JPH04332481A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH04332481A
JPH04332481A JP3130686A JP13068691A JPH04332481A JP H04332481 A JPH04332481 A JP H04332481A JP 3130686 A JP3130686 A JP 3130686A JP 13068691 A JP13068691 A JP 13068691A JP H04332481 A JPH04332481 A JP H04332481A
Authority
JP
Japan
Prior art keywords
battery
center pin
electrode
center
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3130686A
Other languages
Japanese (ja)
Other versions
JP3143951B2 (en
Inventor
Susumu Harada
晋 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15040198&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04332481(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP03130686A priority Critical patent/JP3143951B2/en
Publication of JPH04332481A publication Critical patent/JPH04332481A/en
Application granted granted Critical
Publication of JP3143951B2 publication Critical patent/JP3143951B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To facilitate work and improve a battery strength by containing, in a battery case, an electrode comprising a negative pole and a positive pole laminated and wound spirally through a separator and containing a hollow center pin made of metal in a hollow part at the center of the electrode. CONSTITUTION:An electrode comprising a negative pole 1 and a positive pole 3 laminated and wound spirally through a separator 3 is contained in a battery case 5. Next, an insulation plate 4 is disposed on each of the upper and lower surface of the electrode, and a positive pole lead 12 is welded on a battery cover 7, and a negative lead 11 is welded on the case 5. After injecting electrolyte next, a tapered hollow center pin 8 made of stainless steel is inserted in the hollow part at the center of the electrode. The case 5 is then caulked through an insulation seal gasket 6, so that the cover 7 may be fixed, and a battery is formed with sealability inside the case 5 maintained. By thus forming the center pin out of metal, a defective rate in the case of insertion can be reduced, and also a battery strength can be improved, so as to enhance safety.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は非水電解液二次電池に関
し、特に電極が渦巻式電極である非水電解液二次電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery whose electrodes are spiral electrodes.

【0002】0002

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小型・軽量化を次々と実現させている。それに
伴い、移動用電源としての電池に対しても益々小型・軽
量且つ高エネルギー密度のものが求められるようになっ
てきている。
2. Description of the Related Art The remarkable progress in electronic technology in recent years has led to successive reductions in the size and weight of electronic devices. Along with this, batteries as mobile power sources are increasingly required to be smaller, lighter, and have higher energy density.

【0003】従来、一般用途の二次電池としては鉛電池
、ニッケル・カドミウム電池等の水溶液系電池が主流で
あった。しかし、これらの二次電池はサイクル特性には
優れるものの、電池重量やエネルギー密度の点では十分
満足できるものとは言えない。
Conventionally, aqueous batteries such as lead batteries and nickel-cadmium batteries have been mainstream as secondary batteries for general use. However, although these secondary batteries have excellent cycle characteristics, they are not fully satisfactory in terms of battery weight and energy density.

【0004】そこで、最近、このような鉛電池等の水溶
液系二次電池に代わる二次電池としてリチウムあるいは
リチウム合金を負極に用いた非水電解液二次電池、さら
には、炭素質材料等のリチウムをドープ/脱ドープし得
る材料を負極に使用した非水電解液二次電池が提案され
ている。これらの非水電解液二次電池は、高エネルギー
密度を有し、自己放電も少なく、しかも軽量という移動
用電源として優れた特性を有するものであり、たとえば
ビデオ・カメラやラップ・トップ・パソコン等の機器用
電源としての使用が期待されている。
[0004]Recently, nonaqueous electrolyte secondary batteries using lithium or lithium alloy as the negative electrode, as well as carbonaceous materials and other secondary batteries, have been developed to replace aqueous secondary batteries such as lead batteries. Non-aqueous electrolyte secondary batteries have been proposed in which a material that can be doped/undoped with lithium is used for the negative electrode. These non-aqueous electrolyte secondary batteries have high energy density, low self-discharge, and are lightweight, making them excellent as mobile power sources, such as for video cameras, laptops, personal computers, etc. It is expected that it will be used as a power source for equipment.

【0005】ところで、ビデオ・カメラ等の機器は比較
的消費電流が大きいため、これらの機器に使用される電
源としてもその消費電流に対応できることが要求される
。そして、そのような要求に応える非水電解液二次電池
として、渦巻式電極を使用する非水電解液二次電池が提
案されている。
By the way, since devices such as video cameras consume relatively large amounts of current, the power supplies used in these devices are required to be able to cope with the current consumption. As a nonaqueous electrolyte secondary battery that meets such demands, a nonaqueous electrolyte secondary battery using a spiral electrode has been proposed.

