JPH04334946A - Bearing coil and sensor coil for high temperature magnetic bearing device - Google Patents

Bearing coil and sensor coil for high temperature magnetic bearing device

Info

Publication number
JPH04334946A
JPH04334946A JP3132035A JP13203591A JPH04334946A JP H04334946 A JPH04334946 A JP H04334946A JP 3132035 A JP3132035 A JP 3132035A JP 13203591 A JP13203591 A JP 13203591A JP H04334946 A JPH04334946 A JP H04334946A
Authority
JP
Japan
Prior art keywords
coil
sensor
bearing
wire
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3132035A
Other languages
Japanese (ja)
Inventor
Susumu Osawa
大沢 将
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Original Assignee
YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI filed Critical YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Priority to JP3132035A priority Critical patent/JPH04334946A/en
Publication of JPH04334946A publication Critical patent/JPH04334946A/en
Pending legal-status Critical Current

Links

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To provide a bearing coil durable against use in a high temperature atmosphere, a bearing coil having a sensor coil and the sensor coil. CONSTITUTION:As a bearing coil of an electromagnet stator for a high temperature magnetic bearing device, a coil formed by winding an insulated wire covered with an insulating film formed by providing an inorganic polymer layer 3 having flexibility and a heat resistant glass fiber layer 4 on a conductive wire material 1 such as a copper wire, etc., is provided. With the above constitution, since the polymer layer has flexibility even after baking, it can absorb distortion due to thermal expansions of the wire and the fiber layer, and hence a crack, peeling of the fiber layer can be prevented. Since the fiber is wound on the wire as it is, the bearing coil of desired shape and side can be formed merely by winding. Accordingly, its insulation can further be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ターボ機械や工作機械
等の回転軸を磁気的に非接触で支持する磁気軸受装置に
用いる電磁石固定子の軸受コイル及び変位センサのセン
サコイルに関し、特に高温雰囲気中で使用する磁気軸受
装置に好適な高温用磁気軸受装置用軸受コイル及びセン
サコイルに関するものである。
[Industrial Application Field] The present invention relates to a bearing coil of an electromagnetic stator and a sensor coil of a displacement sensor used in a magnetic bearing device that magnetically supports a rotating shaft of a turbo machine, a machine tool, etc. in a non-contact manner. The present invention relates to a bearing coil and a sensor coil for a high-temperature magnetic bearing device suitable for a magnetic bearing device used in an atmosphere.

【0002】0002

【従来技術及び発明が解決しようとする課題】ターボ機
械や工作機械等の回転軸を磁気的に非接触で支持する磁
気軸受装置の良く知られた構造は、回転軸に固着した磁
性材料の回転子ヨークと、該回転子ヨークから微小間隙
を設けてケーシングに固定され且つ起磁力を発生させる
軸受用コイルを備えた電磁石固定子と、回転軸とケーシ
ング間の相対変位を測定するセンサコイルを有する変位
センサとを具備するものであり、該変位センサの出力を
基に前記回転子ヨークと前記電磁石固定子の間に作用す
る磁気力を制御して回転軸を磁気的に非接触で支持する
ようになっている。
[Prior Art and Problems to be Solved by the Invention] The well-known structure of a magnetic bearing device that magnetically supports a rotating shaft of a turbo machine or a machine tool without contacting it is based on the rotation of a magnetic material fixed to the rotating shaft. It has a child yoke, an electromagnetic stator fixed to the casing with a minute gap from the rotor yoke and equipped with a bearing coil that generates magnetomotive force, and a sensor coil that measures the relative displacement between the rotating shaft and the casing. and a displacement sensor, and the magnetic force acting between the rotor yoke and the electromagnetic stator is controlled based on the output of the displacement sensor, so that the rotating shaft is magnetically supported in a non-contact manner. It has become.

