prior art keywords
probe
sample
whisker
tip
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3116288A
Other languages
Japanese (ja)
Inventor
Makoto Ito
伊 藤  信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3116288A priority Critical patent/JPH04344406A/en
Publication of JPH04344406A publication Critical patent/JPH04344406A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a microscope having high resolution by means of a high strength thin probe with a large working function obtained by using a whisker as the material of the probe. CONSTITUTION:A whisker is used as the material of a probe. For example, when silicon is used for a sample, the silicon whisker whose tip is polished sharply is used as the material of the probe. First, piezoelectric elements 106, 107 are driven in such a way that the probe 101 scans the surface of a sample 103 in parallel to the sample 103. Then, the drive of a piezoelectric element 108 is controlled so as to keep tunnel current flowing between the tip atom 102 of the probe 101 and the sample 103 at a certain value. Since the tunnel current value is varied sensitively according to a change ion a distance between the tip atom 102 of the probe 101 and the surface of the sample 103, a change of fine irregularity of an atom level on the surface structure of the sample 103 can be observed as a large change of current.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、観察すべき試料の表面
とその表面に相対向する探針との間に流れるトンネル電
流を測定することにより、試料表面の状態を測定する走
査型トンネル顕微鏡に関するものである。
[Industrial Application Field] The present invention is a scanning tunneling microscope that measures the state of a sample surface by measuring the tunneling current flowing between the surface of the sample to be observed and a probe facing the surface. It is related to.

【0002】0002

【従来の技術】近年、試料表面の状態を観察する手段と
しては、実空間での状態をそのまま観察できる走査型ト
ンネル顕微鏡が注目されている。これは、ジー・ビニッ
ヒ(G.Binnig)とエッチ・ローラ(H.Roh
rer)の考案になるもので、探針と試料の間に流れる
トンネル電流を用いて試料の表面形状の測定を行なうも
のである(フィジカル・レビュー・レター・第49号・
57頁・1982年=G.Binning  et.a
l.Phys.Rev.Lett.49.P57.19
82およびU.S.P4343993参照)。
BACKGROUND OF THE INVENTION In recent years, scanning tunneling microscopes have been attracting attention as a means of observing the state of the surface of a sample, which allows the state to be observed in real space as it is. This is G. Binnig and H.Roh
(Physical Review Letter No. 49), which measures the surface shape of a sample using a tunnel current flowing between the probe and the sample.
57 pages, 1982 = G. Binning et. a
l. Phys. Rev. Lett. 49. P57.19
82 and U. S. (See P4343993).

【0003】以下、従来の走査型トンネル顕微鏡につい
て図2を参照して説明する。図2において、1は基台で
あり、その上に架設台2が設けられている。架設台2の
上部水平部の先端部下側には、試料台3が設けられ、こ
の試料台3に試料4が取り付けられている。5は探針で
あり、探針台6の上部に垂直に保持されている。7,8
,9は探針台6の側部および下部に一端が互いに直角に
交差するように接合された微動機構を構成する圧電素子
である。X,Y方向の圧電素子7,8の他端は、それぞ
れ基台1に垂直に立設された架設台10,11に接合さ
れ、Z方向の圧電素子9の他端は、基台1に接合されて
いる。これらの部材は、真空容器12内に収容され、図
示されない除振機構に支持されている。
A conventional scanning tunneling microscope will be explained below with reference to FIG. In FIG. 2, 1 is a base, and a construction base 2 is provided on the base. A sample stand 3 is provided below the tip of the upper horizontal portion of the installation stand 2, and a sample 4 is attached to this sample stand 3. Reference numeral 5 denotes a probe, which is held vertically at the top of the probe stand 6. 7,8
, 9 are piezoelectric elements constituting a fine movement mechanism, which are joined to the side and lower portions of the probe base 6 so that their one ends cross each other at right angles. The other ends of the piezoelectric elements 7 and 8 in the X and Y directions are joined to the construction stands 10 and 11, respectively, which are vertically installed on the base 1, and the other end of the piezoelectric element 9 in the Z direction is connected to the base 1. It is joined. These members are housed in the vacuum container 12 and supported by a vibration isolating mechanism (not shown).

