JPH04335526A - Method of forming thin film - Google Patents

Method of forming thin film

Info

Publication number
JPH04335526A
JPH04335526A JP13592191A JP13592191A JPH04335526A JP H04335526 A JPH04335526 A JP H04335526A JP 13592191 A JP13592191 A JP 13592191A JP 13592191 A JP13592191 A JP 13592191A JP H04335526 A JPH04335526 A JP H04335526A
Authority
JP
Japan
Prior art keywords
plasma
film
cvd method
microwave
cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13592191A
Other languages
Japanese (ja)
Inventor
Takuji Fukada
深田 卓史
Takashi Akahori
孝 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13592191A priority Critical patent/JPH04335526A/en
Publication of JPH04335526A publication Critical patent/JPH04335526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To form voidless and seamless film by a combination of plasma- assisted CVD and thermal CVD techniques while enhancing advantages and eliminating disadvantages of both techniques. CONSTITUTION:Seed gas is introduced to a plasma chamber 1 in an ECR plasma CVD system. To produce an ECR plasma, microwave is applied through a waveguide 3 to create electric field while a coil 4 is excited to furnish magnetic field. After film is formed on an object S using the plasma, the supply of microwave is stopped. While the object is heated on a susceptor 5, a reaction chamber 2 is supplied with gas to perform thermal CVD.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は複数のCVD 法による
成膜技術を組み合せて金属薄膜を形成する方法に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a metal thin film by combining a plurality of CVD film forming techniques.

【0002】0002

【従来の技術】従来CVD(Chemical Vap
or Deposition)法による薄膜形成方法は
種々知られているが、近年、LSI の高集積化に伴う
微細化, 立体化のための平坦化技術, 埋め込み技術
としてもその重要性が増大している。CVD 法は熱C
VD 法 (減圧CVD 法, 常圧CVD 法),プ
ラズマCVD 法 (RFプラズマCVD 法, EC
R プラズマCVD 法),光CVD 法等に大別され
るが、これら各CVD 法夫々の成膜上の特性は異なり
、例えばホールの埋め込みを行う場合についてみると図
3,図4に示す如くになる。
[Prior Art] Conventional CVD (Chemical Vap)
Various thin film forming methods are known, but in recent years, their importance has increased as a flattening technique and a embedding technique for miniaturization and three-dimensionalization as LSIs become more highly integrated. CVD method uses heat C
VD method (low pressure CVD method, normal pressure CVD method), plasma CVD method (RF plasma CVD method, EC
The film formation characteristics of each of these CVD methods are different, as shown in Figures 3 and 4 when looking at the case of filling holes, for example. Become.

【0003】図3はECR プラズマCVD 法により
下地層21に穿ったホール22をタングステン23にて
埋込みを行った結果を示す断面図(SEM写真像) で
ある(参考写真2参照)。ECR プラズマCVD 法
では側壁からの成膜が期待できないためボイド24が発
生しており、これからみてこの方法はホールの埋込みで
は段差被覆性が悪く、これによって平坦化を図るのは難
しいことが解る。しかし、反面ホール22の下から略2
/3の間はボイド, シームが形成されていないこと,
表面モフォロージが良好であることが解る。図4は熱C
VD 法により同様に下地層21に穿ったホール22を
タングステン23にて埋込みを行った結果を示す断面図
(SEM写真像) である(Applied Mate
rials;MAY1990) 。この図から明らかな
如くボイドの発生が認められず、ホール22の埋込みへ
の適用は可能であるが、反面シーム25 (ホール中心
部に存在するホール側壁部からの膜成長の合わせ部) 
があり、表面モフォロジーが悪いことが解る。
FIG. 3 is a cross-sectional view (SEM photograph image) showing the result of filling a hole 22 made in an underlayer 21 with tungsten 23 by the ECR plasma CVD method (see reference photograph 2). In the ECR plasma CVD method, voids 24 are generated because film formation cannot be expected from the sidewalls, and it can be seen from this that this method has poor step coverage when filling holes, making it difficult to achieve planarization. However, on the other hand, approximately 2 from the bottom of hole 22
Between /3, no voids or seams are formed,
It can be seen that the surface morphology is good. Figure 4 shows heat C
This is a cross-sectional view (SEM photo image) showing the result of filling holes 22 made in the base layer 21 with tungsten 23 using the VD method.
reals; MAY1990). As is clear from this figure, no voids are observed, and the application to filling the hole 22 is possible;
It can be seen that the surface morphology is poor.

