JPH04342470A - Low heat-conductive ceramic and its production - Google Patents

Low heat-conductive ceramic and its production

Info

Publication number
JPH04342470A
JPH04342470A JP3145677A JP14567791A JPH04342470A JP H04342470 A JPH04342470 A JP H04342470A JP 3145677 A JP3145677 A JP 3145677A JP 14567791 A JP14567791 A JP 14567791A JP H04342470 A JPH04342470 A JP H04342470A
Authority
JP
Japan
Prior art keywords
ceramic
forming
nitride
thermal conductivity
low thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3145677A
Other languages
Japanese (ja)
Inventor
Hidenori Kita
英紀 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP3145677A priority Critical patent/JPH04342470A/en
Publication of JPH04342470A publication Critical patent/JPH04342470A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce the subject ceramic improved in the strength and low heat-conductive characteristics from a composition comprising all the elements of Si, N, O, etc., and an element or more selected from a group of Ti, Nr, etc. CONSTITUTION:A mixture containing the powder of Si, N and O as main elements and further containing an element or more selected from a group of Ti, Zr, Hf, Y, B, and A'l' in an amount of >=5wt.% is molded. The molded product is sintered in a nitrogen atmosphere to form a porous nitride, which is heated in an atmosphere containing oxygen to partially convert the nitride into an oxide. The formed porous ceramic 1 is immersed in an alkoxide solution or an organic polymer solution, and subsequently heated to produce a low heat-conductive ceramic in which an amorphous ceramic 5 is adhered to approximately 20.1% of pores 3 in the ceramic and further in which the second phase particles 7 are formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は反応焼結系セラミックス
およびその製造方法に関し、特に低熱伝導特性を有し強
度も大きい反応焼結系セラミックスおよびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reaction sintered ceramic and a method for producing the same, and more particularly to a reaction sintered ceramic having low thermal conductivity and high strength, and a method for producing the same.

【0002】0002

【従来の技術】最近ファインセラミックス技術が注目さ
れ、該技術によって生成されるセラミックスを既存構造
の金属と置換する試みが多くなされている。たとえば、
自動車用の内燃機関のピストンヘッド、シリンダライナ
、コンロッドなど、高熱高圧に曝される部分や大きな歪
力を受ける部分の部品として使用する試みがなされ、す
でに実用に供されているものも多数ある。
2. Description of the Related Art Recently, fine ceramics technology has attracted attention, and many attempts have been made to replace metals in existing structures with ceramics produced by this technology. for example,
Attempts have been made to use them as parts of parts that are exposed to high heat and pressure, such as piston heads, cylinder liners, and connecting rods for automobile internal combustion engines, and parts that are subject to large strain forces, and many products are already in practical use.

【0003】セラミックスの種類は極めて多く、それぞ
れ物性としてのそれら独特の特徴点を持っている。反応
焼結系セラミッスを製造する場合、窒化の促進のため、
主原料である珪素(Si)粉末に、鉄(Fe)、コバル
ト(Co)、チタン(Ti)、ジルコニウム(Zr)な
どの元素を、0.05%〜2wt%添加することが知ら
れており、たとえば特開昭59ー152271号公報、
特開昭59ー207875号公報、特開昭59ー207
876号公報、特開昭59ー207877号公報などに
記載されている。
[0003] There are many types of ceramics, each of which has its own unique physical properties. When manufacturing reactive sintered ceramics, to promote nitriding,
It is known that 0.05% to 2wt% of elements such as iron (Fe), cobalt (Co), titanium (Ti), and zirconium (Zr) are added to silicon (Si) powder, which is the main raw material. , for example, JP-A-59-152271,
JP-A-59-207875, JP-A-59-207
It is described in Japanese Patent Application Laid-Open No. 876, Japanese Patent Application Laid-Open No. 59-207877, etc.

【0004】0004

【発明が解決しようとする課題】上記の如き従来の反応
焼結系セラミックスは、触媒として添加する元素の量が
微量すぎるために、不純物によるフォノンの熱輸送が規
制されにくく、このため反応焼結系セラミックスは低熱
伝導材とはならない。また、これら反応焼結系セラミッ
クスの強度は、通常の焼結により得られるセラミックス
よりも強度は小さい。
[Problems to be Solved by the Invention] In the conventional reaction sintered ceramics as described above, since the amount of elements added as catalysts is too small, it is difficult to control the heat transport of phonons by impurities. ceramics are not low thermal conductive materials. Further, the strength of these reaction sintered ceramics is lower than that of ceramics obtained by normal sintering.