【0003】このような使用例は近年増加しているが、
特殊な使用環境では従来の構造ではまだ十分には使用で
きないことがある。例えば高温ガスを扱うブロワでは、
軸受回りの温度が200℃を越え、400℃、500℃
に達することがあるのに対し、従来磁気軸受装置の電磁
石固定子に用いられる軸受用コイルや変位センサに用い
られるセンサコイルの線材は200℃以上では、絶縁が
保てないのが殆どで、上記のような高温雰囲気で使用す
る回転機械の磁気軸受として使用することは不可能であ
った。
[0003] Although such usage examples have increased in recent years,
In special usage environments, conventional structures may not be fully usable. For example, in a blower that handles high-temperature gas,
The temperature around the bearing exceeds 200℃, 400℃, 500℃
On the other hand, the wires of bearing coils used in the electromagnetic stator of conventional magnetic bearing devices and sensor coils used in displacement sensors cannot maintain insulation at temperatures above 200°C, and the above-mentioned It was impossible to use it as a magnetic bearing for rotating machinery used in high-temperature environments such as.

【0004】上記のような高温雰囲気で使用できる磁気
軸受装置の軸受用コイル及びセンサコイルとして、セラ
ミック皮膜電線を用いることも考えられるが、上記のよ
うな厳しい温度環境下ではセラミック層による皮膜だけ
では、皮膜が破れたり剥がれたりするため十分な絶縁を
保つことは難しい。そこでこのような状況でも使用でき
る軸受コイルとしてはセラミック皮膜電線を縦糸に、ガ
ラスファイバを横糸に布のように緩く編んだ軸受用コイ
ルが提案されている。
[0004] Although it is possible to use ceramic coated electric wires as the bearing coil and sensor coil of a magnetic bearing device that can be used in the above-mentioned high-temperature atmosphere, it is not possible to use ceramic coated wires alone in the above-mentioned severe temperature environment. , it is difficult to maintain sufficient insulation because the film may tear or peel off. Therefore, as a bearing coil that can be used in such a situation, a bearing coil in which a ceramic coated electric wire is used as a warp thread and a glass fiber is used as a weft thread that is loosely woven like cloth has been proposed.

【0005】しかしながら単なるセラミック皮膜電線で
は可撓性に乏しく、銅線とセラミックとの膨張率の違い
によるセラミック層の割れ及び剥がれ防止ができないと
いう問題がある。更にセラミック電線にガラスファイバ
が直接巻かれているのでないため、それらを用いて任意
の形状及び巻数の軸受コイルを形成できないという問題
もあった。
However, a simple ceramic coated electric wire has a problem in that it lacks flexibility and cannot prevent cracking and peeling of the ceramic layer due to the difference in expansion coefficient between the copper wire and the ceramic. Furthermore, since the glass fibers are not directly wound around the ceramic wires, there is also the problem that it is not possible to use them to form a bearing coil of any desired shape and number of turns.

【0006】本発明は上述の点に鑑みてなされたもので
、上記問題点を除去し、高温雰囲気での使用に耐え得る
軸受コイル及びセンサコイルを具備する高温用磁気軸受
装置用軸受コイル及びセンサコイルを提供することを目
的とする。
The present invention has been made in view of the above-mentioned points, and provides a bearing coil and sensor for a high-temperature magnetic bearing device, which eliminates the above-mentioned problems and is equipped with a bearing coil and a sensor coil that can withstand use in a high-temperature atmosphere. The purpose is to provide coils.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
め本発明は、高温用磁気軸受装置の電磁石固定子の軸受
コイルとして、銅線等の導電性線材に可撓性を有する無
機ポリマー層と、耐熱ガラスファイバに層との絶縁被膜
を施してなる絶縁電線を巻いて形成したコイルを用いる
ことを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a flexible inorganic polymer layer on a conductive wire such as a copper wire as a bearing coil of an electromagnetic stator of a high-temperature magnetic bearing device. The present invention is characterized by using a coil formed by winding an insulated wire made of a heat-resistant glass fiber coated with a layer of insulation.