【0006】この非水電解液二次電池に使用される渦巻
式電極は、たとえば帯状の正極と負極とをセパレータを
介して、負極,セパレータ,正極,セパレータの順に4
層に積層させ、この4層構造の積層電極体を、巻取り芯
を中心にして渦巻き状に多数回巻回した後、上記巻取り
芯を除去して得られるものである。この渦巻式電極は、
電極面積が大きく、重負荷に耐えられることから、大供
給電流が要求される電池の電極として適している。
[0006] The spiral electrode used in this non-aqueous electrolyte secondary battery has, for example, a strip-shaped positive electrode and a negative electrode interposed in the order of negative electrode, separator, positive electrode, and separator.
It is obtained by stacking the four-layered electrode body in a spiral manner a number of times around a winding core, and then removing the winding core. This spiral electrode is
Since the electrode area is large and it can withstand heavy loads, it is suitable as an electrode for batteries that require a large supply current.

【0007】しかしながら、この電極が渦巻式電極構造
である非水電解液二次電池においては、充放電の繰り返
しに伴って電池中心部に内部短絡が生じる場合があると
いった問題を有している。すなわち、上記非水電解液二
次電池では、充放電の繰り返しによって電極の体積が増
加するという現象が見られる。ここで、渦巻式電極は、
金属製缶内に収納されているので外方には膨張する事は
できないが、中心部は巻取り芯除去後の空隙を有してい
るため、体積増加量はこの空隙を有する中心部に集中す
ることとなる。そうなると、電極中心部付近の電極が変
形してセパレーターを突き破り、その結果、正極板と負
極板が接触して内部短絡を起こすといった不都合が生じ
ることとなる。
However, nonaqueous electrolyte secondary batteries in which the electrodes have a spiral electrode structure have a problem in that internal short circuits may occur in the center of the battery due to repeated charging and discharging. That is, in the non-aqueous electrolyte secondary battery described above, a phenomenon is observed in which the volume of the electrode increases due to repeated charging and discharging. Here, the spiral electrode is
Since it is housed in a metal can, it cannot expand outward, but since there is a void in the center after the winding core is removed, the volume increase is concentrated in the center with this void. I will do it. In this case, the electrode near the center of the electrode deforms and breaks through the separator, resulting in the inconvenience that the positive electrode plate and the negative electrode plate come into contact and cause an internal short circuit.

【0008】このような非水電解液二次電池の電極中心
部が変形することによって生ずる内部短絡を防止するた
めに、たとえば特開平1−175176号公報において
、中心空隙部に絶縁体よりなる棒状のセンターピンを設
け、中心部の変形を抑えた非水電解液二次電池が提案さ
れている。しかしながら、上記非水電解液二次電池では
、センターピンを中心空隙部に挿入する際に電解液が溢
れる場合があり、作業性が悪いといった問題を有してい
た。
In order to prevent internal short circuits caused by deformation of the electrode center of such a non-aqueous electrolyte secondary battery, for example, in Japanese Patent Application Laid-Open No. 1-175176, a rod-shaped insulator made of an insulator is installed in the center gap. A nonaqueous electrolyte secondary battery has been proposed that has a center pin to suppress deformation of the center. However, the non-aqueous electrolyte secondary battery has a problem in that the electrolyte sometimes overflows when inserting the center pin into the central gap, resulting in poor workability.

【0009】そこで、このような電解液の溢れを防止す
るために、絶縁体よりなる中空筒状センターピンを使用
した非水電解液二次電池が実開平1−155262号公
報において開示されている。この非水電解液二次電池で
は、センターピンが中空筒状であるので、センターピン
挿入時の電解液の溢れ防止され、良好な作業性を得るこ
とができる。
In order to prevent such electrolyte overflow, a non-aqueous electrolyte secondary battery using a hollow cylindrical center pin made of an insulator is disclosed in Japanese Utility Model Application Publication No. 1-155262. . In this non-aqueous electrolyte secondary battery, since the center pin has a hollow cylindrical shape, the electrolyte is prevented from overflowing when the center pin is inserted, and good workability can be obtained.

