JPH04342494A - Plasma vapor phase growth device - Google Patents

Plasma vapor phase growth device

Info

Publication number
JPH04342494A
JPH04342494A JP14554891A JP14554891A JPH04342494A JP H04342494 A JPH04342494 A JP H04342494A JP 14554891 A JP14554891 A JP 14554891A JP 14554891 A JP14554891 A JP 14554891A JP H04342494 A JPH04342494 A JP H04342494A
Authority
JP
Japan
Prior art keywords
substrate
parallel
film
vapor phase
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14554891A
Other languages
Japanese (ja)
Other versions
JP2924303B2 (en
Inventor
Yasuhide Den
田 康秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14554891A priority Critical patent/JP2924303B2/en
Publication of JPH04342494A publication Critical patent/JPH04342494A/en
Application granted granted Critical
Publication of JP2924303B2 publication Critical patent/JP2924303B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form a film in which film qualities in a plane part and in a side wall part with a difference in level are mutually comparable even in the case the pattern of difference in level is fine and severe, in a parallel and flat plate type plasma vapor phase growth device using high-freuquency discharge. CONSTITUTION:In a parallel and flat plate type plasma vapor phase growth device, a magnetic coil 10 is provided so a to generate magnetic field in a direction parallel to a semiconductor substrate 8 between an electrode plate 4 and substrate table 7 and the magnetic coil 10 is rotated on the center of the substrate 8 as rotating axis to generate an ion impact from both of the vertical and horizontal directions of the substrate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はプラズマ気相成長装置(
以下プラズマCVD装置と称する)に関し、特に磁界を
用いたプラズマCVD装置に関する。
[Industrial Application Field] The present invention relates to a plasma vapor phase growth apparatus (
The present invention relates to a plasma CVD apparatus (hereinafter referred to as a plasma CVD apparatus), and particularly relates to a plasma CVD apparatus using a magnetic field.

【0002】0002

【従来の技術】従来より、プラズマCVD装置は低温で
膜成長を行うことができるため、半導体製造工程におい
ては、配線層間膜,パッシベーション膜等の絶縁膜形成
に用いられている。
2. Description of the Related Art Conventionally, plasma CVD apparatuses have been used to form insulating films such as wiring interlayer films and passivation films in semiconductor manufacturing processes because they can grow films at low temperatures.

【0003】図9に従来の平行平板型プラズマCVD装
置を示す。例えば、図9に示すように、基板台7上の半
導体基板8に窒化シリコン膜を形成する場合、加熱源6
により350℃前後に加熱された半導体基板上に、原料
ガスであるシラン(SiH4),アンモニア(NH3)
,キャリアガスとして窒素(N2)をガス供給口1より
反応室2に導入し、真空ポンプ9にて排気口3より反応
室2内を所定の圧力状態下に保持しながら、電極板4に
高周波電源5で高周波パワーを与えることにより膜形成
を行う。窒化シリコン膜は、二酸化シリコン膜に比べて
耐湿性に優れているため、主にパッシベーション膜に用
いられている。
FIG. 9 shows a conventional parallel plate type plasma CVD apparatus. For example, as shown in FIG. 9, when forming a silicon nitride film on the semiconductor substrate 8 on the substrate stand 7, the heat source 6
The raw material gases silane (SiH4) and ammonia (NH3) are placed on the semiconductor substrate heated to around 350°C.
, Nitrogen (N2) is introduced as a carrier gas into the reaction chamber 2 through the gas supply port 1, and a high frequency wave is applied to the electrode plate 4 while maintaining the inside of the reaction chamber 2 under a predetermined pressure state through the exhaust port 3 with the vacuum pump 9. Film formation is performed by applying high frequency power with a power source 5. A silicon nitride film has better moisture resistance than a silicon dioxide film, so it is mainly used as a passivation film.