【0008】また、高温用磁気軸受装置の変位センサの
センサコイルとして、導電性線材に可撓性を有する無機
ポリマー層と、耐熱ガラスファイバに層との絶縁被膜を
施した絶縁電線を巻いて形成したコイルを用いることを
特徴とする。
[0008] Also, as a sensor coil for a displacement sensor of a high-temperature magnetic bearing device, an insulated wire is formed by winding an insulated wire in which a conductive wire is coated with a flexible inorganic polymer layer and a heat-resistant glass fiber is coated with an insulating coating. It is characterized by using a coil with a

【0009】[0009]

【作用】上記の如く構成することにより無機ポリマー層
は、焼成後も可撓性を有しているので、導電性線と耐熱
ガラスファイバ層との熱膨張による歪みを吸収するので
、耐熱ガラスファイバ層の割れや剥がれを防止できる。 また、耐熱ガラスファイバは導電性線にそのまま巻かれ
ているので、従来と同様に巻くだけで所望の形状及び大
きさの軸受コイルが形成できる。従って、上記従来例の
ように縦糸と横糸から布を織るようにしてコイルを形成
する必要がなく、更に耐熱ガラスファイバ層が形成され
ることにより、絶縁性はさらに向上する。
[Function] With the above structure, the inorganic polymer layer remains flexible even after firing, so it absorbs distortion due to thermal expansion between the conductive wire and the heat-resistant glass fiber layer, so the heat-resistant glass fiber layer It can prevent cracking and peeling of layers. In addition, since the heat-resistant glass fiber is wound as it is around the conductive wire, a bearing coil of a desired shape and size can be formed by simply winding it in the same manner as before. Therefore, there is no need to form a coil by weaving a cloth from warp and weft yarns as in the conventional example, and the insulation properties are further improved by forming a heat-resistant glass fiber layer.

【0010】またセンサコイルは使用電圧が低いので、
ガラスファイバで被覆しなくともよく焼成後も可撓性を
有する無機ポリマー層の皮膜を施すだけの従来と同様に
巻くだけで所望の形状及び大きさのセンサコイルが形成
できる。
[0010] Also, since the working voltage of the sensor coil is low,
A sensor coil of a desired shape and size can be formed by simply winding the sensor coil in the same manner as in the conventional method, which does not require coating with glass fiber and only requires a coating of an inorganic polymer layer that remains flexible after firing.

【0011】[0011]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1(a),(b)はそれぞれ高温用磁気軸受
装置用軸受コイルに用いる絶縁電線の断面形状を示す断
面図である。絶縁電線は図1(a)に示すように、ニッ
ケルメッキ層2を施した銅の線材1の表面に可撓性を有
する無機ポリマー層3を皮膜形成し、更にその上に耐熱
ガラスファイバ層4の皮膜を形成したものである。  
また、他の絶縁電線は図1(b)に示すようにニッケル
メッキ層2を施した銅の線材1の表面に可撓性を有する
無機ポリマー層3を皮膜形成し、更にその上に耐熱ガラ
スファイバ層4の皮膜を形成し、更にその上に可撓性を
有する無機ポリマー層5を皮膜形成したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIGS. 1A and 1B are cross-sectional views showing the cross-sectional shape of an insulated wire used in a bearing coil for a high-temperature magnetic bearing device, respectively. As shown in FIG. 1(a), the insulated wire is made by forming a flexible inorganic polymer layer 3 on the surface of a copper wire 1 coated with a nickel plating layer 2, and then a heat-resistant glass fiber layer 4 on top of the inorganic polymer layer 3. A film of
In addition, other insulated wires are made by forming a flexible inorganic polymer layer 3 on the surface of a copper wire 1 coated with a nickel plating layer 2, as shown in FIG. A film of the fiber layer 4 is formed, and a flexible inorganic polymer layer 5 is further formed thereon.

【0012】なお、ここで線材1としては銅線に限るも
のではなく、例えばアルミニュウム線等、導電性の優れ
た金属或いはその合金等の導電性材料からなる線材であ
ればよい。
Note that the wire 1 is not limited to a copper wire, but may be any wire made of a conductive material such as a highly conductive metal or an alloy thereof, such as an aluminum wire.

