JPH04334020A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04334020A
JPH04334020A JP10529091A JP10529091A JPH04334020A JP H04334020 A JPH04334020 A JP H04334020A JP 10529091 A JP10529091 A JP 10529091A JP 10529091 A JP10529091 A JP 10529091A JP H04334020 A JPH04334020 A JP H04334020A
Authority
JP
Japan
Prior art keywords
film
melting point
high melting
point metal
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10529091A
Other languages
Japanese (ja)
Inventor
Atsuo Fushida
伏田 篤郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10529091A priority Critical patent/JPH04334020A/en
Publication of JPH04334020A publication Critical patent/JPH04334020A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To reduce the resistance of a contact by a simple process which does not require any heat treatment, wet etching process, etc., by depositing a high melting point metal nitride film in an N2 atmosphere by switching the atmosphere to the N2 atmosphere after a high melting point metal film is deposited in an Ar atmosphere, and then, successively forming a silicide film by performing heat treatment on the nitride film without breaking the vacuum condition. CONSTITUTION:A semiconductor device is manufactured by bringing an electrode metallic film into contact with an Si substrate 1 with an insulating film 2 having a contact hole 3 on the surface. At the time of manufacturing the semiconductor device, a high melting point metal nitride film 5 is formed on a high melting point metal film 4 in an N2 atmosphere by switching the atmosphere to the N2 atmosphere after forming at least the film 4 on an Si substrate 1 in an Ar atmosphere. Then the substrate l is heat-treated without breaking the vacuum condition and the silicide film 6 of the high melting point metal is selectively formed at the contact section between the substrate 1 and film 5 in the contact hole 3. After forming the film 6, an electrode wiring film 7 is formed on the film 6.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,半導体装置の電極配線
構造,特に,メタルとシリコンのコンタクト構造の形成
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode wiring structure for a semiconductor device, and more particularly to a method for forming a contact structure between metal and silicon.

【0002】LSIなどの半導体装置の微細化は急速に
進展しつつあり,それに伴って,コンタクト部分の低抵
抗化,即ち,コンタクト抵抗や拡散層の低抵抗化,また
,浅い不純物拡散層の形成,更にまた,セルフアライメ
ント方式の有効な利用などが重要な問題となっており,
そのような問題に対処できる技術が必要とされている。
[0002] The miniaturization of semiconductor devices such as LSI is progressing rapidly, and along with this, the resistance of the contact portion, that is, the contact resistance and the resistance of the diffusion layer, is reduced, and the formation of a shallow impurity diffusion layer is required. , Furthermore, the effective use of self-alignment methods has become an important issue.
There is a need for technology that can deal with such problems.

【0003】0003

【従来の技術】図4は従来例の説明図である。図におい
て,31はSi基板, 32はSiO2膜, 33はコ
ンタクトホール, 34はTi膜, 35はTi5Si
3膜, 36は TiSi2膜である。
2. Description of the Related Art FIG. 4 is an explanatory diagram of a conventional example. In the figure, 31 is a Si substrate, 32 is a SiO2 film, 33 is a contact hole, 34 is a Ti film, and 35 is a Ti5Si film.
3 and 36 are TiSi2 films.

【0004】従来の半導体装置においては,メタルとシ
リコン(Si)のコンタクト部分においては, 金属配
線材料, 或いは, 高融点金属がSi基板と直接に接
している場合が多い。
In conventional semiconductor devices, in the contact portion between metal and silicon (Si), the metal wiring material or the high melting point metal is often in direct contact with the Si substrate.

【0005】ところが, 半導体素子の微細化に伴い,
 従来よりも浅い不純物拡散層の形成が行われると, 
コンタクト抵抗の増加, 接合破壊などが問題となる。
However, with the miniaturization of semiconductor devices,
When an impurity diffusion layer is formed shallower than before,
Problems include increased contact resistance and junction breakdown.