【0010】0010

【発明が解決しようとする課題】しかしながら、中空筒
状の絶縁体は、加圧や熱によって変形して曲がりを生じ
たり、製造時にゲートバリが発生するため、挿入する際
に位置ズレが生じたり、あるいはセパレーターに引っか
かるといったことがしばしば起こる。このため、センタ
ーピンの挿入とともにセパレーターに皺よりや折り返し
が発生し、センターピンとセパレーターのクリアランス
が無くなってセンターピンが完全に挿入されないといっ
た挿入不良が生じ易い。また、絶縁体よりなる中空筒状
のセンターピンは、重量が軽いために自重では中心空隙
部内に挿入されず、挿入する際には、センターピンを挿
入方向に加圧することが必要となる。このため、挿入操
作が複雑となり、電池の生産性を上げるのが困難となる
。さらに、絶縁体よりなる中空筒状センターピンは、強
度が不十分であるために、電池に外部から高圧が加えら
れた場合に破損あるいは変形を生じ、その結果電池の封
口部等が変形して電解液が漏れるといった問題を有して
いる。
[Problems to be Solved by the Invention] However, hollow cylindrical insulators are deformed and bent by pressure or heat, and gate burrs are generated during manufacturing, resulting in misalignment when inserted. Or it often gets caught in the separator. For this reason, when the center pin is inserted, the separator is wrinkled or folded back, and the clearance between the center pin and the separator is lost, which tends to cause insertion failure such as the center pin not being completely inserted. Further, since the hollow cylindrical center pin made of an insulator is light in weight, it cannot be inserted into the center gap by its own weight, and when it is inserted, it is necessary to pressurize the center pin in the insertion direction. This complicates the insertion operation and makes it difficult to increase battery productivity. Furthermore, since the hollow cylindrical center pin made of an insulator has insufficient strength, it may break or deform when high pressure is applied to the battery from the outside, resulting in deformation of the battery's sealing part, etc. The problem is that the electrolyte leaks.

【0011】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであり、センターピンを挿入する
際の挿入不良の発生頻度が低く、高い生産性が得られる
とともに外部から高圧がかかった場合でも変形し難い、
安全性の高い非水電解液二次電池を提供することを目的
とする。
[0011] The present invention was proposed in view of these conventional circumstances, and it reduces the frequency of occurrence of incorrect insertion when inserting a center pin, provides high productivity, and eliminates high pressure from the outside. It is difficult to deform even if it is damaged,
The purpose is to provide a highly safe non-aqueous electrolyte secondary battery.

【0012】0012

【課題を解決するための手段】上述の課題を達成するた
めに、本発明の非水電解液二次電池は、収納缶内に、負
極と正極とがセパレータを介して渦巻き状に積層巻回さ
れてなる巻回体と、該巻回体の中心空隙部に配設された
中空筒状のセンターピンとを収納してなる非水電解液二
次電池において、上記センターピンが金属より構成され
ていることを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above-mentioned problems, the non-aqueous electrolyte secondary battery of the present invention has a negative electrode and a positive electrode spirally stacked and wound in a storage can with a separator interposed therebetween. A non-aqueous electrolyte secondary battery that houses a wound body made of a metal material and a hollow cylindrical center pin disposed in a central gap of the wound body, wherein the center pin is made of metal. It is characterized by the presence of

【0013】本発明の非水電解液二次電池において、セ
ンターピンは、電極中心部への挿入性および電池強度を
確保するために、金属により構成される。上記金属とし
ては、特に制限はなく、種々のものが使用可能であるが
、生産性、加工性、硬度及び耐食性に優れることから、
ステンレス、ニッケル、チタン、スチール等を使用する
ことが望ましい。
In the non-aqueous electrolyte secondary battery of the present invention, the center pin is made of metal in order to ensure insertability into the center of the electrode and battery strength. There are no particular restrictions on the above-mentioned metals, and various metals can be used.
It is preferable to use stainless steel, nickel, titanium, steel, etc.

【0014】また、上記金属よりなるセンターピンの形
状は、電解液の溢れを防止するために中空筒状とされる
。なお、この筒状とは、必ずしも完全な筒状でなくても
よく、たとえば、図4に示すように電池外周の1割以下
の隙間8aが存在するような筒形状であっても差し支え
ない。ここで、上記中空筒状のセンターピンの先端部は
、電極中心部への挿入を容易なものとするために、テー
パー状とする事が望ましい。また、上記センターピンの
長さは、内部短絡を防止する点からセパレーター幅より
短いことが好ましい。さらに、上記センターピンと電極
とを絶縁するために、渦巻式電極の最内周にセパレータ
等の絶縁体を配置するようにすることが望ましい。
Further, the center pin made of the metal mentioned above has a hollow cylindrical shape in order to prevent the electrolyte from overflowing. Note that this cylindrical shape does not necessarily have to be a perfect cylindrical shape, and may be, for example, a cylindrical shape in which a gap 8a of 10% or less of the outer circumference of the battery exists, as shown in FIG. Here, the tip of the hollow cylindrical center pin is preferably tapered to facilitate insertion into the center of the electrode. Further, the length of the center pin is preferably shorter than the separator width in order to prevent internal short circuits. Further, in order to insulate the center pin and the electrode, it is desirable to arrange an insulator such as a separator on the innermost periphery of the spiral electrode.