【0013】図2は本発明に係る高温用磁気軸受装置用
電磁石固定子の構造を示す斜視図である。図示するよう
に、珪素鋼板を積層してなる環状の磁気受ヨーク6の磁
極用凸部7の外周に前記図1(a),(b)に示す断面
形状の絶縁電線を巻いて軸受用コイル8を形成している
FIG. 2 is a perspective view showing the structure of an electromagnetic stator for a high-temperature magnetic bearing device according to the present invention. As shown in the figure, an insulated wire having the cross-sectional shape shown in FIGS. 1(a) and 1(b) is wound around the outer periphery of the magnetic pole protrusion 7 of an annular magnetic receiving yoke 6 made of laminated silicon steel plates to form a bearing coil. 8 is formed.

【0014】磁気軸受装置用軸受コイルを上記構造とす
ることにより、無機ポリマー層3,5は、高温で焼成後
も可撓性を有しているので、銅の線材1と耐熱ガラスフ
ァイバ層4との熱膨張の差による歪みを吸収するので、
耐熱ガラスファイバ層4の割れや剥がれを防止でき、高
温雰囲気中で使用する高温磁気軸受用軸受コイルとして
好適なものとなる。また、耐熱ガラスファイバ層4はニ
ッケルメッキ層2を施した銅線材1の上に形成され無機
ポリマー層3上にそのまま巻かれているので、従来と同
様に巻くだけで所望の形状及び大きさの軸受コイル8が
形成できる。従って、上記従来例のように縦糸と横糸か
ら布を織るようにしてコイルを形成する必要がない。更
に耐熱ガラスファイバ層4が形成されることにより、絶
縁性はさらに向上する。
By making the bearing coil for a magnetic bearing device have the above structure, the inorganic polymer layers 3 and 5 have flexibility even after being fired at high temperatures, so that the copper wire 1 and the heat-resistant glass fiber layer 4 It absorbs the distortion due to the difference in thermal expansion between
The heat-resistant glass fiber layer 4 can be prevented from cracking or peeling, and is suitable as a bearing coil for a high-temperature magnetic bearing used in a high-temperature atmosphere. In addition, since the heat-resistant glass fiber layer 4 is formed on the copper wire 1 coated with the nickel plating layer 2 and wound as it is on the inorganic polymer layer 3, the desired shape and size can be obtained by simply winding it in the same way as before. A bearing coil 8 can be formed. Therefore, there is no need to form a coil by weaving a cloth from warp and weft yarns as in the conventional example. Further, by forming the heat-resistant glass fiber layer 4, the insulation properties are further improved.

【0015】図3は本発明に係る高温用磁気軸受装置の
変位センサのセンサコイルに用いる絶縁電線の断面形状
を示す断面図である。図示するように、絶縁電線の断面
形状はニッケルメッキ層2を施した銅の線材1の表面に
可撓性を有する無機ポリマー層3を皮膜形成し、更にそ
の上に有機ポリマー層6の皮膜を形成したものである。   なお、線材1としては銅線に限るものではなく、例
えばアルミニュウム線等、導電性の優れた金属或いはそ
の合金等の導電性材料からなる線材であればよい。
FIG. 3 is a cross-sectional view showing the cross-sectional shape of an insulated wire used in a sensor coil of a displacement sensor of a high-temperature magnetic bearing device according to the present invention. As shown in the figure, the cross-sectional shape of the insulated wire is obtained by forming a flexible inorganic polymer layer 3 on the surface of a copper wire 1 coated with a nickel plating layer 2, and then coating an organic polymer layer 6 on top of it. It was formed. Note that the wire 1 is not limited to a copper wire, and may be any wire made of a conductive material such as a highly conductive metal or an alloy thereof, such as an aluminum wire.

【0016】上記絶縁電線は図1(a),(b)に示す
断面形状の軸受コイルの絶縁電線と同様可撓性を有する
。ただ耐熱ガラスファイバ層4を有しない点で耐電圧性
において劣るが、センサコイルは使用電圧が低いので、
ガラスファイバで被覆しなくともよい。
The insulated wire has flexibility similar to the insulated wire of the bearing coil having the cross-sectional shape shown in FIGS. 1(a) and 1(b). However, it is inferior in voltage resistance because it does not have the heat-resistant glass fiber layer 4, but since the sensor coil has a low operating voltage,
It does not need to be coated with glass fiber.