【0004】また、この種のプラズマCVD装置は、プ
ラズマ電位と基板電位の差から生じるイオン衝撃により
膜質のコントロールを行うが、このイオン衝撃は、成長
圧力や高周波パワー等により制御できる。例えば、パッ
シベーション用窒化シリコン膜においては、耐湿性が良
く、信頼性の高い膜を形成するために高周波パワーを変
えて、イオン衝撃の強さをコントロールすることにより
膜応力が小さく、より膜中の水素含有量を少なくしてい
る。
Further, in this type of plasma CVD apparatus, film quality is controlled by ion bombardment generated from the difference between plasma potential and substrate potential, and this ion bombardment can be controlled by growth pressure, high frequency power, etc. For example, in silicon nitride films for passivation, in order to form a film with good moisture resistance and high reliability, the high frequency power is changed and the intensity of ion bombardment is controlled, thereby reducing film stress and increasing the concentration in the film. The hydrogen content is reduced.

【0005】[0005]

【発明が解決しようとする課題】上述した従来のプラズ
マCVD装置では、半導体基板に対して垂直な方向成分
をもつイオン衝撃がほとんどであり、現在の微細でアス
ペクト比の大きいパターンでは、段差上部が受けるイオ
ン衝撃に対して段差側部が受けるイオン衝撃は非常に少
ないものとなる。
[Problems to be Solved by the Invention] In the conventional plasma CVD apparatus described above, most of the ion bombardments have a component in a direction perpendicular to the semiconductor substrate. Compared to the ion bombardment received, the ion bombardment received by the step side portion is extremely small.

【0006】したがって、平坦部と段差側壁部での膜質
が異なり、パッシベーション膜等においては、平坦部で
は耐湿性が良くても、側壁部では悪く、膜応力の差から
クラックが入る恐れもあり、信頼性上問題となる。
[0006] Therefore, the film quality differs between the flat part and the stepped sidewall part, and in passivation films, etc., even if the moisture resistance is good in the flat part, it is poor in the sidewall part, and there is a risk of cracking due to the difference in film stress. This poses a reliability problem.

【0007】本発明の目的は、前記課題を解決したプラ
ズマ気相成長装置を提供することにある。
[0007] An object of the present invention is to provide a plasma vapor phase growth apparatus that solves the above problems.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
、本発明に係るプラズマ気相成長装置においては、磁気
発生部と、相対回転部とを有し、高周波放電による平行
平板型プラズマ気相成長装置であって、磁気発生部は、
平行平板間に位置し、半導体基板に対して平行な方向に
磁界を発生させるものであり、相対回転部は、半導体基
板と平行な平面内で基板と磁気発生部とを相対回転し、
磁界の基板に対する方向を変化させるものである。
[Means for Solving the Problems] In order to achieve the above object, a plasma vapor phase growth apparatus according to the present invention includes a magnetic generation section and a relative rotation section, and a parallel plate plasma vapor phase growth apparatus using high frequency discharge. The growth apparatus includes a magnetism generating section,
The relative rotation section is located between parallel plates and generates a magnetic field in a direction parallel to the semiconductor substrate, and the relative rotation section relatively rotates the substrate and the magnetic generation section within a plane parallel to the semiconductor substrate.
This changes the direction of the magnetic field relative to the substrate.

【0009】[0009]

【作用】本発明のプラズマCVD装置は、電極である平
行平板の間から半導体基板に対して平行な方向に磁界を
発生させることにより、膜成長中に基板がイオン衝撃を
垂直方向及び水平方向から受けるようにして膜質を均一
化したものである。
[Operation] The plasma CVD apparatus of the present invention generates a magnetic field in a direction parallel to the semiconductor substrate between parallel flat plates that are electrodes, so that the substrate receives ion bombardment from vertical and horizontal directions during film growth. The quality of the film is made uniform in this way.

【0010】0010

【実施例】以下、本発明の実施例を図面により説明する
[Embodiments] Hereinafter, embodiments of the present invention will be explained with reference to the drawings.

【0011】(実施例1)図1は、本発明の実施例1を
示す構成図、図2は同平面図である。
(Embodiment 1) FIG. 1 is a configuration diagram showing Embodiment 1 of the present invention, and FIG. 2 is a plan view thereof.