【0015】上記非水電解液二次電池において使用され
る負極としては、リチウム等のアルカリ金属や、充放電
反応に伴いリチウム等のアルカリ金属をドープ/脱ドー
プする材料を用いることができる。後者の例としては、
ポリアセチレン、ポリピロール等の導電性ポリマー、あ
るいはコークス、ポリマー炭、カーボン・ファイバー等
の炭素材料を用いることができるが、単位体積当りのエ
ネルギー密度が大きい点から、炭素質材料を使用するこ
とが望ましい。炭素質材料としては、熱分解炭素類、コ
ークス類(石油コークス、ピッチコークス、石炭コーク
ス等)、カーボンブラック(アセチレンブラック等)、
ガラス状炭素、有機高分子材料焼成体(有機高分子材料
を500℃以上の適当な温度で不活性ガス気流中、ある
いは真空中で焼成したもの)、炭素繊維等が用いられる
As the negative electrode used in the above non-aqueous electrolyte secondary battery, an alkali metal such as lithium or a material capable of doping/dedoping an alkali metal such as lithium during charge/discharge reactions can be used. An example of the latter is
Although conductive polymers such as polyacetylene and polypyrrole, or carbon materials such as coke, polymer charcoal, and carbon fibers can be used, it is preferable to use carbonaceous materials because of their high energy density per unit volume. Carbonaceous materials include pyrolytic carbons, cokes (petroleum coke, pitch coke, coal coke, etc.), carbon black (acetylene black, etc.),
Glassy carbon, an organic polymeric material fired body (organic polymeric material fired at an appropriate temperature of 500° C. or higher in an inert gas stream or in a vacuum), carbon fiber, etc. are used.

【0016】一方、正極としては、二酸化マンガン、五
酸化バナジウムのような遷移金属酸化物や、硫化鉄、硫
化チタンのような遷移金属カルコゲン化物、さらにはこ
れらとリチウムとの複合化合物などを用いることができ
る。特に、高電圧、高エネルギー密度が得られ、サイク
ル特性にも優れることから、リチウム・コバルト複合酸
化物やリチウム・コバルト・ニッケル複合酸化物が望ま
しい。
On the other hand, for the positive electrode, transition metal oxides such as manganese dioxide and vanadium pentoxide, transition metal chalcogenides such as iron sulfide and titanium sulfide, and composite compounds of these and lithium may be used. Can be done. In particular, lithium-cobalt composite oxides and lithium-cobalt-nickel composite oxides are desirable because they provide high voltage and high energy density and have excellent cycle characteristics.

【0017】また、電解液としては、例えばリチウム塩
を電解質とし、これを有機溶媒に溶解した電解液が用い
られる。ここで有機溶媒としては、特に限定されるもの
ではないが、例えばプロピレンカーボネート、エチレン
カーボネート、ジエチルカーボネート、1,2−ジメト
キシエタン、1,2−ジエトキシエタン、γ−ブチロラ
クトン、テトラヒドロフラン、1,3−ジオキソラン、
4−メチル−1,3−ジオキソラン、ジエチルエーテル
、スルホラン、メチルスルホラン、セトニトリル、プロ
ピオニトリル等の単独もしくは二種類以上の混合溶媒が
使用できる。電解質も従来より公知のものがいずれも使
用でき、LiClO4 、LiAsF6 、LiPF6
 、LiBF4 、LiB(C6 H5 )4 、Li
Cl、LiBr、CH3 SO3 LI、CF3 SO
3 Li等がある。
Further, as the electrolytic solution, for example, an electrolytic solution in which a lithium salt is used as an electrolyte and is dissolved in an organic solvent is used. Here, the organic solvent is not particularly limited, but for example, propylene carbonate, ethylene carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3 -dioxolane,
Single or mixed solvents such as 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, setonitrile, and propionitrile can be used. Any conventionally known electrolyte can be used, including LiClO4, LiAsF6, LiPF6
, LiBF4 , LiB(C6 H5 )4 , Li
Cl, LiBr, CH3 SO3 LI, CF3 SO
There are 3 Li etc.