【0006】[0006]

【発明が解決しようとする課題】そこで,セルフアライ
メント方式によるメタルとメタルシリサイドのコンタク
ト構造,特に,チタンシリサイド(TiSi2) とS
iのコンタクト構造の形成については,図4に示すよう
に,次のようなプロセスが提案されている。
[Problem to be solved by the invention] Therefore, a contact structure between metal and metal silicide using a self-alignment method, especially titanium silicide (TiSi2) and S
Regarding the formation of the contact structure of i, as shown in FIG. 4, the following process has been proposed.

【0007】即ち,図4(a)に示すように,二酸化シ
リコン(SiO2)膜32で被覆され, コンタクトホ
ール33が形成されたSi基板31上にチタン(Ti)
膜34をスパッタにより被覆形成する。
That is, as shown in FIG. 4(a), titanium (Ti) is deposited on a Si substrate 31 covered with a silicon dioxide (SiO2) film 32 and in which a contact hole 33 is formed.
A film 34 is formed by sputtering.

【0008】図4(b)に示すように,ラピッド・サー
マル・アニール(RTA) 等のランプ加熱処理により
TiとSiの固相反応を利用して, コンタクトホール
33内のTiとSiのコンタクト部分にのみ, チタン
リッチなシリサイド(Ti5Si3 , TiSi)膜
35を形成する。
As shown in FIG. 4(b), the contact portion between Ti and Si in the contact hole 33 is formed by utilizing the solid phase reaction between Ti and Si through lamp heat treatment such as rapid thermal annealing (RTA). A titanium-rich silicide (Ti5Si3, TiSi) film 35 is formed only in this region.

【0009】次に, 図4(c)に示すように,SiO
2膜32上の未反応のTi膜34を過酸化水素とアンモ
ニア水により, ウエットエッチングで除去する。再び
, 図4(d)に示すように,RTA 等のランプ加熱
処理を行い, チタンリッチなシリサイド膜35から,
 チタンダイシリサイド(TiSi2) 膜36を形成
する。
Next, as shown in FIG. 4(c), SiO
The unreacted Ti film 34 on the second film 32 is removed by wet etching using hydrogen peroxide and aqueous ammonia. Again, as shown in FIG. 4(d), a lamp heat treatment such as RTA is performed to remove the titanium-rich silicide film 35.
A titanium disilicide (TiSi2) film 36 is formed.

【0010】しかし, Ti膜34形成後の熱処理や,
 ウエットエッチング処理等, 工程数の増加や, S
i基板のハンドリングの煩わしさ, プロセス条件の複
雑化等の幾つかの問題点が生じ, このことにより, 
生産効率及び半導体装置の信頼性が低下する。
However, the heat treatment after forming the Ti film 34,
Increasing the number of processes such as wet etching treatment, etc.
Several problems have arisen, such as the hassle of handling the i-board and the complexity of process conditions.
Production efficiency and reliability of semiconductor devices decrease.

【0011】本発明は, 上記の問題点に鑑み, 熱処
理やウエットエッチング処理等のない簡単な工程で低抵
抗化を実現する手段を得ることを目的として提供される
ものである。
[0011] In view of the above-mentioned problems, the present invention is provided for the purpose of providing a means for realizing low resistance through a simple process that does not require heat treatment, wet etching, or the like.

【0012】0012

【課題を解決するための手段】図1は本発明の原理説明
図である。図において,1はSi基板,2は絶縁膜,3
はコンタクトホール,4は高融点金属, 5は高融点金
属窒化膜,6は高融点金属シリサイド膜,7は電極配線
膜である。
[Means for Solving the Problems] FIG. 1 is a diagram illustrating the principle of the present invention. In the figure, 1 is a Si substrate, 2 is an insulating film, and 3 is a Si substrate.
4 is a contact hole, 4 is a high melting point metal, 5 is a high melting point metal nitride film, 6 is a high melting point metal silicide film, and 7 is an electrode wiring film.