【0004】次に、以上のように構成された走査型トン
ネル型顕微鏡の動作について説明する。まず、図示され
ない粗動機構により試料4と探針5との間の距離を近づ
ける。次に、駆動回路13でX,Y方向の圧電素子7,
8を駆動することにより、探針5で試料4の表面を試料
4に平行なX,Y方向に走査させる。この時、検出手段
15により検出される探針5と試料4の間に流れるトン
ネル電流が一定の値になるように、制御回路14が駆動
回路13を介してZ方向の圧電素子9の駆動を制御する
。このトンネル電流の値は、探針5と試料4の間の距離
の変化に対して敏感に変化するため、試料4の表面の微
細な凹凸の変化を電流の大きな変化として観測すること
ができ、これをコンピュータにより画像化処理して、試
料4の表面構造を得る。
Next, the operation of the scanning tunneling microscope constructed as above will be explained. First, the distance between the sample 4 and the probe 5 is brought closer using a coarse movement mechanism (not shown). Next, the drive circuit 13 drives the piezoelectric elements 7 and 7 in the X and Y directions.
8 causes the probe 5 to scan the surface of the sample 4 in the X and Y directions parallel to the sample 4. At this time, the control circuit 14 drives the piezoelectric element 9 in the Z direction via the drive circuit 13 so that the tunnel current flowing between the probe 5 and the sample 4 detected by the detection means 15 becomes a constant value. Control. Since the value of this tunneling current changes sensitively to changes in the distance between the probe 5 and the sample 4, changes in minute irregularities on the surface of the sample 4 can be observed as large changes in the current. This is imaged by a computer to obtain the surface structure of the sample 4.

【0005】[0005]

【発明が解決しようとする課題】このような走査型トン
ネル顕微鏡において、従来は、探針の材料として顕微鏡
による観察の操作に耐えうるように、強度が高く、仕事
関数(金属や半導体の結晶表面から1個の電子を表面の
すぐ外側に取り出すのに必要な最小のエネルギー)の大
きな物質、例えばタングステンや白金等を選択していた
ため、どうしても試料の原子よりも原子半径が大きくな
ってしまい、顕微鏡の解像度を余り高くすることができ
ないという問題があった。
[Problems to be Solved by the Invention] Conventionally, in such a scanning tunneling microscope, the material for the probe has been to have high strength and work function (metal or semiconductor crystal surface Since we selected materials with a large amount of energy (the minimum energy required to extract one electron from the surface to just outside the surface), such as tungsten and platinum, the atomic radius was inevitably larger than the sample atom, making it impossible to use a microscope. There was a problem that the resolution could not be made very high.

【0006】本発明は、このような従来の問題を解決す
るものであり、探針の材料を改良することにより高い分
解能で観察が可能な走査型トンネル顕微鏡を提供するこ
とを目的とする。
The present invention is intended to solve these conventional problems, and an object of the present invention is to provide a scanning tunneling microscope that allows observation with high resolution by improving the material of the probe.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、探針の材料としてウイスカーを用いたこ
とを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention is characterized in that a whisker is used as the material of the probe.

【0008】[0008]

【作用】本発明は、探針の材料としてウイスカーを用い
ることによって、細くて強度が高く仕事関数の大きな探
針を得ることができ、従来よりも解像度の高い走査型ト
ンネル顕微鏡を実現することができる。
[Operation] By using whiskers as the material of the probe, the present invention can obtain a thin, strong, and large work function probe, and can realize a scanning tunneling microscope with higher resolution than conventional ones. can.

【0009】[0009]

【実施例】以下、本発明の一実施例について図面を参照
しながら説明する。図1は本発明の一実施例における探
針先端部と試料の拡大図である。本実施例では、試料と
してシリコンを用い、探針の材料としてシリコンのウイ
スカーの先端を鋭利に研磨したものを用いている。図1
において、101はシリコンウイスカーの探針であり、
102は探針先端のシリコン原子、103はシリコンの
試料であり、104は試料表面のシリコン原子、105
は試料台、106,107,108は試料103の表面
に対し探針101をX,Y,Z方向に微動させるための
圧電素子である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an enlarged view of a probe tip and a sample in one embodiment of the present invention. In this example, silicon is used as the sample, and a silicon whisker with a sharply polished tip is used as the material of the probe. Figure 1
, 101 is a silicon whisker probe,
102 is a silicon atom at the tip of the probe, 103 is a silicon sample, 104 is a silicon atom on the sample surface, 105
1 is a sample stage, and 106, 107, and 108 are piezoelectric elements for slightly moving the probe 101 in the X, Y, and Z directions with respect to the surface of the sample 103.