【0017】図4は本発明に係る高温用磁気軸受装置用
変位センサのセンサコイルを示す斜視図である。図示す
るように、センサコイル10は、カップ状のセンサ用コ
アの中央部に形成された凸部の外周に、図3に示す断面
形状のセンサコイル用の絶縁電線を巻いた形状である。
FIG. 4 is a perspective view showing a sensor coil of a displacement sensor for a high-temperature magnetic bearing device according to the present invention. As shown in the figure, the sensor coil 10 has a shape in which an insulated wire for a sensor coil having a cross-sectional shape shown in FIG. 3 is wound around the outer periphery of a convex portion formed at the center of a cup-shaped sensor core.

【0018】図5は上記構成の軸受コイル及びセンサコ
イルを用いる高温用磁気軸受の構造を示す図である。図
示するように、高周波モータ21の回転子軸22が2個
のラジアル磁気軸受23,24と1個のスラスト軸気受
25により磁気的に非接触で回転自在に支持されるよう
になっている。ラジアル磁気軸受23,24の磁気力は
回転子軸22とケーシング26間のラジアル方向の相対
変位を測定するラジアル変位センサ27,28の出力に
基づいて制御されるようになっており、スラスト軸気受
25の磁気力は回転子軸22とケーシング26間のスラ
スト方向の相対変位を測定するスラスト変位センサ29
の出力に基づいて制御されるようになっている。
FIG. 5 is a diagram showing the structure of a high-temperature magnetic bearing using the bearing coil and sensor coil configured as described above. As shown in the figure, a rotor shaft 22 of a high-frequency motor 21 is rotatably supported by two radial magnetic bearings 23 and 24 and one thrust bearing 25 in a non-magnetic manner. . The magnetic force of the radial magnetic bearings 23 and 24 is controlled based on the outputs of radial displacement sensors 27 and 28 that measure the relative displacement in the radial direction between the rotor shaft 22 and the casing 26, and the thrust shaft The magnetic force of the receiver 25 is detected by a thrust displacement sensor 29 that measures the relative displacement between the rotor shaft 22 and the casing 26 in the thrust direction.
It is designed to be controlled based on the output of

【0019】ラジアル磁気軸受23,24はそれぞれ回
転子軸22に固定された珪素鋼板を積層してなる磁性材
料からなる回転子ヨーク23a,24aと、該回転子ヨ
ーク23a,24aから微小間隙を設けてケーシング2
6に固定され且つ起磁力を発生させる軸受コイル23b
,24bを備えた電磁石固定子23c,24cからなる
。またスラスト磁気軸受25回転子軸22に固定された
磁性材料からなる回転子ヨーク25aと該回転子ヨーク
25aから微小間隙を設けてケーシング26に固定され
且つ起磁力を発生させる軸受用コイル25b,25bを
備えた電磁石固定子25c,25cからなる。
The radial magnetic bearings 23 and 24 have rotor yokes 23a and 24a made of a magnetic material made of laminated silicon steel plates fixed to the rotor shaft 22, respectively, and minute gaps are provided from the rotor yokes 23a and 24a. casing 2
Bearing coil 23b fixed to 6 and generating magnetomotive force
, 24b, and electromagnetic stators 23c and 24c. Further, a rotor yoke 25a made of a magnetic material is fixed to the thrust magnetic bearing 25 and the rotor shaft 22, and bearing coils 25b, 25b are fixed to the casing 26 with a minute gap from the rotor yoke 25a and generate magnetomotive force. It consists of electromagnetic stators 25c and 25c equipped with.

【0020】また、ラジアル変位センサ27,28はそ
れぞれセンサ用コア27b,28bとセンサコイル27
a,28aからなり、またスラスト変位センサ29はセ
ンサ用コア29bとセンサコイル29aからなる。
The radial displacement sensors 27 and 28 also include sensor cores 27b and 28b and a sensor coil 27, respectively.
The thrust displacement sensor 29 consists of a sensor core 29b and a sensor coil 29a.