【0013】上記の問題点を解決するためには, Ti
のような高融点金属をアルゴン(Ar)雰囲気中にてス
パッタさせて, Si基板上に堆積させ, 次に, 反
応ガスをArから, 窒素(N2)に切替え, N2を
主体とする雰囲気中で, 上層に窒化チタン(TiN)
 を堆積させて, Ti/TiN 構造を形成し, 次
に, 真空を破ることなく連続的に熱処理して, 選択
的にメタル/Siのコンタクト部分に高融点金属のシリ
サイドを形成すれば良い。
[0013] In order to solve the above problems, Ti
A high-melting point metal such as is deposited on a Si substrate by sputtering in an argon (Ar) atmosphere, and then the reaction gas is switched from Ar to nitrogen (N2) and deposited in an atmosphere mainly composed of N2. , Titanium nitride (TiN) on the upper layer
is deposited to form a Ti/TiN structure, and then heat-treated continuously without breaking the vacuum to selectively form refractory metal silicide at the metal/Si contact area.

【0014】即ち,本発明の目的は,図1(a)に示す
ような,コンタクトホール3を有する絶縁膜2が表面に
形成されたシリコン基板1と電極金属膜とのコンタクト
をとる半導体装置の製造法において,図1(b)に示す
ように,Ar雰囲気中で, 少なくとも該Si基板1上
に高融点金属膜4を堆積する工程と,次に, 図1(c
)に示すように,該Ar雰囲気をN2雰囲気に切替え,
 該N2雰囲気気中で該高融点金属膜4上に高融点金属
窒化膜5を積層する工程と,続いて, 図1(d)に示
すように,真空を破ることなく, 該Si基板1を熱処
理し, 選択的に該コンタクトホール3内の該Si基板
1と高融点金属窒化膜5のコンタクト部分に高融点金属
シリサイド膜6を形成する工程と,しかる後に, 図1
(e)に示すように,該高融点金属シリサイド膜6上に
電極配線膜7を形成する工程とを含むことにより達成さ
れる。
That is, an object of the present invention is to provide a semiconductor device as shown in FIG. 1(a) in which a silicon substrate 1 on which an insulating film 2 having a contact hole 3 is formed makes contact with an electrode metal film. The manufacturing method includes a step of depositing a high melting point metal film 4 on at least the Si substrate 1 in an Ar atmosphere, as shown in FIG.
), the Ar atmosphere was switched to N2 atmosphere,
A process of laminating a high melting point metal nitride film 5 on the high melting point metal film 4 in the N2 atmosphere, and then, as shown in FIG. 1(d), the Si substrate 1 is laminated without breaking the vacuum. A heat treatment step is performed to selectively form a high melting point metal silicide film 6 on the contact portion between the Si substrate 1 and the high melting point metal nitride film 5 in the contact hole 3, and then, as shown in FIG.
As shown in (e), this is achieved by including the step of forming an electrode wiring film 7 on the high melting point metal silicide film 6.

【0015】[0015]

【作用】本発明による工程によって,Ti膜上に形成さ
れた TiN膜は, スパッタガスとしてN2ガスのみ
を使用し, プロセス中の圧力を比較的高くし, Si
基板の加熱を行わずに形成しているために, TiN 
膜中に過飽和のN2が多く含まれている。
[Operation] The TiN film formed on the Ti film by the process according to the present invention uses only N2 gas as the sputtering gas and relatively high pressure during the process.
Because it is formed without heating the substrate, TiN
The film contains a large amount of supersaturated N2.

【0016】従って, その後の熱処理で, Tiと基
板Siの直接接している部分で起こるシリサイド反応は
, 上層にあるN2リッチな TiN膜中に含まれる過
飽和のN2が, 下層のTi膜中に拡散するので, 基
板中のSiを過度に消失することなく, コンタクト部
分に選択的に TiSi2を形成することができる。
[0016] Therefore, during the subsequent heat treatment, the silicide reaction that occurs in the area where Ti and the substrate Si are in direct contact is caused by the supersaturated N2 contained in the upper N2-rich TiN film diffusing into the lower Ti film. Therefore, TiSi2 can be selectively formed in the contact area without excessive loss of Si in the substrate.