【0010】以上のように構成された走査型トンネル顕
微鏡について、以下その動作について説明する。まず圧
電素子106,107を駆動することにより、探針10
1で試料103の表面を試料103に平行な方向に走査
させる。この時、圧電素子108の駆動を制御すること
により、探針101の先端原子102と試料103との
間に流れるトンネル電流が一定の値になるように保つ。 このトンネル電流の値は、探針101の先端原子102
と試料103の表面の原子との間の距離の変化に対して
敏感に変化するため、試料103表面の構造の原子レベ
ルの微細な凹凸の変化を、電流の大きな変化として観測
することが可能になる。したがって、この電流値が一定
に保たれるように圧電素子108を駆動することにより
、探針101の先端原子102は試料103の表面付近
を、その表面の凹凸に沿って移動することになり、結果
的に試料103の表面に関するデータが得られることに
なる。
The operation of the scanning tunneling microscope constructed as described above will be explained below. First, by driving the piezoelectric elements 106 and 107, the probe 10
1, the surface of the sample 103 is scanned in a direction parallel to the sample 103. At this time, by controlling the drive of the piezoelectric element 108, the tunnel current flowing between the tip atom 102 of the probe 101 and the sample 103 is maintained at a constant value. The value of this tunnel current is determined by the tip atom 102 of the probe 101.
Because it changes sensitively to changes in the distance between the current and the atoms on the surface of sample 103, it is possible to observe minute changes in the atomic level unevenness of the structure of the surface of sample 103 as large changes in the current. Become. Therefore, by driving the piezoelectric element 108 so that this current value is kept constant, the tip atom 102 of the probe 101 moves near the surface of the sample 103 along the unevenness of the surface. As a result, data regarding the surface of the sample 103 is obtained.

【0011】ウイスカーは、繊維状または針状に成長し
た単結晶をいい、ひげ結晶とも呼ばれている。太さは0
.1μm程度から10μm程度までであり、長さは10
mm以上に達することもある。1μmよりも細いウイス
カーは、一般に結晶としての完全性が極めて良好で、そ
の機械的強度も極めて高い。
[0011] A whisker is a single crystal grown in the form of a fiber or needle, and is also called a whisker crystal. Thickness is 0
.. The length is from about 1 μm to about 10 μm, and the length is 10 μm.
It may reach more than mm. Whiskers that are thinner than 1 μm generally have very good crystalline integrity and have very high mechanical strength.

【0012】ウイスカーは、水銀、黒鉛、塩化ナトリウ
ム、塩化カリウム、銅、鉄、酸化アルミニウム、シリコ
ン等、非常にさまざまな物質から作ることができる。こ
のうち、シリコンのウイスカーについては、「固体物理
」第18巻・12号・1983年・25〜34ページの
論文「結晶の成長機構と形(その1)」の中に記載され
ている。
Whiskers can be made from a wide variety of materials, including mercury, graphite, sodium chloride, potassium chloride, copper, iron, aluminum oxide, silicon, and others. Of these, silicon whiskers are described in the paper ``Crystal Growth Mechanism and Form (Part 1)'' in ``Solid State Physics'' Volume 18, No. 12, 1983, pages 25-34.

【0013】このように、上記実施例によれば、試料1
03の原子と同一の物質であるシリコンのウイスカーか
ら形成した探針101を用いることにより、探針101
の先端の原子102の原子半径を試料103表面の原子
104の原子半径と同等以下にすることができるので、
試料103表面の原子レベルの凹凸に対する探針101
の先端原子102の追随性を高めることができ、従来に
較べて解像度の高い顕微鏡像を得ることが出来る。
As described above, according to the above embodiment, sample 1
By using the probe 101 formed from a silicon whisker, which is the same substance as the atom of 03, the probe 101
Since the atomic radius of the atom 102 at the tip of can be made equal to or smaller than the atomic radius of the atom 104 on the surface of the sample 103,
Probe 101 for atomic level unevenness on the surface of sample 103
It is possible to improve the tracking ability of the tip atom 102, and it is possible to obtain a microscopic image with higher resolution than in the past.