【0018】[0018]

【作用】本発明の非水電解液二次電池は、収納缶内に渦
巻式電極と該渦巻式電極の中心空隙部に配設された金属
性の中空筒状のセンターピンとを収納してなる。電池に
おいて、強度は電池の芯となるセンターピンの材質に依
存することろが大きく、センターピンが硬い金属であれ
ば、電池の強度が確保されて変形が抑えられることとな
る。また、金属よりなるセンターピンは、金属が加工精
度が高くしかもセンターピン形状に加工した後にも、熱
,加圧による変形が生じ難いので、挿入時において所定
形状が維持される。したがって、センターピンを中心空
隙部に挿入する際にセンターピンがセパレータに引っか
かることがなく、センターピンの挿入不良の発生頻度が
低く抑えられる。さらに、上記センターピンは、合成樹
脂等よりなるセンターピンに比べて重量が重く、電極巻
心部に自重で落下して挿入される。このため、センター
ピン挿入時の加圧は、ほとんど不要となり、センターピ
ンの挿入操作が簡易化される。
[Operation] The non-aqueous electrolyte secondary battery of the present invention includes a spiral electrode and a metallic hollow cylindrical center pin disposed in the center gap of the spiral electrode in a storage can. . In a battery, the strength largely depends on the material of the center pin that forms the core of the battery, and if the center pin is made of a hard metal, the strength of the battery is ensured and deformation is suppressed. Further, the center pin made of metal has high processing accuracy and is not easily deformed by heat or pressure even after being processed into the shape of the center pin, so that the predetermined shape is maintained during insertion. Therefore, when inserting the center pin into the center gap, the center pin is not caught on the separator, and the frequency of occurrence of incorrect insertion of the center pin is suppressed. Furthermore, the center pin is heavier than a center pin made of synthetic resin or the like, and is inserted into the electrode winding core by falling under its own weight. Therefore, pressurization when inserting the center pin is almost unnecessary, and the operation of inserting the center pin is simplified.

【0019】[0019]

【実施例】以下に、本発明の好適な実施例について実験
結果に基づいて説明する。
EXAMPLES Preferred examples of the present invention will be described below based on experimental results.

【0020】実施例1 図1は本実施例の非水電解液二次電池の概略的な縦断面
を示すものであり、この電池を以下のようにして作成し
た。
Example 1 FIG. 1 shows a schematic longitudinal section of a non-aqueous electrolyte secondary battery of this example, and this battery was produced as follows.

【0021】まず、負極1は次のようにして作製した。 出発原料として石油ピッチを用い、これを焼成して粗粒
状のピッチコークスを得た。この粗粒状のピッチコーク
スを粉砕し、平均粒径40μmの粉末とし、続いて、こ
の粉末を不活性ガス中、1000℃にて再焼成して不純
物を除去し、コークス材料粉末を得た。このようにして
得たコークス材料粉末を負極活物質担持体とし、このコ
ークス材料粉末を90重量部、結着材としてポリフッ化
ビニリデン(PVDF)10重量部とを混合し、負極合
剤を調製した。この負極合剤を、溶剤であるN−メチル
−2−ピロリドンに分散させてスラリー(ペースト状)
にした。次に、この負極合剤スラリーを厚さ10μmの
帯状の銅箔である負極集電体の両面に塗布し、溶剤を乾
燥後、ローラープレス機により圧縮成型して帯状負極1
を得た。なお、成型後の負極合剤の膜厚は両面共に10
5μmで同一であり、帯状の負極の幅は41.5mm、
長さは635mmとした。
[0021] First, negative electrode 1 was produced as follows. Petroleum pitch was used as a starting material and was calcined to obtain coarse pitch coke. This coarse pitch coke was pulverized to obtain a powder with an average particle size of 40 μm, and then this powder was re-fired at 1000° C. in an inert gas to remove impurities to obtain a coke material powder. The coke material powder thus obtained was used as a negative electrode active material carrier, and 90 parts by weight of this coke material powder and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder were mixed to prepare a negative electrode mixture. . This negative electrode mixture is dispersed in the solvent N-methyl-2-pyrrolidone to form a slurry (paste).
I made it. Next, this negative electrode mixture slurry was applied to both sides of a negative electrode current collector, which is a strip-shaped copper foil with a thickness of 10 μm, and after drying the solvent, compression molding was performed using a roller press machine to form a strip-shaped negative electrode 1.
I got it. The film thickness of the negative electrode mixture after molding is 10 mm on both sides.
The width of the strip-shaped negative electrode is 41.5 mm,
The length was 635 mm.