【0017】本発明によれば, 上述の従来例の工程で
示した TiSi2とSiのコンタクト構造の形成時に
生ずる問題をクリアでき, 熱処理やウエットエッチン
グ処理等のプロセスを省略することができる。
According to the present invention, it is possible to overcome the problems that occur during the formation of the TiSi2 and Si contact structure shown in the conventional process described above, and processes such as heat treatment and wet etching can be omitted.

【0018】[0018]

【実施例】図2は本発明の一実施例の工程順模式断面図
,図3は本発明の実施例に用いた装置の模式構造図であ
る。
Embodiment FIG. 2 is a schematic cross-sectional view of the steps of an embodiment of the present invention, and FIG. 3 is a schematic structural diagram of an apparatus used in the embodiment of the present invention.

【0019】図において,8はSi基板,9はSiO2
膜,10はコンタクトホール,11はTi膜, 12は
 TiN膜, 13は TiSi2膜, 14はAl合
金膜, 15はチャンバ, 16はランプヒータ, 1
7はTiターゲット, 18はArガス導入口, 19
はN2ガス導入口, 20はDC電源, 21は排気口
, 22は基板搬出入用チャンバ, 23はロードロッ
ク, 24はハンドラー室, 25はロボットハンドラ
ー, 26はチャンバA, 27はチャンバB  28
はチャンバC, 29はチャンバD,30はチャンバE
である。
In the figure, 8 is a Si substrate, 9 is a SiO2
10 is a contact hole, 11 is a Ti film, 12 is a TiN film, 13 is a TiSi2 film, 14 is an Al alloy film, 15 is a chamber, 16 is a lamp heater, 1
7 is a Ti target, 18 is an Ar gas inlet, 19
is a N2 gas inlet, 20 is a DC power supply, 21 is an exhaust port, 22 is a chamber for loading and unloading substrates, 23 is a load lock, 24 is a handler room, 25 is a robot handler, 26 is a chamber A, 27 is a chamber B 28
is chamber C, 29 is chamber D, and 30 is chamber E.
It is.

【0020】図2は本発明をAl合金膜の電極配線層と
Si基板とのコンタクト部にバリアメタルとして,低抵
抗の TiSi2膜を用いた例である。本発明のプロセ
スは,図3(a)に示す装置を使用した。
FIG. 2 shows an example of the present invention in which a low-resistance TiSi2 film is used as a barrier metal in the contact portion between the electrode wiring layer of the Al alloy film and the Si substrate. The process of the present invention used the apparatus shown in FIG. 3(a).

【0021】図2(a)に示すように,コンタクト領域
にコンタクト用の高濃度拡散を行ったSi基板8上に1
μmの厚さにSiO2膜9を形成する。このSiO2膜
9を,図示しないレジスト膜をマスクとしてドライエッ
チングによりパターニングして,コンタクトホール10
を形成する。
As shown in FIG. 2(a), a silicon substrate 8 is formed on a Si substrate 8 in which high concentration diffusion for contacting is performed in the contact region.
A SiO2 film 9 is formed to a thickness of μm. This SiO2 film 9 is patterned by dry etching using a resist film (not shown) as a mask to form contact holes 10.
form.

【0022】このSi基板8のコンタクトホール10内
の自然酸化膜を希弗酸系の水溶液でウエットエッチング
して除去した後, Si基板8を図3(a)に示す装置
にセットする。
After removing the natural oxide film in the contact hole 10 of the Si substrate 8 by wet etching with a dilute hydrofluoric acid-based aqueous solution, the Si substrate 8 is set in the apparatus shown in FIG. 3(a).