【0005】本発明は上記の如き従来の欠点を改良する
発明であり、その目的は反応焼結系セラミックスにおい
て、低熱伝導率特性を有し、かつ強度も従来の反応焼結
系セラミックスよりも大きな新しい反応焼結系セラミッ
クスとその製造方法を得ることにある。
[0005] The present invention is an invention to improve the above-mentioned conventional drawbacks, and its purpose is to create a reaction sintered ceramic that has low thermal conductivity and strength that is greater than that of the conventional reaction sintered ceramic. The objective is to obtain a new reaction sintered ceramic and its manufacturing method.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、珪素(Si)、窒素(N)、酸素(O
)、の全ての元素及びチタン(Ti),ジルコニウム(
Zr),ハフニウム(Hf),イットリウム(Y),ホ
ウ素(B),アルミニウム(Al)の元素群の中の少な
くとも1種類以上で構成されかつ気孔を12%以上含む
低熱伝導セラミックスを提供するとともに、さらに珪素
(Si)を主成分とする粉末にチタン(Ti),ジルコ
ニウム(Zr),ハフニウム(Hf),イットリウム(
Y),ホウ素(B),アルミニウム(Al)の元素群の
中の少なくとも1種類以上を5wt%以上含む混合粉末
を形成する工程と、該混合粉末を用いて成型体を形成す
る工程と、該成型体を窒素雰囲気中で焼結多孔質の窒化
物を形成する工程と、該窒素雰囲気での焼結工程を経た
後酸素を含んだ雰囲気中で加熱して前記窒化物の一部を
酸化物に変化させる工程を有することを特徴とする低熱
伝導セラミックスの製造方法を提供し、加えて、形成さ
れた焼結体の気孔表面に非晶質セラミック薄膜を形成し
、あるいは該焼結体の所望の表面に非晶質セラミック薄
膜を形成する低熱伝導セラミックスの製造方法を提供す
るものである。
[Means for Solving the Problems] In order to solve the above problems, in the present invention, silicon (Si), nitrogen (N), oxygen (O
), all elements of titanium (Ti), zirconium (
Provided is a low thermal conductivity ceramic that is composed of at least one element selected from the group of elements Zr), hafnium (Hf), yttrium (Y), boron (B), and aluminum (Al) and contains 12% or more of pores, Furthermore, titanium (Ti), zirconium (Zr), hafnium (Hf), and yttrium (
a step of forming a mixed powder containing 5 wt% or more of at least one of the element groups Y), boron (B), and aluminum (Al); a step of forming a molded body using the mixed powder; The molded body is sintered in a nitrogen atmosphere to form a porous nitride, and after the sintering process in the nitrogen atmosphere, a part of the nitride is converted into an oxide by heating in an oxygen-containing atmosphere. The present invention provides a method for producing low thermal conductivity ceramics, which is characterized by comprising a step of changing the ceramic material to a low thermal conductivity, and further forming an amorphous ceramic thin film on the pore surface of the formed sintered body, or changing the sintered body to a desired value. The present invention provides a method for manufacturing low thermal conductivity ceramics in which an amorphous ceramic thin film is formed on the surface of the ceramic.

【0007】[0007]

【実施例】以下、本発明の実施例を詳細に説明する。珪
素(Si)の粉末100重量部に他種粉末としてチタン
(Ti)粉末5重量部を添加し、さらに有機バインダを
所定量添加してボ−ルミルにて約12時間混練の後、取
り出して造粒した。これを、熱伝導測定用ペレットとし
て使用するため、プレス法により直径10mmの成型物
を作成し、またこれを強度測定用に使用するため、縦、
横、長さ、3mm,4mm,40mmの角棒状の成型物
を作成し、これを約500℃で加熱してバインダを除去
し、後に約1400℃、9.5atmの窒素雰囲気中で
焼成した。またその後、約1000℃の大気中で加熱処
理を行なった。この結果、多孔質で低熱伝導のセラミッ
クスが得られた。
EXAMPLES Examples of the present invention will be described in detail below. 5 parts by weight of titanium (Ti) powder as a different powder was added to 100 parts by weight of silicon (Si) powder, and a predetermined amount of an organic binder was added and kneaded in a ball mill for about 12 hours, then taken out and manufactured. It was grainy. In order to use this as a pellet for measuring thermal conductivity, a molded product with a diameter of 10 mm was created using a press method.
A rectangular bar-shaped molded product with width and length of 3 mm, 4 mm, and 40 mm was prepared, and this was heated at about 500° C. to remove the binder, and then fired at about 1400° C. in a nitrogen atmosphere of 9.5 atm. After that, heat treatment was performed in the atmosphere at about 1000°C. As a result, a porous ceramic with low thermal conductivity was obtained.