【0012】図において、反応室2内には、電極板4と
基板台7とが上下に配置して設置されており、電極板4
には、電極板4の下面開口より反応ガスを噴き出させる
ガス供給口1が取付けてある。また、電極板4と基板台
7との間に高周波電源5から高周波パワーが供給され、
基板台7上に半導体基板8が設置される。また、基板台
7には、半導体基板8を加熱する加熱源6が取付けてあ
り、反応室2の底部排気口3に真空排気用の真空ポンプ
9が取付けてある。
In the figure, an electrode plate 4 and a substrate stand 7 are installed vertically in the reaction chamber 2.
A gas supply port 1 is attached to the electrode plate 4 for blowing out a reaction gas from an opening on the lower surface thereof. Further, high frequency power is supplied from a high frequency power source 5 between the electrode plate 4 and the substrate stand 7,
A semiconductor substrate 8 is placed on the substrate stand 7 . Further, a heat source 6 for heating a semiconductor substrate 8 is attached to the substrate table 7, and a vacuum pump 9 for evacuation is attached to the bottom exhaust port 3 of the reaction chamber 2.

【0013】さらに、磁気発生部としての磁気コイル1
0,10は基板台7上の半導体基板8の外周側に配置さ
れ、半導体基板8に対して平行な方向に磁界を発生させ
るものである。さらに、相互回転部16は、半導体基板
8の中心を回転軸として、磁気コイル10,10を半導
体基板8と平行な平面内で基板8に対し相対回転させ、
磁気コイル10による磁界の基板8に対する方向を変化
させるものである。
Furthermore, a magnetic coil 1 as a magnetism generating section
0 and 10 are placed on the outer peripheral side of the semiconductor substrate 8 on the substrate table 7, and generate a magnetic field in a direction parallel to the semiconductor substrate 8. Further, the mutual rotation unit 16 rotates the magnetic coils 10, 10 relative to the substrate 8 in a plane parallel to the semiconductor substrate 8, with the center of the semiconductor substrate 8 as the rotation axis,
This is to change the direction of the magnetic field generated by the magnetic coil 10 with respect to the substrate 8.

【0014】実施例において、膜形成を行う場合、加熱
源6により加熱された半導体基板8上に原料ガスをガス
供給口1より反応室2に導入し、真空ポンプ9により反
応室2内を所定の圧力状態下に保持して電極板4に高周
波パワーを与える。
In the embodiment, when forming a film, raw material gas is introduced into the reaction chamber 2 from the gas supply port 1 onto the semiconductor substrate 8 heated by the heat source 6, and the inside of the reaction chamber 2 is heated to a predetermined level by the vacuum pump 9. High frequency power is applied to the electrode plate 4 while maintaining the electrode plate 4 under a pressure condition of .

【0015】このとき、平行平板間に備えた磁気コイル
10により磁界を半導体基板8と平行な方向に与え、磁
気コイル10を基板8の中心が回転軸となるように回転
させる。この磁界Bとプラズマによる電界Eにより、プ
ラズマシース中のイオンはE×Bの方向に螺旋状に回転
しながら移動する。
At this time, a magnetic field is applied in a direction parallel to the semiconductor substrate 8 by the magnetic coil 10 provided between the parallel plates, and the magnetic coil 10 is rotated so that the center of the substrate 8 becomes the rotation axis. Due to this magnetic field B and the electric field E caused by the plasma, the ions in the plasma sheath move while rotating in a spiral shape in the direction of ExB.

【0016】このため、膜成長中に基板が受けるイオン
衝撃は、基板8に対する垂直方向成分だけでなく、水平
方向成分も多く存在するため、基板8上の微細なアスペ
クト比の大きいパターン上での側壁部にも、平坦部と同
程度のイオン衝撃が起こることから、基板8上のパター
ン平坦部と側壁部で膜質の変わらない膜が得られる。
For this reason, the ion bombardment that the substrate receives during film growth has many horizontal components as well as vertical components to the substrate 8. Since the same degree of ion bombardment occurs on the side wall portions as on the flat portions, it is possible to obtain a film with the same film quality between the flat portions of the pattern on the substrate 8 and the side wall portions.