【0021】上記構造の高温用磁気軸受装置において、
ラジアル磁気軸受23,24の軸受コイル23b,24
bに図2に示す軸受コイル8を用い、スラスト磁気受2
5の軸受コイル25bにも形状は異なるが、図2に示す
軸受コイル8と略同じものを用いる。また、ラジアル変
位センサ27,28のセンサコイル27a,28aに図
4に示すセンサコイル10を用いる。またスラスト変位
センサ29のセンサコイル29aにも図4に示すセンサ
コイル10を用いる。これにより、上記構造の磁気軸受
装置は高温雰囲気中で使用するのに好適な磁気軸受装置
となる。
[0021] In the high-temperature magnetic bearing device having the above structure,
Bearing coils 23b, 24 of radial magnetic bearings 23, 24
Using the bearing coil 8 shown in FIG. 2 in b, the thrust magnetic bearing 2
The bearing coil 25b of No. 5 is also substantially the same as the bearing coil 8 shown in FIG. 2, although the shape is different. Furthermore, the sensor coil 10 shown in FIG. 4 is used as the sensor coils 27a, 28a of the radial displacement sensors 27, 28. Further, the sensor coil 10 shown in FIG. 4 is also used for the sensor coil 29a of the thrust displacement sensor 29. As a result, the magnetic bearing device having the above structure becomes a magnetic bearing device suitable for use in a high temperature atmosphere.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、下
記のような優れた効果が得られる。 (1)軸受コイルに用いる絶縁電線の皮膜に無機ポリマ
ー層を用いるので、該無機ポリマー層は焼成後も可撓性
を有するから、導電性線と耐熱ガラスファイバ層との熱
膨張による歪みを吸収する作用を奏し、耐熱ガラスファ
イバ層の割れや剥がれを防止できる。
[Effects of the Invention] As explained above, according to the present invention, the following excellent effects can be obtained. (1) Since an inorganic polymer layer is used for the coating of the insulated wire used in the bearing coil, the inorganic polymer layer remains flexible even after firing, so it absorbs distortion due to thermal expansion between the conductive wire and the heat-resistant glass fiber layer. This has the effect of preventing cracking and peeling of the heat-resistant glass fiber layer.

【0023】(2)また、耐熱ガラスファイバ導電性線
にそのまま巻かれているので、従来と同様に巻くだけで
所望の形状及び大きさの軸受コイルが形成できる。従っ
て、従来のように縦糸と横糸から布を織るようにしてコ
イルを形成する必要がなく、更に耐熱ガラスファイバ層
が形成されることにより、絶縁性はさらに向上する。
(2) Furthermore, since the heat-resistant glass fiber conductive wire is wound as is, a bearing coil of a desired shape and size can be formed by simply winding it in the same manner as before. Therefore, it is not necessary to form a coil by weaving a cloth from warp and weft yarns as in the conventional method, and the insulation properties are further improved by forming a heat-resistant glass fiber layer.

【0024】(3)また、センサコイルに用いる絶縁電
線の皮膜に無機ポリマー層を用いるので、上記と同様に
耐熱性に優れ所望の形状及び大きさのセンサコイルが形
成できる。なお、センサコイルに用いられる絶縁電線に
は耐熱ガラスファイバの被覆はないが、センサコイルの
使用電圧が低いので、ガラスファイバで被覆しなくとも
よい。
(3) Furthermore, since an inorganic polymer layer is used for the coating of the insulated wire used in the sensor coil, it is possible to form a sensor coil with excellent heat resistance and a desired shape and size, similarly to the above. Note that although the insulated wire used in the sensor coil is not coated with heat-resistant glass fiber, since the working voltage of the sensor coil is low, it is not necessary to cover it with glass fiber.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1(a),(b)はそれぞれ高温用磁気軸受
装置用軸受コイルに用いる絶縁電線の断面形状を示す断
面図である。
FIGS. 1A and 1B are cross-sectional views showing the cross-sectional shape of an insulated wire used in a bearing coil for a high-temperature magnetic bearing device, respectively.

【図2】本発明に係る高温用磁気軸受装置用電磁石固定
子構造を示す斜視図である。
FIG. 2 is a perspective view showing an electromagnetic stator structure for a high-temperature magnetic bearing device according to the present invention.