【0008】上記実施例の外に、珪素(Si)の粉末に
加えるチタン(Ti)粉末の割合を変え、更に上記チタ
ン(Ti)粉末の代りにジルコニウム(Zr)、ハフニ
ウム(Hf)、イットリウム(Y)、アルミニウム(A
l)などの元素を単体、あるいはそれらの酸化物をそれ
ぞれ添加量を変えて添加して、低熱伝導セラミックスを
作成した。尚これらの実施例群の結果を図1および図2
の図表図に示す。なお、図1及び図2の中で、熱伝導率
はレ−ザ−フラッシュ法で測定し、また、強度は4点曲
げで各試料につき30本の測定結果の平均値で示してあ
る。
In addition to the above embodiments, the ratio of titanium (Ti) powder added to silicon (Si) powder may be changed, and zirconium (Zr), hafnium (Hf), or yttrium ( Y), aluminum (A
Low thermal conductivity ceramics were created by adding elements such as l) alone or their oxides in varying amounts. The results of these examples are shown in Figures 1 and 2.
This is shown in the diagram below. In FIGS. 1 and 2, the thermal conductivity was measured by the laser flash method, and the strength is shown as the average value of 30 measurements for each sample using 4-point bending.

【0009】本発明の効果を確認するため、次の比較例
に述べるようなサンプルをいくつか作成した。
In order to confirm the effects of the present invention, several samples were prepared as described in the following comparative examples.

【0010】比較例:珪素(Si)粉末にチタン(Ti
)、ジルコニウム(Zr)、アルミニウム(Al)元素
を単体で2wt%を添加し、以下上記実施例と同様の工
程で焼結体を作成し、特性評価を行なった。その結果、
これらはいずれも強度として、約300MPa以上であ
ったが、熱伝導率は0.012cal/s・cm・ ℃
より大きく、低熱伝導材としては不十分な特性であった
Comparative example: Titanium (Ti) was added to silicon (Si) powder.
), zirconium (Zr), and aluminum (Al) in an amount of 2 wt % alone, and a sintered body was produced in the same steps as in the above example, and its characteristics were evaluated. the result,
All of these had a strength of about 300 MPa or more, but a thermal conductivity of 0.012 cal/s・cm・℃
It was larger and had insufficient characteristics as a low thermal conductive material.

【0011】上記実施例群で検討した材料の内、チタン
酸アルミ(TiAl2 O5 ):15%,チタン(T
i):10%添加し、大気中での処理までの工程を経て
得た多孔質で低熱伝導のセラミックス材料について、ト
ルエンで希釈したポリカルボシラン溶液に浸漬し、セラ
ミックスの中に形成された気孔にこれを含浸させた後、
アンモニア雰囲気中で熱分解させ、さらに窒素雰囲気中
での加熱処理により、気孔の表面の一部を非晶質セラミ
ックスで構成した。こうして得られた材料は、図3に示
すように、多孔質セラミックス1の中に20.1%程度
の気孔3が形成され、該気孔3の中に非晶質セラミック
ス5が付着している。尚7は第2相粒子である。このよ
うにして形成された多孔質セラミックスは、気孔量が2
0.1%、17.1%に減りもとの材料に比べて約3%
減少しているが、強度は16%向上した。また、熱伝導
率はこの加工前と同じレベルであることが確認された。
Among the materials studied in the above embodiments, aluminum titanate (TiAl2O5): 15%, titanium (T
i): A porous, low thermal conductive ceramic material obtained through a process of adding 10% and processing in the air is immersed in a polycarbosilane solution diluted with toluene, and the pores formed in the ceramic are After impregnating this with
By thermal decomposition in an ammonia atmosphere and further heat treatment in a nitrogen atmosphere, a part of the surface of the pores was made of amorphous ceramics. In the material thus obtained, as shown in FIG. 3, about 20.1% of the pores 3 are formed in the porous ceramic 1, and the amorphous ceramic 5 is attached to the pores 3. Note that 7 is a second phase particle. The porous ceramic thus formed has a pore volume of 2
Approximately 3% compared to the original material, reduced to 0.1% and 17.1%.
However, the strength increased by 16%. It was also confirmed that the thermal conductivity was at the same level as before this processing.