【0022】次に、正極2は次のようにして作製した。 炭酸リチウム0.5モルと炭酸コバルト1モルとを混合
して900℃の空気中で5時間焼成することによってL
iCoO2 を得た。このLiCoO2 を正極活物質
とし、このLiCoO2 91重量部、導電剤としての
グラファイト6重量部と結着剤としてのポリフッ化ビニ
リデン3重量部と混合し、正極合剤とした。この正極合
剤を溶剤N−メチルピロリドンに分散させてスラリー(
ペースト状)にした。そして、この正極合剤を、厚さ2
0μmの帯状のアルミニウム箔である正極集電体の両面
に均一に塗布して乾燥し、この乾燥後に圧縮成型して帯
状正極2を得た。なお、成型後の合剤膜厚は両面共に8
0μmで同一であり、帯状正極の幅は39.5mm、長
さは605mmとした。
Next, the positive electrode 2 was manufactured as follows. By mixing 0.5 mole of lithium carbonate and 1 mole of cobalt carbonate and calcining the mixture in air at 900°C for 5 hours, L
iCoO2 was obtained. This LiCoO2 was used as a positive electrode active material, and 91 parts by weight of this LiCoO2, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to form a positive electrode mixture. This positive electrode mixture was dispersed in the solvent N-methylpyrrolidone to form a slurry (
paste). Then, apply this positive electrode mixture to a thickness of 2
It was uniformly coated on both sides of a positive electrode current collector, which is a strip-shaped aluminum foil of 0 μm, and dried. After drying, compression molding was performed to obtain a strip-shaped positive electrode 2. The thickness of the mixture film after molding is 8 on both sides.
The strip positive electrode had a width of 39.5 mm and a length of 605 mm.

【0023】次に、厚さ25μm、幅44mmの微多孔
性ポリプロピレンフィルムより成るセパレータ3を2枚
、直径4mmのピンに2周巻いた後、上述のように作製
した帯状負極1と帯状正極2がセパレーターを介して対
向するように積層し、この積層電極体を渦巻状に多数回
巻回し、最外周セパレータ最終端部をテープで固定し、
渦巻式電極を作製した。なお、この渦巻式電極の、中心
部の中空部分の内径は3.6mm、外径は19.7mm
であった。
Next, two separators 3 made of a microporous polypropylene film with a thickness of 25 μm and a width of 44 mm were wound twice around a pin with a diameter of 4 mm, and then the strip-shaped negative electrode 1 and the strip-shaped positive electrode 2 produced as described above were wound. are stacked so that they face each other with a separator in between, and this stacked electrode body is wound spirally many times, and the final end of the outermost separator is fixed with tape.
A spiral electrode was fabricated. The inner diameter of the hollow part at the center of this spiral electrode is 3.6 mm, and the outer diameter is 19.7 mm.
Met.

【0024】上述のように作製した渦巻式電極を、ニッ
ケルめっきを施した鉄製の電池缶5に収納した。また、
渦巻式電極上下両面には絶縁板4を配設し、負極および
正極の集電を行うためにアルミニウム製正極リードを正
極集電体から導出して電池蓋7に、ニッケル製負極リー
ド11を負極集電体から導出して電池缶5に溶接した。 その後、電池缶5の中にプロピレンカーボネートとジエ
チルカーボネートとの等容量混合溶媒中にLiPF6 
を1モル/lの割合で溶解した非水電解液を4.9ml
を注入して、渦巻式電極に含浸させた。
The spiral electrode produced as described above was housed in a nickel-plated iron battery can 5. Also,
Insulating plates 4 are arranged on both the upper and lower sides of the spiral electrode, and in order to collect current from the negative and positive electrodes, an aluminum positive electrode lead is led out from the positive electrode current collector and attached to the battery lid 7, and a nickel negative electrode lead 11 is connected to the negative electrode. It was led out from the current collector and welded to the battery can 5. After that, LiPF6 was placed in a mixed solvent of equal volume of propylene carbonate and diethyl carbonate in the battery can 5.
4.9 ml of a non-aqueous electrolyte dissolved at a ratio of 1 mol/l
was injected to impregnate the spiral electrode.

【0025】このようにして電解液を注入した後、図2
に示す外径3.5mm、内径2.5mm、長さ40mm
のステンレス(SUS304)製テーパー付き中空セン
ターピン8を図3に示す挿入装置を渦巻式電極33巻芯
空隙部に用いて、先ず、上記センターピン8をピンガイ
ド31を通過させて垂直に電極中空部34に落下させ、
挿入棒32を用いて電極中空部34に完全に挿入した。 なお、このセンターピン8の重量は1.37gであった
After injecting the electrolyte in this way, FIG.
Outer diameter 3.5mm, inner diameter 2.5mm, length 40mm as shown in
A tapered hollow center pin 8 made of stainless steel (SUS304) is inserted into the core gap of the spiral electrode 33 using the insertion device shown in FIG. part 34,
The electrode was completely inserted into the hollow part 34 using the insertion rod 32. Note that the weight of this center pin 8 was 1.37 g.