【図3】本発明に係る高温用磁気軸受装置の変位センサ
のセンサコイルに用いる絶縁電線の断面形状を示す断面
図である。
FIG. 3 is a cross-sectional view showing a cross-sectional shape of an insulated wire used in a sensor coil of a displacement sensor of a high-temperature magnetic bearing device according to the present invention.

【図4】本発明に係る高温用磁気軸受装置用変位センサ
を示す斜視図である。
FIG. 4 is a perspective view showing a displacement sensor for a high-temperature magnetic bearing device according to the present invention.

【図5】本発明の軸受コイル及びセンサコイルを用いる
高温用磁気軸受の構造を示す図である。
FIG. 5 is a diagram showing the structure of a high-temperature magnetic bearing using the bearing coil and sensor coil of the present invention.

【符号の説明】[Explanation of symbols]

1        銅の線材 2        ニッケルメッキ層 3        無機ポリマー層 4        耐熱ガラスファバ層5      
  無機ポリマー層 6        磁気受ヨーク 7        磁極用凸部 8        軸受コイル 9        センサ用コア 10      センサコイル
1 Copper wire 2 Nickel plating layer 3 Inorganic polymer layer 4 Heat-resistant glass fiber layer 5
Inorganic polymer layer 6 Magnetic receiving yoke 7 Convex portion for magnetic pole 8 Bearing coil 9 Sensor core 10 Sensor coil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】回転軸に固着した磁性材料の回転子ヨーク
と、該回転子ヨークから微小間隙を設けてケーシングに
固定され且つ起磁力を発生させる軸受コイルを備えた電
磁石固定子と、回転軸とケーシング間の相対変位を測定
するセンサコイルを有する変位センサとを具備し、該変
位センサの出力を基に前記回転子ヨークと前記電磁石固
定子の間に作用する磁気力を制御して回転軸を磁気的に
非接触で支持する磁気軸受装置の前記軸受コイルであっ
て、該軸受用コイルは導電性線材に可撓性を有する無機
ポリマー層と、耐熱ガラスファイバに層との絶縁被膜を
施してなる絶縁電線を巻いて形成したものであることを
特徴とする高温用磁気軸受装置用軸受コイル。
1. A rotor yoke made of a magnetic material fixed to a rotating shaft, an electromagnetic stator having a bearing coil fixed to a casing with a minute gap from the rotor yoke and generating a magnetomotive force, and a rotating shaft. and a displacement sensor having a sensor coil for measuring relative displacement between the casing and the casing, and based on the output of the displacement sensor, the magnetic force acting between the rotor yoke and the electromagnetic stator is controlled to control the rotation axis. The bearing coil of the magnetic bearing device supports magnetically in a non-contact manner, the bearing coil having an insulating coating of a flexible inorganic polymer layer on a conductive wire and a layer on a heat-resistant glass fiber. 1. A bearing coil for a high-temperature magnetic bearing device, characterized in that it is formed by winding an insulated wire made of
【請求項2】回転軸に固着した磁性材料の回転子ヨーク
と、該回転子ヨークから微小間隙を設けてケーシングに
固定され且つ起磁力を発生させる軸受コイルを備えた電
磁石固定子と、回転軸とケーシング間の相対変位を測定
するセンサコイルを有する変位センサとを具備し、該変
位センサの出力を基に前記回転子ヨークと前記電磁石固
定子の間に作用する磁気力を制御して回転軸を磁気的に
非接触で支持する磁気軸受装置の前記センサコイルであ
って、該センサコイルは導電性線材に可撓性を有する無
機ポリマー層の絶縁被膜を施した絶縁電線を巻いて形成
したものであることを特徴とする請求項1記載の高温用
磁気軸受装置用センサコイル。
2. A rotor yoke made of a magnetic material fixed to a rotating shaft, an electromagnetic stator having a bearing coil fixed to a casing with a small gap from the rotor yoke and generating a magnetomotive force, and a rotating shaft. and a displacement sensor having a sensor coil for measuring relative displacement between the casing and the casing, and based on the output of the displacement sensor, the magnetic force acting between the rotor yoke and the electromagnetic stator is controlled to control the rotation axis. The sensor coil of the magnetic bearing device that magnetically supports the sensor in a non-contact manner, wherein the sensor coil is formed by winding an insulated wire in which a conductive wire is coated with an insulating coating of a flexible inorganic polymer layer. The sensor coil for a high-temperature magnetic bearing device according to claim 1, characterized in that:
JP3132035A 1991-05-08 1991-05-08 Bearing coil and sensor coil for high temperature magnetic bearing device Pending JPH04334946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3132035A JPH04334946A (en) 1991-05-08 1991-05-08 Bearing coil and sensor coil for high temperature magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3132035A JPH04334946A (en) 1991-05-08 1991-05-08 Bearing coil and sensor coil for high temperature magnetic bearing device