【0012】また、上記と同様の材料すなわち、チタン
酸アルミ(TiAl2 O5 ):15%,チタン(T
i):10%添加し、大気中での処理までの工程を経て
得た多孔質で低熱伝導のセラミックス材料の表面に、や
や粘度の高いぺ−スト状のポリカルボシランを表面の気
孔が閉塞するように塗布し、アンモニア雰囲気中で熱分
解させ、さらに窒素雰囲気中での加熱処理するという工
程を数回繰り返して、図4に示すように、多孔質セラミ
ックス1の表面に薄い緻密なセラミックス膜9を形成し
た。このようにして得られた材料の特性を調べたところ
、強度はもとの材料に比べ、約12%向上しており、熱
伝導率はほぼ同等のレベルが保持されていることが確認
された。
[0012] In addition, the same materials as above, namely aluminum titanate (TiAl2O5): 15%, titanium (T
i): Polycarbosilane in the form of a paste with a slightly high viscosity is added to the surface of a porous, low thermal conductive ceramic material obtained through a process of adding 10% and processing in the air to block the pores on the surface. By repeating several times the process of coating the porous ceramics 1 in such a manner as to coat the porous ceramic material, thermally decomposing it in an ammonia atmosphere, and then heat-treating it in a nitrogen atmosphere, a thin, dense ceramic film is formed on the surface of the porous ceramic 1, as shown in Figure 4. 9 was formed. When the properties of the material obtained in this way were investigated, it was confirmed that the strength was approximately 12% higher than that of the original material, and that the thermal conductivity remained at approximately the same level. .

【0013】[0013]

【発明の効果】以上詳細に説明したように、本発明は、
珪素粉末に対してチタン、ジルコニウム、ハフニウム、
イットリウム、硼素、アルミニウム元素を単体あるいは
それらの酸化物として少なくとも5%以上添加し、成型
後窒化焼成しており、さらにこれを酸素を含む雰囲気中
で加熱処理して窒化物の一部を酸化物に変化させて反応
焼結系セラミックスを形成しているから、従来の反応焼
結系セラミックスと比較して強度はチタン酸アルミのよ
うな通常の焼結セラミックスと同等の強度を持ち、しか
も熱伝導率が上記従来の焼結系セラミックスより1桁程
度低い反応焼結系セラミックスを得ることができる。
[Effects of the Invention] As explained in detail above, the present invention has the following features:
Titanium, zirconium, hafnium, silicon powder,
At least 5% or more of yttrium, boron, and aluminum elements are added alone or as their oxides, and after molding, nitriding is performed, and this is further heat-treated in an oxygen-containing atmosphere to convert some of the nitrides into oxides. Compared to conventional reaction sintered ceramics, it has the same strength as ordinary sintered ceramics such as aluminum titanate, and has excellent thermal conductivity. It is possible to obtain reactive sintered ceramics whose yield rate is about one order of magnitude lower than the above-mentioned conventional sintered ceramics.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例の特性を示す図表図。FIG. 1 is a diagram showing characteristics of an example.

【図2】別の実施例の特性を示す図表図。FIG. 2 is a diagram showing characteristics of another embodiment.

【図3】本発明に係る多孔質セラミックスの断面図。FIG. 3 is a cross-sectional view of porous ceramics according to the present invention.

【図4】本発明に係る別の多孔質セラミックスの断面図
FIG. 4 is a cross-sectional view of another porous ceramic according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・多孔質セラミックス 3・・・・・気孔 5・・・・・非晶質セラミックス 1...Porous ceramics 3... Stomata 5...Amorphous ceramics