【0017】ここで、基板8上のパターン平坦部と側壁
部の膜質の違いを調べるためにウェットエッチングを用
いた。まず、温度350℃,圧力1.8Torr,Si
H4300cc/min,NH3  1700cc/m
in,N2  1500cc/min,高周波パワー5
00W,磁気コイル10の磁束密度1000Gauss
に設定して、図3に示すようなシリコン酸化膜14上の
アルミ配線13の段差形状をもつ半導体基板15に窒化
シリコン膜17を堆積させた。その形状断面図を図4(
a)に示し、図4(b)に従来法により磁界を与えず高
周波パワーのみ400Wとして上述の条件により同様に
図3の形状をもつ半導体基板に窒化シリコン膜17を堆
積させた形状断面図を示す。
Here, wet etching was used to examine the difference in film quality between the flat pattern portion and the side wall portion of the substrate 8. First, the temperature is 350°C, the pressure is 1.8 Torr, and Si
H4300cc/min, NH3 1700cc/m
in, N2 1500cc/min, high frequency power 5
00W, magnetic flux density of magnetic coil 10 1000 Gauss
A silicon nitride film 17 was deposited on a semiconductor substrate 15 having a stepped shape of an aluminum wiring 13 on a silicon oxide film 14 as shown in FIG. A cross-sectional view of its shape is shown in Figure 4 (
Fig. 4(b) shows a cross-sectional view of a silicon nitride film 17 deposited on a semiconductor substrate having the shape of Fig. 3 under the above-mentioned conditions using the conventional method without applying a magnetic field and using only a high-frequency power of 400 W. show.

【0018】次に2つの半導体基板を30倍に希釈され
たバッファードフッ酸により5分間エッチングした後の
断面形状を図5に示す。図5(a)は本発明による形状
断面図であり、図5(b)は従来法によるものである。 図4と図5によりウェットエッチングによるエッチング
レートを配線間隔別に測定した結果を図6に示す。 (a),(b)共に平坦部のエッチングレートはほとん
ど変わらないものの、側壁部では従来法による(b)の
エッチングレートは非常に速く、配線間隔が狭いほど速
くなる。それに対して本発明による(a)では、側壁部
のエッチングレートは平坦部のエッチングレートに近い
値であり、平坦部と側壁部の膜質に大きな差がないこと
を示している。
Next, the cross-sectional shapes of the two semiconductor substrates after being etched for 5 minutes using buffered hydrofluoric acid diluted 30 times are shown in FIG. FIG. 5(a) is a cross-sectional view of the shape according to the present invention, and FIG. 5(b) is a diagram according to the conventional method. FIG. 6 shows the results of measuring the etching rate by wet etching for each wiring interval using FIGS. 4 and 5. Although the etching rate of the flat portion in both (a) and (b) is almost the same, the etching rate of (b) by the conventional method on the side wall portion is extremely fast, and becomes faster as the wiring spacing becomes narrower. In contrast, in (a) according to the present invention, the etching rate of the sidewall portion is close to the etching rate of the flat portion, indicating that there is no significant difference in film quality between the flat portion and the sidewall portion.

【0019】また、図4に示した半導体基板により耐湿
性試験を行ったところ、従来法による(b)では200
hで故障したが、本発明による(a)は2000h以上
故障がなかった。
In addition, when a moisture resistance test was conducted using the semiconductor substrate shown in FIG. 4, it was found that the conventional method (b)
However, in the case of (a) according to the present invention, there was no failure for more than 2000 hours.

【0020】(実施例2)図7は、本発明の実施例2を
示す構成図である。
(Embodiment 2) FIG. 7 is a block diagram showing Embodiment 2 of the present invention.