【0004】図5は同じく熱CVD 法により下地層2
1のホール22をタングステン23にて埋込みを行うと
共に、エッチバックを行った結果を示す断面図(SEM
写真像) であり (第51回応物学会講演予稿集 2
8a−SZD−21)、図5(a) に示す如くシーム
部分が存在するため、エッチバックすると図5(b) 
に示す如く組織上弱いシーム部分に対するエッチング速
度が早く、シーム部分に小孔26が形成されて平坦性が
得られないことが解る。
FIG. 5 shows a base layer 2 formed by the same thermal CVD method.
A cross-sectional view (SEM
(Photograph) (Proceedings of the 51st Annual Meeting of the Society of Applied Physics, 2)
8a-SZD-21), there is a seam part as shown in Figure 5(a), so when it is etched back, it is shown in Figure 5(b).
As shown in Figure 2, it can be seen that the etching rate for the seam portion, which is structurally weak, is high, and small holes 26 are formed in the seam portion, making it impossible to obtain flatness.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる事情に
鑑みなされたものであって、その目的とするところはプ
ラズマCVD 法と熱CVD 法との組合せによって互
いに短所をカバーして良好なホールの埋込み等が可能な
薄膜形成方法を提供するにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances, and its purpose is to overcome the shortcomings of each other by combining plasma CVD and thermal CVD to produce good holes. An object of the present invention is to provide a method for forming a thin film that allows embedding.

【0006】[0006]

【課題を解決するための手段】本発明に係る薄膜形成方
法は、下地上にプラズマを利用したCVD 法により成
膜した後、この膜上に重ねて熱CVD法によって成膜す
ることを特徴とする。
[Means for Solving the Problems] The thin film forming method according to the present invention is characterized in that a film is formed on a base by a CVD method using plasma, and then a film is formed on top of this film by a thermal CVD method. do.

【0007】[0007]

【作用】本発明にあっては、ホール内をプラズマCVD
 法で埋込むのでシームの発生がない。また、ホール上
部を熱CVD 法で成膜するので、ボイドの発生もない
。更に、熱CVD 法による成膜厚さが小さいので、プ
ラズマCVD 法の表面モフォロジーの良さを生かすこ
とができる。従って、プラズマを利用するCVD 法の
長所であるシームの発生がない点と表面モフォロジーの
良好な点及び熱CVD 法の長所である埋込み性が良好
な点を生かすことが可能となる。
[Operation] In the present invention, the inside of the hole is treated by plasma CVD.
Since it is embedded using a method, there are no seams. Furthermore, since the film above the hole is formed by thermal CVD, no voids are generated. Furthermore, since the thickness of the film formed by thermal CVD is small, it is possible to take advantage of the good surface morphology of plasma CVD. Therefore, it is possible to take advantage of the advantages of the CVD method using plasma in that no seams occur and good surface morphology, and the advantages of the thermal CVD method in that it has good embedding properties.

【0008】[0008]

【実施例】以下本発明を図面に基づき具体的に説明する
。図1は本発明に係る薄膜形成方法を実施するための装
置の縦断面図であり、図中1はプラズマ生成室、2は反
応室を示している。プラズマ生成室1の上部壁には上面
に電極1bを設けた石英ガラス板1aにて封止されてい
るマイクロ波導入窓1cを備え、また下部壁にはプラズ
マ引出窓1dを備えており、前記マイクロ波導入窓1c
にはマイクロ波導波管3の一端部が連結され、またプラ
ズマ引出窓1dに面して反応室2が設置され、更に周囲
に励磁コイル4が設置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. FIG. 1 is a longitudinal cross-sectional view of an apparatus for implementing the thin film forming method according to the present invention, in which 1 indicates a plasma generation chamber and 2 indicates a reaction chamber. The upper wall of the plasma generation chamber 1 is equipped with a microwave introduction window 1c sealed with a quartz glass plate 1a provided with an electrode 1b on the upper surface, and the lower wall is equipped with a plasma extraction window 1d. Microwave introduction window 1c
One end of a microwave waveguide 3 is connected to the reaction chamber 2, and a reaction chamber 2 is installed facing the plasma extraction window 1d, and an excitation coil 4 is installed around it.