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】珪素(Si)、窒素(N)、酸素(O)、
の全ての元素及びチタン(Ti),ジルコニウム(Zr
),ハフニウム(Hf),イットリウム(Y),ホウ素
(B),アルミニウム(Al)の元素群の中の少なくと
も1種類以上で構成されかつ気孔を12%以上含む低熱
伝導セラミックス。
Claim 1: Silicon (Si), nitrogen (N), oxygen (O),
All elements of titanium (Ti), zirconium (Zr
), hafnium (Hf), yttrium (Y), boron (B), and aluminum (Al), and contains 12% or more of pores.
【請求項2】上記珪素(Si)に対してチタン(Ti)
,ジルコニウム(Zr),ハフニウム(Hf),ホウ素
(B),アルミニウム(Al)あるいはそれらの酸化物
を少なくとも総重量換算で5wt%以上含んでいること
を特徴とする請求項1記載の低熱伝導セラミックス。
[Claim 2] Titanium (Ti) is used for the silicon (Si).
, zirconium (Zr), hafnium (Hf), boron (B), aluminum (Al), or their oxides at least 5 wt% or more in terms of total weight. .
【請求項3】上記気孔の内部に非晶質セラミックスが形
成されていることを特徴とする請求項1記載の低熱伝導
セラミックス。
3. The low thermal conductivity ceramic according to claim 1, wherein an amorphous ceramic is formed inside the pores.
【請求項4】上記セラミックスの表面に緻密なセラミッ
クス膜が形成されていることを特徴とする請求項1記載
の低熱伝導セラミックス。
4. The low thermal conductivity ceramic according to claim 1, wherein a dense ceramic film is formed on the surface of the ceramic.
【請求項5】上記緻密なセラミックス膜が非晶質である
ことを特徴とする請求項4記載の低熱伝導セラミックス
5. The low thermal conductivity ceramic according to claim 4, wherein the dense ceramic film is amorphous.
【請求項6】珪素(Si)を主成分とする粉末にチタン
(Ti),ジルコニウム(Zr),ハフニウム(Hf)
,イットリウム(Y),ホウ素(B),アルミニウム(
Al)の元素群の中の少なくとも1種類以上を5wt%
以上含む混合粉末を形成する工程と、該混合粉末を用い
て成型体を形成する工程と、該成型体を窒素雰囲気中で
焼結して多孔質の窒化物を形成する工程と、該窒素雰囲
気での焼結工程を経た後酸素を含んだ雰囲気中で加熱し
て前記窒化物の一部を酸化物に変化させる工程を有する
ことを特徴とする低熱伝導セラミックスの製造方法。
[Claim 6] Titanium (Ti), zirconium (Zr), and hafnium (Hf) are added to the powder whose main component is silicon (Si).
, yttrium (Y), boron (B), aluminum (
5wt% of at least one type of the element group Al)
A step of forming a mixed powder including the above, a step of forming a molded body using the mixed powder, a step of sintering the molded body in a nitrogen atmosphere to form a porous nitride, and a step of forming a porous nitride in the nitrogen atmosphere. 1. A method for producing a low thermal conductivity ceramic, comprising the step of heating in an oxygen-containing atmosphere after undergoing a sintering step to convert a portion of the nitride into an oxide.
【請求項7】珪素(Si)を主成分とする粉末にチタン
(Ti),ジルコニウム(Zr),ハフニウム(Hf)
,イットリウム(Y),ホウ素(B),アルミニウム(
Al)の元素群の中の少なくとも1種類以上を5wt%
以上含む混合粉末を形成する工程と、該混合粉末を用い
て成型体を形成する工程と、該成型体を窒素雰囲気中で
焼結して多孔質の窒化物を形成する工程と、該窒素雰囲
気での焼結工程を経た後酸素を含んだ雰囲気中で加熱し
て前記窒化物の一部を酸化物に変化させる工程の後、ア
ルコキシド溶液あるいは有機ポリマ溶液を含浸せしめ、
加熱処理して空孔内表面に緻密な非晶質セラミックス膜
を形成することを特徴とする低熱伝導セラミックスの製
造方法。
Claim 7: Titanium (Ti), zirconium (Zr), and hafnium (Hf) are added to the powder whose main component is silicon (Si).
, yttrium (Y), boron (B), aluminum (
5wt% of at least one type of the element group Al)
A step of forming a mixed powder including the above, a step of forming a molded body using the mixed powder, a step of sintering the molded body in a nitrogen atmosphere to form a porous nitride, and a step of forming a porous nitride in the nitrogen atmosphere. After undergoing a sintering process, heating in an oxygen-containing atmosphere to convert part of the nitride into an oxide, and then impregnating with an alkoxide solution or an organic polymer solution,
A method for producing low thermal conductivity ceramics, which comprises heat-treating to form a dense amorphous ceramic film on the inner surface of the pores.
【請求項8】珪素(Si)を主成分とする粉末にチタン
(Ti),ジルコニウム(Zr),ハフニウム(Hf)
,イットリウム(Y),ホウ素(B),アルミニウム(
Al)の元素群の中の少なくとも1種類以上を5wt%
以上含む混合粉末を形成する工程と、該混合粉末を用い
て成型体を形成する工程と、該成型体を窒素雰囲気中で
焼結して多孔質の窒化物を形成する工程と、該窒素雰囲
気での焼結工程を経た後酸素を含んだ雰囲気中で加熱し
て前記窒化物の一部を酸化物に変化させる工程の後、ア
ルコキシド溶液あるいは有機ポリマぺ−ストを該焼結体
表面の所望の部分に塗布し、加熱処理して焼結体の表面
の所望の部分に緻密な非晶質セラミックス膜を形成する
ことを特徴とする低熱伝導セラミックスの製造方法。
[Claim 8] Titanium (Ti), zirconium (Zr), and hafnium (Hf) are added to the powder whose main component is silicon (Si).
, yttrium (Y), boron (B), aluminum (
5wt% of at least one type of the element group Al)
A step of forming a mixed powder including the above, a step of forming a molded body using the mixed powder, a step of sintering the molded body in a nitrogen atmosphere to form a porous nitride, and a step of forming a porous nitride in the nitrogen atmosphere. After a sintering process in which a part of the nitride is converted into an oxide by heating in an oxygen-containing atmosphere, an alkoxide solution or organic polymer paste is applied to the desired surface of the sintered body. 1. A method for producing a low thermal conductivity ceramic, which comprises applying the film to a desired part of the surface of a sintered body and forming a dense amorphous ceramic film on a desired part of the surface of a sintered body.
JP3145677A 1991-05-21 1991-05-21 Low heat-conductive ceramic and its production Pending JPH04342470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3145677A JPH04342470A (en) 1991-05-21 1991-05-21 Low heat-conductive ceramic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3145677A JPH04342470A (en) 1991-05-21 1991-05-21 Low heat-conductive ceramic and its production