【0023】図2(b)に示すように,Si基板8上に
Ti膜11をスパッタにより 500Åの厚さに被覆す
る。Ti膜11のスパッタ条件はDC出力が 500W
,Arガス流量30sccm,チャンバ内ガス圧力2.
0mTorrで行った。
As shown in FIG. 2(b), a Ti film 11 is coated on the Si substrate 8 to a thickness of 500 Å by sputtering. The sputtering conditions for the Ti film 11 are a DC output of 500W.
, Ar gas flow rate 30 sccm, chamber gas pressure 2.
The test was conducted at 0 mTorr.

【0024】次に,図2(c)に示すように,反応ガス
をArからN2に切替え, N2を主体とする雰囲気に
て, Si基板8上に TiN膜12を 1,000Å
の厚さに堆積して, Ti/TiN 構造を形成する。
Next, as shown in FIG. 2(c), the reaction gas was switched from Ar to N2, and a TiN film 12 with a thickness of 1,000 Å was deposited on the Si substrate 8 in an atmosphere mainly composed of N2.
to form a Ti/TiN structure.

【0025】TiN 膜12のスパッタ条件はDC出力
が 500W,N2ガス流量150sccm,  チャ
ンバ内ガス圧力10mTorrで行った。次に,図2(
d)に示すように,RTA により,700℃の熱処理
を30秒行うと, Si基板8にコンタクトする部分の
 TiN膜12にSi基板8よりSiが拡散して,Ti
Si2 膜13が形成される。
The sputtering conditions for the TiN film 12 were a DC output of 500 W, a N2 gas flow rate of 150 sccm, and a chamber gas pressure of 10 mTorr. Next, Figure 2 (
As shown in d), when heat treatment is performed at 700°C for 30 seconds by RTA, Si diffuses from the Si substrate 8 into the TiN film 12 in the portion that contacts the Si substrate 8, and the Ti
A Si2 film 13 is formed.

【0026】また,同時にSiO2膜9上の薄いTi膜
11にも, 上層の TiN膜12から窒素原子(N)
が拡散して, 全体が TiN膜12になる。最後に,
 図2(e)に示すように別のスパッタ装置を用いて,
 Si基板8上に銅(Cu)及びSiを各1%含んだア
ルミニウム(Al)合金膜14を1μmの厚さに被覆し
,パタニングして,電極配線層を形成する。
At the same time, nitrogen atoms (N) are also deposited on the thin Ti film 11 on the SiO2 film 9 from the upper TiN film 12.
is diffused, and the whole becomes a TiN film 12. lastly,
As shown in Figure 2(e), using another sputtering device,
An aluminum (Al) alloy film 14 containing 1% each of copper (Cu) and Si is coated on the Si substrate 8 to a thickness of 1 μm and patterned to form an electrode wiring layer.

【0027】以上,Ti膜のスパッタから, チタンシ
リサイド膜の形成までを同一チャンバ内で行ったが, 
他の実施例として, 図3(b)に示すように,配線工
程を真空搬送の連続処理装置で行うもできる。
As described above, the steps from sputtering the Ti film to forming the titanium silicide film were performed in the same chamber.
As another embodiment, as shown in FIG. 3(b), the wiring process can be performed using a vacuum conveyance continuous processing apparatus.

【0028】即ち,図3(b)の装置の基板搬出入用チ
ャンバ22内にSi基板8をセットし,真空にした後,
ロードロック23を開いて, Si基板8をハンドラー
室24に搬送する。そして, ロボットハンドラー25
によりSi基板8を先ずチャンバA26にセットする。
That is, after setting the Si substrate 8 in the substrate loading/unloading chamber 22 of the apparatus shown in FIG. 3(b) and evacuating it,
The load lock 23 is opened and the Si substrate 8 is transported to the handler chamber 24. And robot handler 25
First, the Si substrate 8 is set in the chamber A26.