【0009】前記マイクロ波導波管3の他端部は図示し
ないマイクロ波発振器に接続され、また励磁コイル4は
図示しない直流電源に接続されている。一方反応室2内
にはヒータを内蔵した試料台5上に試料Sが載置されて
いる。そして前記電極1bには高周波発振器6の一端が
整合器7を介して接続されている。高周波発振器6の他
端はチャンバの壁面に接続すると共に接地されている。 8はプラズマ生成室1に対するガス導入系、9は反応室
2に対するガス導入系、10は排気系である。
The other end of the microwave waveguide 3 is connected to a microwave oscillator (not shown), and the excitation coil 4 is connected to a DC power source (not shown). On the other hand, in the reaction chamber 2, a sample S is placed on a sample stage 5 that has a built-in heater. One end of a high frequency oscillator 6 is connected to the electrode 1b via a matching box 7. The other end of the high frequency oscillator 6 is connected to the wall of the chamber and also grounded. 8 is a gas introduction system for the plasma generation chamber 1, 9 is a gas introduction system for the reaction chamber 2, and 10 is an exhaust system.

【0010】次にこのような装置を用いた成膜過程を(
1)プラズマを利用するCVD 法による過程、(2)
熱CVD 法による過程 に別けて説明する  。 (1) プラズマを利用するCVD 法による成膜Ar
ガス, H2 ガスをガス導入系8を通じてプラズマ生
成室1内に供給し、一方WF6 ,SiH4 等の金属
系ガスをガス導入系9を通じて反応室2内に供給し、内
部を10mTorr 以下に保持して励磁コイル4に直
流電流を通流すると共に、マイクロ波発振器で発せられ
たマイクロ波をマイクロ波導波管3、マイクロ波導入窓
1cを通じてプラズマ生成室1内に導入する。
Next, the film formation process using such an apparatus is described (
1) Process using CVD method using plasma, (2)
The process using the thermal CVD method will be explained separately. (1) Ar film formed by CVD method using plasma
Gas, H2 gas is supplied into the plasma generation chamber 1 through the gas introduction system 8, while metal-based gases such as WF6, SiH4, etc. are supplied into the reaction chamber 2 through the gas introduction system 9, and the inside is maintained at 10 mTorr or less. A direct current is passed through the excitation coil 4, and microwaves emitted by a microwave oscillator are introduced into the plasma generation chamber 1 through the microwave waveguide 3 and the microwave introduction window 1c.

【0011】これによってプラズマ生成室1内にはEC
R 条件が成立し、前記プラズマ生成室1内に供給され
たAr,H2 ガスは分解されてプラズマが生成される
。生成されたプラズマは励磁コイル4により形成された
発散磁界によって反応室2内に導入され、前記金属系ガ
スを活性化して反応室2内に載置された試料S表面に金
属膜が形成される。なお、この際、高周波電源6を通じ
て電極1bに高周波を印加することにより、石英ガラス
板1aに堆積した金属膜をエッチング除去し、プラズマ
生成室1内へのマイクロ波の導入が阻害されないように
する。
[0011] As a result, there is an EC inside the plasma generation chamber 1.
When the R condition is satisfied, the Ar and H2 gases supplied into the plasma generation chamber 1 are decomposed and plasma is generated. The generated plasma is introduced into the reaction chamber 2 by the divergent magnetic field formed by the excitation coil 4, activates the metal-based gas, and forms a metal film on the surface of the sample S placed in the reaction chamber 2. . At this time, by applying high frequency to the electrode 1b through the high frequency power source 6, the metal film deposited on the quartz glass plate 1a is etched away, so that the introduction of microwaves into the plasma generation chamber 1 is not inhibited. .