Publications (1)

Publication Number Publication Date
JPH04342470A true JPH04342470A (en) 1992-11-27

Family

ID=15390538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3145677A Pending JPH04342470A (en) 1991-05-21 1991-05-21 Low heat-conductive ceramic and its production

Country Status (1)

Country Link
JP (1) JPH04342470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130149514A1 (en) * 2010-07-30 2013-06-13 Kyocera Corporation Insulating sheet, method of manufacturing the same, and method of manufacturing structure using the insulating sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130149514A1 (en) * 2010-07-30 2013-06-13 Kyocera Corporation Insulating sheet, method of manufacturing the same, and method of manufacturing structure using the insulating sheet

Similar Documents

Publication Publication Date Title
JP2686248B2 (en) Si3N4 ceramics, Si-based composition for producing the same, and method for producing the same
JPS63185864A (en) Composite ceramics and manufacture
US5925405A (en) Method of manufacturing ceramic, metallic or ceramo-metallic, shaped bodies and layers
JP3559382B2 (en) Method for producing silicon nitride based sintered body
JPH04342470A (en) Low heat-conductive ceramic and its production
JP2539018B2 (en) Al Lower 2 O Lower 3 Base ceramics
EP0648717A2 (en) Reaction sintered ceramics and method of producing the same
JPS593955B2 (en) Method for manufacturing high-strength, heat-resistant silicon compound fired moldings
JP2001348288A (en) Particle-dispersed silicon material and method of producing the same
US5545362A (en) Production method of sintered silicon nitride
JPH05279129A (en) Low-thermally conductive ceramic and its production
JPS6212663A (en) Method of sintering b4c base fine body
JP3570676B2 (en) Porous ceramic body and method for producing the same
JP2711875B2 (en) Method for producing composite material and raw material composition
JPH01215761A (en) Production of silicon nitride sintered form
JPH0687664A (en) Production of silicon nitride sintered compact
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JP2006076858A (en) Compound ceramic
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JP2001261442A (en) Production process of recrystallized silicon carbide
JPH08157262A (en) Aluminum nitride sintered compact and its production
JPH08325061A (en) Silicon nitride sintered compact and its production
JPH05330918A (en) Low heat conductive ceramics and production thereof
JPH03218971A (en) Production of silicon nitride-silicon carbide combined sintered body
JPS6385054A (en) Manufacture of silicon nitride reaction sintered body