【0021】本実施例では、相対回転部は、磁気コイル
による磁界に対して半導体基板を相互回転する機能を有
するものを用いた場合の例である。すなわち、図1で示
した基板台7に図7に示すような相対回転部としての回
転機構12及び回転台11を備え、膜形成中は磁気コイ
ル10を回転させず、半導体基板8を回転させることに
より、基板8と平行な平面内で基板に対して磁界を回転
させる。これにより、水平方向成分のイオン衝撃が増す
と共に、基板が回転するため、側壁部へのイオン衝突の
回数も増すことから、より平坦部と側壁部で膜質の変わ
らない膜が得られる。実施例2において、例えば、成長
条件温度350℃,圧力1.8Torr,SiH4  
300cc/min,NH3  1700cc/min
,N2  1500cc/min,高周波パワー500
W,磁気コイル10による磁束密度1000Gauss
により窒化シリコン膜を図3で示した半導体基板上に堆
積し、実施例1と同様に、1:30のバッファードフッ
酸により5分間エッチングを行い、エッチングレートを
調べた結果、図8に示すように平坦部と側壁部とでほぼ
同じエッチングレートとなり、平坦部と側壁部で膜質の
変わらない膜を形成することができた。
[0021] In this embodiment, the relative rotation part is an example in which a member having a function of mutually rotating the semiconductor substrate with respect to the magnetic field generated by the magnetic coil is used. That is, the substrate table 7 shown in FIG. 1 is provided with a rotation mechanism 12 and a rotating table 11 as a relative rotation unit as shown in FIG. 7, and the semiconductor substrate 8 is rotated without rotating the magnetic coil 10 during film formation. This rotates the magnetic field relative to the substrate in a plane parallel to the substrate 8. This increases the ion bombardment in the horizontal direction, and since the substrate rotates, the number of ion bombardments on the sidewalls also increases, making it possible to obtain a film with the same film quality between the flat portion and the sidewalls. In Example 2, for example, the growth conditions were: temperature 350°C, pressure 1.8 Torr, SiH4
300cc/min, NH3 1700cc/min
, N2 1500cc/min, high frequency power 500
W, magnetic flux density by magnetic coil 10 1000 Gauss
A silicon nitride film was deposited on the semiconductor substrate shown in FIG. 3, and as in Example 1, it was etched with 1:30 buffered hydrofluoric acid for 5 minutes, and the etching rate was examined, as shown in FIG. As shown, the etching rate was almost the same on the flat part and the side wall part, and it was possible to form a film with the same film quality on the flat part and the side wall part.

【0022】[0022]

【発明の効果】以上説明したように本発明は、高周波放
電による平行平板型プラズマCVD装置において、平行
平板間に半導体基板に対して平行な方向に磁界を発生さ
せ、その磁界が基板と平行な平面内において基板に対し
て方向を変えることにより、半導体基板に対して水平方
向成分のイオン衝撃を多く発生させることができるため
、微細なパターンでの段差において平坦部と側壁部の膜
質が等しい膜が形成でき、信頼性が向上するという効果
を有する。
As explained above, the present invention generates a magnetic field between parallel plates in a direction parallel to a semiconductor substrate in a parallel plate type plasma CVD apparatus using high frequency discharge, and the magnetic field is parallel to the substrate. By changing the direction with respect to the substrate within a plane, it is possible to generate a large amount of ion bombardment with a horizontal component on the semiconductor substrate. Therefore, it is possible to generate a film with the same film quality on the flat part and the side wall part at the step of a fine pattern. This has the effect of improving reliability.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例1を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】図1の上面からの概略図である。FIG. 2 is a schematic view from above of FIG. 1;

【図3】半導体基板を示す断面図である。FIG. 3 is a cross-sectional view showing a semiconductor substrate.

【図4】本発明と従来例とにおける基板を示す断面図で
ある。
FIG. 4 is a cross-sectional view showing a substrate in the present invention and a conventional example.

【図5】本発明と従来例とにおける基板を示す断面図で
ある。
FIG. 5 is a cross-sectional view showing a substrate in the present invention and a conventional example.

【図6】本発明の実施例1の効果を調べた実験結果を示
した図である。
FIG. 6 is a diagram showing the results of an experiment investigating the effects of Example 1 of the present invention.

【図7】本発明の実施例2を示す構成図である。FIG. 7 is a configuration diagram showing a second embodiment of the present invention.

【図8】本発明の実施例2の効果を調べた実験結果を示
した図である。
FIG. 8 is a diagram showing the results of an experiment investigating the effects of Example 2 of the present invention.