【0029】ここで, ArスパッタによりSi基板8
のコンタクトホール10内の自然酸化膜を除去する。そ
の後, 前述の搬送方法により, Si基板8をチャン
バB27内にセットし, 図2(b)に示すTi膜11
のスパッタを行う。
Here, the Si substrate 8 is sputtered by Ar sputtering.
The natural oxide film inside the contact hole 10 is removed. Thereafter, the Si substrate 8 is set in the chamber B27 by the above-mentioned transport method, and the Ti film 11 shown in FIG. 2(b) is placed.
Perform sputtering.

【0030】同様にして, チャンバC28内で Ti
N膜12のスパッタ, チャンバD29内でランプ加熱
による TiSi2膜13の形成, チャンバE30内
でAl合金膜14のスパッタを連続的に行う。
Similarly, in chamber C28, Ti
Sputtering of the N film 12, formation of the TiSi2 film 13 by lamp heating in the chamber D29, and sputtering of the Al alloy film 14 in the chamber E30 are successively performed.

【0031】このようにして, 真空を破ることなく,
 不活性ガス中で, Siと配線金属のコンタクト部分
の低抵抗化, ならびに熱的に安定な電極配線構造を形
成することができる。
[0031] In this way, without breaking the vacuum,
In an inert gas, it is possible to reduce the resistance of the contact area between Si and wiring metal, and to form a thermally stable electrode wiring structure.

【0032】[0032]

【発明の効果】以上説明したように, 本発明によれば
, 低抵抗,かつ,熱的に安定で,信頼性の高い金属と
Siのコンタクト構造を形成することが出来,素子の微
細化,高集積化にも寄与するところが大きい。
[Effects of the Invention] As explained above, according to the present invention, it is possible to form a contact structure between metal and Si that is low in resistance, thermally stable, and highly reliable. It also greatly contributes to higher integration.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の原理説明図[Figure 1] Diagram explaining the principle of the present invention

【図2】  本発明の一実施例の工程順模式断面図[Fig. 2] Schematic sectional view of the process order of one embodiment of the present invention

【図
3】  本発明の実施例に用いた装置の模式構造図
[Figure 3] Schematic structural diagram of the device used in the examples of the present invention

【図
4】  従来例の説明図
[Figure 4] Explanatory diagram of conventional example

【符号の説明】[Explanation of symbols]