【0012】このECR プラズマ法による成膜条件の
具体的な数値は次の通りである。マイクロ波パワーを2
.8kW とし、またH2 ガス流量:50sccm、
Arガス流量:25sccm、SiH4 ガス流量:2
5sccm、WF6 ガス流量:50sccmとし、圧
力3.5 ×10−3Torr、試料温度を450 ℃
にて成膜した。
[0012] The specific numerical values of the film forming conditions by this ECR plasma method are as follows. microwave power 2
.. 8kW, H2 gas flow rate: 50sccm,
Ar gas flow rate: 25 sccm, SiH4 gas flow rate: 2
5 sccm, WF6 gas flow rate: 50 sccm, pressure 3.5 × 10-3 Torr, sample temperature 450 °C
The film was formed using

【0013】(2) 熱CVD 法による成膜マイクロ
波発振器、励磁コイル4への給電を停止し、また高周波
電源6をオフとし、試料Sを載置台5内蔵のヒータにて
所定温度に加熱しつつ、ガス導入系9を通じてWF6 
,SiH4 を反応室2内に導入し、0.1Torr 
以上の圧力のもとで成膜する。
(2) Deposition of film by thermal CVD method Power supply to the microwave oscillator and excitation coil 4 is stopped, the high frequency power supply 6 is turned off, and the sample S is heated to a predetermined temperature using a heater built into the mounting table 5. At the same time, the WF6 is introduced through the gas introduction system 9.
, SiH4 was introduced into the reaction chamber 2, and the pressure was set at 0.1 Torr.
The film is formed under the above pressure.

【0014】この熱CVD 法による成膜条件の具体的
な数値は次のとおりである。H2 ガス流量:500s
ccm 、SiH4 ガス流量:100sccm 、W
F6 ガス流量:200sccm とし、圧力3.0 
×10−3Torrで成膜した。図2は本発明方法によ
りホールの埋込みを行った結果を示す断面図(SEM写
真像) である (参考写真1参照) 。図2から明ら
かな如く下地層21に穿ったホール22をタングステン
23にて埋込んだ状態を示しており、この図から明らか
な如く微細なボイドがなく、シームの発生が全く認めら
れず、その上表面平坦化も達成されており表面モフォロ
ジーも良いことが解る。
The specific numerical values of the film forming conditions by this thermal CVD method are as follows. H2 gas flow rate: 500s
ccm, SiH4 gas flow rate: 100sccm, W
F6 gas flow rate: 200sccm, pressure 3.0
The film was formed at ×10 −3 Torr. FIG. 2 is a cross-sectional view (SEM photographic image) showing the result of hole filling according to the method of the present invention (see reference photograph 1). As is clear from FIG. 2, the hole 22 drilled in the base layer 21 is filled with tungsten 23. As is clear from this figure, there are no minute voids and no seams are observed. It can be seen that flattening of the upper surface has been achieved and the surface morphology is also good.

【0015】なお、上述の実施例ではプラズマを利用す
るCVD 法としてECR プラズマCVD 法を示し
たが、これに限らずマイクロ波プラズマCVD 法、R
FプラズマCVD 法等でもよいことは勿論である。ま
た実施例ではECR プラズマCVD 装置内で全ての
成膜を行う場合を示したが、他の別々の装置を用いてよ
いことは勿論である。
In the above embodiment, the ECR plasma CVD method was shown as a CVD method using plasma, but the method is not limited to this, and microwave plasma CVD method, R
Of course, F plasma CVD method or the like may also be used. Furthermore, although the embodiment shows a case in which all film formation is performed within an ECR plasma CVD apparatus, it goes without saying that other separate apparatuses may be used.

【0016】[0016]

【発明の効果】以上の如く本発明方法にあってはホール
の埋込み等に適用してボイドは勿論、シームの発生もな
く埋込みが可能となる等本発明は優れた効果を奏するも
のである。
As described above, when the method of the present invention is applied to filling holes, etc., the present invention has excellent effects, such as making it possible to fill holes without creating voids or seams.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明方法を実施する装置の縦断面図である。FIG. 1 is a longitudinal sectional view of an apparatus for carrying out the method of the invention.

【図2】本発明方法によりホールの埋込みを行った結果
を示す断面図である。
FIG. 2 is a cross-sectional view showing the result of hole filling according to the method of the present invention.