【0026】アスファルトで表面を塗布した絶縁封口ガ
スケットを介して電池缶5をかしめることにより、電池
蓋7を固定し、電池内の機密性を保持させた。以上のよ
うな構成で、図1に示すような直径20.5mm、高さ
50mmの円筒型非水電解液電池(実施例電池1)を作
成した。
By caulking the battery can 5 through an insulating sealing gasket whose surface was coated with asphalt, the battery lid 7 was fixed and the airtightness inside the battery was maintained. With the above configuration, a cylindrical nonaqueous electrolyte battery (Example Battery 1) having a diameter of 20.5 mm and a height of 50 mm as shown in FIG. 1 was created.

【0027】実施例2 挿入するセンターピンが外径3.5mm、内径2.5m
m、長さ40mmのステンレス(SUS304)製中空
のもので、かつ図4に示すように最大幅1mmの隙間8
aが入っているものを用いた以外は実施例1と同様にし
て、円筒型非水電解液電池(実施例電池2)を作製した
。なお、このセンターピンの重量は1.30gであった
Example 2 The center pin to be inserted has an outer diameter of 3.5 mm and an inner diameter of 2.5 m.
m, hollow made of stainless steel (SUS304) with a length of 40 mm, and a gap 8 with a maximum width of 1 mm as shown in Figure 4.
A cylindrical non-aqueous electrolyte battery (Example Battery 2) was produced in the same manner as in Example 1 except that a battery containing a was used. Note that the weight of this center pin was 1.30 g.

【0028】比較例1 挿入するセンターピンに外径3.5mm、内径2.5m
m、長さ40mmのポリプロピレン製中空センターピン
を用いた以外は実施例1と同様にして、円筒型非水電解
液電池(比較例電池1)を作成した。なお、このセンタ
ーピンの重量は0.16gであった。
Comparative Example 1 The center pin to be inserted has an outer diameter of 3.5 mm and an inner diameter of 2.5 m.
A cylindrical non-aqueous electrolyte battery (Comparative Example Battery 1) was produced in the same manner as in Example 1 except that a polypropylene hollow center pin having a length of 40 mm and a length of 40 mm was used. Note that the weight of this center pin was 0.16 g.

【0029】このようにして作成された実施例電池1,
実施例電池2および比較例電池1について、電極中心部
へのセンターピン挿入時の不良率について検討を行った
。その結果を表1に示す。
Example battery 1 prepared in this way,
Regarding Example Battery 2 and Comparative Example Battery 1, a study was conducted on the defective rate when the center pin was inserted into the center of the electrode. The results are shown in Table 1.

【表1】[Table 1]

【0030】表1からわかるように、実施例電池1およ
び実施例電池2においては、センターピン挿入時の不良
率が低く、良好な挿入性を示すのに対し、比較例電池1
では、センターピンがセパレータに引っ掛かることによ
る挿入不良が発生し、十分な挿入性が得られない。した
がって、これらの結果から、非水電解液二次電池におい
て、センターピンを金属により構成することは、センタ
ーピンの挿入不良を低減するうえで有効であることが示
された。
As can be seen from Table 1, Example Battery 1 and Example Battery 2 had a low defect rate when inserting the center pin and exhibited good insertability, whereas Comparative Example Battery 1
In this case, insertion failure occurs due to the center pin getting caught on the separator, and sufficient insertability cannot be obtained. Therefore, these results indicate that in a non-aqueous electrolyte secondary battery, forming the center pin from metal is effective in reducing insertion failure of the center pin.

【0031】また、ここで、ポリプロピレン製のセンタ
ーピンを使用する比較例電池1においては、センターピ
ンが0.16gと軽量であるため、中心空隙部に自重で
落下せず挿入に際して加圧が必要であったが、ステンレ
ス製のセンターピンを使用する実施例電池1および実施
例電池2では、センターピンがいずれも約1.3gと重
いため、電極巻芯部に自重で落下し、加圧はほとんど不
要であった。したがって、このことから、センターピン
として金属製のものを使用すれば、センターピン挿入時
の加圧工程を省くことができ、電池の製造操作を簡易化
することが可能となることが示された。
In addition, in Comparative Example Battery 1, which uses a center pin made of polypropylene, the center pin is lightweight at 0.16 g, so it does not fall into the center gap under its own weight and requires pressure when inserted. However, in Example Battery 1 and Example Battery 2, which use stainless steel center pins, the center pins are both heavy at about 1.3 g, so they fall onto the electrode winding core under their own weight, and the pressurization is not possible. It was almost unnecessary. Therefore, this shows that if a metal center pin is used, the pressurizing process when inserting the center pin can be omitted, and the battery manufacturing operation can be simplified. .