Publications (1)

Publication Number Publication Date
JPH04334946A true JPH04334946A (en) 1992-11-24

Family

ID=15071982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3132035A Pending JPH04334946A (en) 1991-05-08 1991-05-08 Bearing coil and sensor coil for high temperature magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH04334946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025750A1 (en) * 1995-02-14 1996-08-22 Sundstrand Corporation High temperature electrical insulation system
EP2410533A1 (en) * 2010-07-23 2012-01-25 Societe De Mecanique Magnetique Watertight electrical connection for rotating machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272013A (en) * 1987-04-30 1988-11-09 Showa Electric Wire & Cable Co Ltd Heat-resistant electrically insulated coil and manufacture thereof
JPS63318718A (en) * 1987-06-22 1988-12-27 Toshiba Corp Heat-resistant insulated coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272013A (en) * 1987-04-30 1988-11-09 Showa Electric Wire & Cable Co Ltd Heat-resistant electrically insulated coil and manufacture thereof
JPS63318718A (en) * 1987-06-22 1988-12-27 Toshiba Corp Heat-resistant insulated coil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025750A1 (en) * 1995-02-14 1996-08-22 Sundstrand Corporation High temperature electrical insulation system
EP2410533A1 (en) * 2010-07-23 2012-01-25 Societe De Mecanique Magnetique Watertight electrical connection for rotating machine
FR2963154A1 (en) * 2010-07-23 2012-01-27 Mecanique Magnetique Sa ELECTRIC APPARATUS WITH SEALED CONNECTIONS AND METHOD OF MANUFACTURE
US8927864B2 (en) 2010-07-23 2015-01-06 Skf Magnetic Mechatronics Electrical appliance with leaktight connections, and a method of fabrication

Similar Documents

Publication Publication Date Title
US6700273B1 (en) Gas transfer machine
US8581452B2 (en) Motor for high temperature applications
US4504098A (en) Electromagnetic bearing for high temperature environment
US2391313A (en) Pyromagnetic motor
US20220045581A1 (en) Method for producing a rotor for an electric rotating machine
JPH04334946A (en) Bearing coil and sensor coil for high temperature magnetic bearing device
JP3670494B2 (en) Electric machine
US3783502A (en) Method of making high speed homopolar generator with straight winding construction
KR20140119716A (en) Surface modified magnetic material
JP2618296B2 (en) Electromagnetic stator
JPH104641A (en) Stator for rotary machine
JPS63196016A (en) Superconducting coil
JPH06249286A (en) Vibration restraining device for rotor
JP3497700B2 (en) Servomotor
JPH03289344A (en) Superconducting motor
JPH01209942A (en) Permanent magnet rotor
JP2012501444A (en) High temperature electronics for passive eddy current sensors.
US2932752A (en) Torque motors
US20100045121A1 (en) Motor for high temperature applications
JPH0628915A (en) Wire rod made of conductive high polymer material and coil using same
JPH08200366A (en) Magnetic bearing
US9537375B2 (en) Thermal conductor for use in an electric machine and method of forming the same
KR101891148B1 (en) Improved high-voltage electrical power generator with elongated coil stator and double-sided magnet rotor
KR101849174B1 (en) Improved high-voltage electrical power generator with elongated coil stators
JPS6126460A (en) Permanent magnet rotor