【図3】ECR プラズマCVD 法によりホールの埋
込みを行った結果を示す断面図である。
FIG. 3 is a cross-sectional view showing the result of hole filling using the ECR plasma CVD method.

【図4】熱CVD 法によりホールの埋込みを行った結
果を示す断面図である。
FIG. 4 is a cross-sectional view showing the result of hole filling using a thermal CVD method.

【図5】熱CVD 法によりホールを埋込んだ後、エッ
チバックしたときの結果を示す断面図である。
FIG. 5 is a cross-sectional view showing the result of etching back after filling holes by thermal CVD.

【符号の説明】[Explanation of symbols]

1  プラズマ生成室 2  反応室 3  マイクロ波導波管 4  励磁コイル 5  載置台 1 Plasma generation chamber 2 Reaction chamber 3 Microwave waveguide 4 Excitation coil 5 Placement stand

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  プラズマを利用したCVD 法により
成膜した後、この膜上に重ねて熱CVD 法によって成
膜することを特徴とする薄膜形成方法。
1. A method for forming a thin film, which comprises forming a film by a CVD method using plasma, and then depositing a film on top of the film by a thermal CVD method.
JP13592191A 1991-05-10 1991-05-10 Method of forming thin film Pending JPH04335526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13592191A JPH04335526A (en) 1991-05-10 1991-05-10 Method of forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13592191A JPH04335526A (en) 1991-05-10 1991-05-10 Method of forming thin film

Publications (1)

Publication Number Publication Date
JPH04335526A true JPH04335526A (en) 1992-11-24

Family

ID=15162966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13592191A Pending JPH04335526A (en) 1991-05-10 1991-05-10 Method of forming thin film

Country Status (1)

Country Link
JP (1) JPH04335526A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006032A1 (en) * 1999-07-14 2001-01-25 Tokyo Electron Limited Method for forming metallic tungsten film
JP2018532272A (en) * 2015-10-15 2018-11-01 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Conformal doping in 3D SI structures using conformal dopant deposition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006032A1 (en) * 1999-07-14 2001-01-25 Tokyo Electron Limited Method for forming metallic tungsten film
US6964790B1 (en) 1999-07-14 2005-11-15 Tokyo Electron Limited Method for forming metallic tungsten film
JP2018532272A (en) * 2015-10-15 2018-11-01 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Conformal doping in 3D SI structures using conformal dopant deposition

Similar Documents

Publication Publication Date Title
JP3221025B2 (en) Plasma process equipment
JP7126381B2 (en) Film forming apparatus and film forming method
US20010028922A1 (en) High throughput ILD fill process for high aspect ratio gap fill
US6221792B1 (en) Metal and metal silicide nitridization in a high density, low pressure plasma reactor
JP2001523043A (en) Elimination of titanium nitride film deposition in tungsten plug technology using PE-CVD-Ti and in situ plasma nitridation
JPH03202471A (en) Formation of deposited film
JPH0573254B2 (en)
JPH10144675A (en) Method of forming film with plasma
JPH10237662A (en) Plasma cvd method of metallic coating, formation of metallic nitride coating and semiconductor device
KR19990068219A (en) Chemical vapor phase growing method of a metal nitride film and a method of manufacturing an electronic device using the same
JPH05500436A (en) Method and equipment for processing silicon plates
JP3636866B2 (en) Method for forming CVD-Ti film
JPH11186197A (en) Deposition of cvd-titanium
JPH04335526A (en) Method of forming thin film
WO2003097898A1 (en) Method for introducing gas to treating apparatus having shower head portion
JP2003213418A (en) Film deposition method
JP3289479B2 (en) Method for CVD of refractory metal layer and method for manufacturing semiconductor device
JPH07263359A (en) Formation of thin film
JPH06349774A (en) Method of forming buried plug
JPH08203891A (en) Fabrication of semiconductor device
JPH05129276A (en) Manufacture of insulating film
JPH0547707A (en) Thin film forming method, and semiconductor device
JP3211290B2 (en) Method for forming semiconductor device
JP3488498B2 (en) Method of forming metal thin film in semiconductor device
JP2819774B2 (en) Method of forming insulating film