【0014】[0014]

【発明の効果】以上のように、本発明によれば、探針の
材料としてウイスカーを用いることにより、細くて強度
が高く、仕事関数の大きな探針を得ることができ、従来
に較べて解像度の高い優れた走査型トンネル顕微鏡を実
現することができるという効果を有する。
As described above, according to the present invention, by using whiskers as the material of the probe, it is possible to obtain a thin, strong probe with a large work function, and the resolution is higher than that of the conventional one. This has the effect of making it possible to realize an excellent scanning tunneling microscope with high performance.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例における探針先端部と試料の
拡大概略斜視図
FIG. 1: An enlarged schematic perspective view of a probe tip and a sample in an embodiment of the present invention.

【図2】従来の走査型トンネル顕微鏡の概略構成図[Figure 2] Schematic diagram of a conventional scanning tunneling microscope

【符号の説明】[Explanation of symbols]

101  シリコンウイスカーの探針 102  探針先端のシリコン原子 103  シリコンの試料 104  試料表面のシリコン原子 105  試料台 106  圧電素子 107  圧電素子 108  圧電素子 101 Silicon whisker probe 102 Silicon atoms at the tip of the probe 103 Silicon sample 104 Silicon atoms on the sample surface 105 Sample stage 106 Piezoelectric element 107 Piezoelectric element 108 Piezoelectric element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  探針と試料との間に流れるトンネル電
流を計測する走査型トンネル顕微鏡の探針としてウイス
カーを用いた走査型トンネル顕微鏡。
1. A scanning tunneling microscope that uses a whisker as a probe for measuring a tunneling current flowing between the probe and a sample.
JP3116288A 1991-05-21 1991-05-21 Scanning type tunnel microscope Pending JPH04344406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3116288A JPH04344406A (en) 1991-05-21 1991-05-21 Scanning type tunnel microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3116288A JPH04344406A (en) 1991-05-21 1991-05-21 Scanning type tunnel microscope

Publications (1)

Publication Number Publication Date
JPH04344406A true JPH04344406A (en) 1992-12-01

Family

ID=14683343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3116288A Pending JPH04344406A (en) 1991-05-21 1991-05-21 Scanning type tunnel microscope

Country Status (1)

Country Link
JP (1) JPH04344406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06305898A (en) * 1993-03-10 1994-11-01 Internatl Business Mach Corp <Ibm> Single crystal tip structure and its formation
CN106383250A (en) * 2016-10-11 2017-02-08 中山大学 Scanning tunneling microscope probe with use of two-dimensional atomic crystal material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06305898A (en) * 1993-03-10 1994-11-01 Internatl Business Mach Corp <Ibm> Single crystal tip structure and its formation
CN106383250A (en) * 2016-10-11 2017-02-08 中山大学 Scanning tunneling microscope probe with use of two-dimensional atomic crystal material

Similar Documents

Publication Publication Date Title
CA2491404C (en) Scanning probe microscope
Bryant et al. Imaging in real time with the tunneling microscope
McCord et al. Scanning tunneling microscope as a micromechanical tool
US6057547A (en) Scanning probe microscope with scan correction
US5714756A (en) Scanning probe microscope having a single viewing device for on-axis and oblique angle views
JP2837083B2 (en) Method and interaction apparatus for accurately measuring surface parameters excluding shape or performing shape related work
Ando et al. High-speed atomic force microscopy for studying the dynamic behavior of protein molecules at work
EP0517270B1 (en) Scanning probe microscope
Grube et al. Stability, resolution, and tip–tip imaging by a dual-probe scanning tunneling microscope
JPH0642953A (en) Interatomic force microscope
Zhou et al. Cantilevered bimorph-based scanner for high speed atomic force microscopy with large scanning range
Zhao et al. Large scan area high-speed atomic force microscopy using a resonant scanner
JPH04344406A (en) Scanning type tunnel microscope
Chiang et al. Scanning tunneling microscopy
Shibata‐Seki et al. Imaging of cells with atomic force microscopy operated at a ‘‘tapping’’mode
KR100992144B1 (en) Automic force microscope
JPH0727559A (en) Cantilever with thin film type displacement sensor
JP3010225B2 (en) Scanning tunnel microscope
JPH0544723Y2 (en)
Ando Techniques developed for high-speed AFM
Wessels et al. Imaging pulsed laser deposition oxide growth by in situ atomic force microscopy
HAWLEY Scanning tunneling microscopy
Hujová et al. Study of the CuZn30 alloy microstructure by AFM
Yuly Progress Towards a Cost-Effective Atomic Force Microscope
Clark STM studies of titantium dioxide (100) surface reconstructions and platinum ultrathin films on HOPG