【図9】従来例を示す構成図である。FIG. 9 is a configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1  ガス供給口 2  反応室 3  排気口 4  電極板 5  高周波電源 6  加熱源 7  基板台 8  半導体基板 9  真空ポンプ 10  磁気コイル 11  回転台(相対回転部) 12  回転機構(相対回転部) 13  アルミ配線 14  シリコン酸化膜 15  シリコン基板 16  相対回転部 1 Gas supply port 2 Reaction chamber 3 Exhaust port 4 Electrode plate 5 High frequency power supply 6 Heating source 7 Board stand 8 Semiconductor substrate 9 Vacuum pump 10 Magnetic coil 11 Rotating table (relative rotating part) 12 Rotation mechanism (relative rotation part) 13 Aluminum wiring 14 Silicon oxide film 15 Silicon substrate 16 Relative rotation part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  磁気発生部と、相対回転部とを有し、
高周波放電による平行平板型プラズマ気相成長装置であ
って、磁気発生部は、平行平板間に位置し、半導体基板
に対して平行な方向に磁界を発生させるものであり、相
対回転部は、半導体基板と平行な平面内で基板と磁気発
生部とを相対回転し、磁界の基板に対する方向を変化さ
せるものであることを特徴とするプラズマ気相成長装置
Claim 1: Comprising a magnetism generating section and a relative rotation section,
A parallel plate type plasma vapor phase growth apparatus using high frequency discharge, the magnetic generation section is located between the parallel plates and generates a magnetic field in a direction parallel to the semiconductor substrate, and the relative rotation section is located between the parallel plates. 1. A plasma vapor phase growth apparatus, characterized in that the substrate and a magnetism generating section are rotated relative to each other in a plane parallel to the substrate, thereby changing the direction of the magnetic field with respect to the substrate.
JP14554891A 1991-05-21 1991-05-21 Plasma vapor deposition equipment Expired - Lifetime JP2924303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14554891A JP2924303B2 (en) 1991-05-21 1991-05-21 Plasma vapor deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14554891A JP2924303B2 (en) 1991-05-21 1991-05-21 Plasma vapor deposition equipment

Publications (2)

Publication Number Publication Date
JPH04342494A true JPH04342494A (en) 1992-11-27
JP2924303B2 JP2924303B2 (en) 1999-07-26

Family

ID=15387729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14554891A Expired - Lifetime JP2924303B2 (en) 1991-05-21 1991-05-21 Plasma vapor deposition equipment

Country Status (1)

Country Link
JP (1) JP2924303B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102677019A (en) * 2012-05-21 2012-09-19 中南大学 Motion magnetic field auxiliary-reinforced chemical vapor deposition method and device
JP2014078685A (en) * 2012-09-21 2014-05-01 Tokyo Electron Ltd Plasma treatment device and plasma treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102677019A (en) * 2012-05-21 2012-09-19 中南大学 Motion magnetic field auxiliary-reinforced chemical vapor deposition method and device
JP2014078685A (en) * 2012-09-21 2014-05-01 Tokyo Electron Ltd Plasma treatment device and plasma treatment method

Also Published As

Publication number Publication date
JP2924303B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
EP0478174B1 (en) Silicon dioxide deposition method
EP0179665B1 (en) Apparatus and method for magnetron-enhanced plasma-assisted chemical vapor deposition
US5015330A (en) Film forming method and film forming device
US9932674B2 (en) Film deposition apparatus, film deposition method, and computer-readable recording medium
US5231057A (en) Method of depositing insulating layer on underlying layer using plasma-assisted cvd process using pulse-modulated plasma
US9777369B2 (en) Method of depositing a film, recording medium, and film deposition apparatus
KR100727205B1 (en) Plasma deposition method and system
EP1039522A1 (en) Process for producing insulating film
JPH0570957A (en) Plasma vapor phase growth device
JPH0766186A (en) Anisotropic depositing method of dielectric
JPH06333857A (en) Device and method for forming film
CN105070646B (en) A kind of preparation method of low stress nitride silicon thin film
JP2924303B2 (en) Plasma vapor deposition equipment
US9305795B2 (en) Plasma processing method
JPH0610140A (en) Thin film deposition device
JP2000082698A (en) Plasma processing apparatus
JP3400909B2 (en) Plasma processing method and apparatus
JP3137532B2 (en) Plasma CVD equipment
JPS63131519A (en) Dry etching apparatus
JP3147769B2 (en) Plasma processing apparatus and processing method
JPH08139037A (en) Vapor phase reaction equipment
JPH06120205A (en) Manufacture of semiconductor device
US5744403A (en) Dielectric film deposition method and apparatus
JPS61150336A (en) Manufacture of semiconductor device
JPS62218578A (en) Electrode for vapor phase reactor