1  Si基板 2  絶縁膜 3  コンタクトホール 4  高融点金属 5  高融点金属窒化膜 6  高融点金属シリサイド膜 7  電極配線膜 8  Si基板 9  SiO2膜 10  コンタクトホール 11  Ti膜 12   TiN膜 13   TiSi2膜 14  Al合金膜 15  チャンバ 16  ランプヒータ 17  Tiターゲット 18  Arガス導入口 19  N2ガス導入口 20  DC電源 21  排気口 22  基板搬出入用チャンバ 23  ロードロック 24  ハンドラー室 25  ロボットハンドラー 26  チャンバA 27  チャンバB 28  チャンバC 29  チャンバD 30  チャンバEである。 1 Si substrate 2 Insulating film 3 Contact hole 4 High melting point metal 5 High melting point metal nitride film 6 High melting point metal silicide film 7 Electrode wiring film 8 Si substrate 9 SiO2 film 10 Contact hole 11 Ti film 12 TiN film 13 TiSi2 film 14 Al alloy film 15 Chamber 16 Lamp heater 17 Ti target 18 Ar gas inlet 19 N2 gas inlet 20 DC power supply 21 Exhaust port 22 Chamber for loading and unloading substrates 23 Load lock 24 Handler room 25 Robot handler 26 Chamber A 27 Chamber B 28 Chamber C 29 Chamber D 30 Chamber E.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  コンタクトホール(3) を有する絶
縁膜(2) が表面に形成されたシリコン基板(1) 
と電極金属膜とのコンタクトをとる半導体装置の製造法
において,アルゴン雰囲気中で, 少なくとも該シリコ
ン基板(1) 上に高融点金属膜(4) を堆積する工
程と,次に, 該アルゴン雰囲気を窒素雰囲気に切替え
, 該窒素雰囲気中で該高融点金属膜(4) 上に高融
点金属窒化膜(5) を積層する工程と,続いて, 真
空を破ることなく, 該シリコン基板(1) を熱処理
し, 選択的に該コンタクトホール(3) 内の該シリ
コン基板(1) と高融点金属窒化膜(5) のコンタ
クト部分に高融点金属シリサイド膜(6) を形成する
工程と,しかる後に, 該高融点金属シリサイド膜(6
) 上に電極配線膜(7) を形成する工程とを含むこ
とを特徴とする半導体装置の製造方法。
[Claim 1] A silicon substrate (1) on which an insulating film (2) having a contact hole (3) is formed.
A method for manufacturing a semiconductor device that makes contact with an electrode metal film includes a step of depositing a high melting point metal film (4) on at least the silicon substrate (1) in an argon atmosphere, and then removing the argon atmosphere. Switching to a nitrogen atmosphere, stacking a high melting point metal nitride film (5) on the high melting point metal film (4) in the nitrogen atmosphere, and then depositing the silicon substrate (1) on the high melting point metal film (4) without breaking the vacuum. a step of heat treatment and selectively forming a high melting point metal silicide film (6) at the contact portion between the silicon substrate (1) and the high melting point metal nitride film (5) in the contact hole (3); The high melting point metal silicide film (6
) Forming an electrode wiring film (7) thereon.
JP10529091A 1991-05-10 1991-05-10 Manufacture of semiconductor device Withdrawn JPH04334020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10529091A JPH04334020A (en) 1991-05-10 1991-05-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10529091A JPH04334020A (en) 1991-05-10 1991-05-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04334020A true JPH04334020A (en) 1992-11-20

Family

ID=14403557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10529091A Withdrawn JPH04334020A (en) 1991-05-10 1991-05-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04334020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186105A (en) * 1995-10-28 1997-07-15 Nec Corp Semiconductor device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186105A (en) * 1995-10-28 1997-07-15 Nec Corp Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
US4923822A (en) Method of fabricating a semiconductor device by capping a conductive layer with a nitride layer
EP0452921A2 (en) Formation of titanium nitride on semiconductor wafer by reaction of titanium with nitrogen-bearing gas in an integrated processing system
JPH01252763A (en) Formation of metal silicide
JPH04259242A (en) Manufacture of semiconductor device
US6136691A (en) In situ plasma clean for tungsten etching back
JPH08250716A (en) Method and device for manufacturing semiconductor device
JP2002026021A (en) Method of forming metal pattern of semiconductor device
JPH04334020A (en) Manufacture of semiconductor device
JP3400737B2 (en) Method for manufacturing semiconductor device
US5885898A (en) Method for forming diffusion barrier layer
US6207562B1 (en) Method of forming titanium silicide
JP3545744B2 (en) Method for manufacturing semiconductor device
JP3109091B2 (en) Method for manufacturing semiconductor device
JPH05166753A (en) Barrier metal process for submicron contact
JP2906489B2 (en) Method for manufacturing semiconductor device
JPH1045416A (en) Formation of cobalt silicide film
JP3067433B2 (en) Method for manufacturing semiconductor device
JP3258934B2 (en) Improved method for producing self-aligned silicides
JP3321896B2 (en) Al-based material forming method, Al-based wiring structure, method of manufacturing semiconductor device, and semiconductor device
JP2747217B2 (en) Method for manufacturing semiconductor device
JP2730499B2 (en) Method for manufacturing semiconductor device
KR970000706B1 (en) Metalizing method of semiconductor device
JPH04216622A (en) Manufacture of semiconductor device
KR100200484B1 (en) Forming method for metal wiring in semiconductor device
JPH05160068A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806