【0032】次に、実施例電池1,実施例電池2および
比較例電池1について、それぞれ外部加圧に対する強度
について検討を行った。
Next, the strength of Example Battery 1, Example Battery 2, and Comparative Example Battery 1 against external pressure was examined.

【0033】なお、外部加圧に対する各電池の強度の検
討を行うために、先ず、図5に示すような金属平板52
,53が対向して設けられてなる加圧装置を用い、この
金属平板52,53間に、試料となる電池51を挟み込
み、この電池51を挟みこむ方向(図中矢印P方向)に
油圧プレスによって0.5tonの加圧を行った。そし
て、加圧方向の電池高さを測定することによって電池の
強度を評価した。加圧後における電池の高さ及び加圧に
よる高さの変化量(加圧前電池高さ−加圧後電池高さ)
を表2に示す。
In order to examine the strength of each battery against external pressure, first, a metal flat plate 52 as shown in FIG.
, 53 facing each other, a battery 51 as a sample is sandwiched between the metal plates 52 and 53, and a hydraulic press is applied in the direction of sandwiching the battery 51 (in the direction of arrow P in the figure). A pressure of 0.5 ton was applied. Then, the strength of the battery was evaluated by measuring the height of the battery in the pressurizing direction. Battery height after pressurization and height change due to pressurization (battery height before pressurization - battery height after pressurization)
are shown in Table 2.

【表2】[Table 2]

【0034】表2に示したように、ポリプロピレン製セ
ンターピンを用いた比較例電池1では、加圧による高さ
変化量が1.7mmと大きいのに対し、ステンレス製セ
ンターピンを用いた実施例電池1および実施例電池2に
おいては、高さ変化量はいずれも比較例電池1の約1/
2程度であり、ほとんど変形が生じていない
As shown in Table 2, in Comparative Example Battery 1 using a center pin made of polypropylene, the amount of change in height due to pressurization was as large as 1.7 mm, whereas in Example Battery 1 using a center pin made of stainless steel. In both Battery 1 and Example Battery 2, the amount of height change is about 1/1 of that in Comparative Example Battery 1.
2, with almost no deformation occurring.

【0035
】したがって、このことから、金属製のセンターピンを
使用することは、電池の強度を上げる上で有効であり、
これにより、封口部等が変形することによる電解液の漏
れを防止でき、安全性の向上が図れることがわかった。 また、このとき、実施例電池1および実施例電池2にお
いて同程度の強度が得られたことから、センターピンの
外周に1割以下の隙間が存在していても電池強度が影響
されないことが示され、センターピンの加工を容易なも
のとすることが可能であることがわかった。
0035
] Therefore, from this, using a metal center pin is effective in increasing the strength of the battery.
It has been found that this makes it possible to prevent electrolyte leakage due to deformation of the sealing part and the like, thereby improving safety. In addition, at this time, similar strengths were obtained for Example Battery 1 and Example Battery 2, indicating that the battery strength is not affected even if there is a gap of 10% or less around the outer periphery of the center pin. It was found that it is possible to easily process the center pin.

【0036】[0036]

【発明の効果】以上の説明からも明らかなように、本発
明においては、収納缶内に渦巻式電極と該渦巻式電極の
巻芯に配設された金属性の中空筒状のセンターピンとを
収納してなる非水電解液二次電池において、上記センタ
ーピンを金属により構成しているので、センターピンを
電極巻芯部に挿入する際の挿入不良率が低減できるとと
もに電池の製造工程数を減少させることができ、電池の
生産性を向上させることが可能となる。また、強度も大
きくなるので、外部から高圧が加えられた場合の変形、
電解液の漏れ等が防止され、高い安全性が確保できる。
Effects of the Invention As is clear from the above description, in the present invention, a spiral electrode and a metallic hollow cylindrical center pin disposed on the winding core of the spiral electrode are installed in a storage can. In the nonaqueous electrolyte secondary battery that is housed, the center pin is made of metal, which reduces the insertion failure rate when inserting the center pin into the electrode winding core, and reduces the number of battery manufacturing steps. This makes it possible to improve battery productivity. It also has greater strength, so it will not deform when high pressure is applied from the outside.
Leakage of electrolyte is prevented and high safety can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の非水電解液二次電池の一例を示す概略
的な縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view showing an example of a non-aqueous electrolyte secondary battery of the present invention.

【図2】センターピンの一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a center pin.

【図3】センターピンの電極巻芯部への挿入工程を示す
模式図である。
FIG. 3 is a schematic diagram showing the process of inserting the center pin into the electrode winding core.

【図4】上記センターピンの他の例を示す斜視図である
FIG. 4 is a perspective view showing another example of the center pin.

【図5】電池の加圧に対する強度を測定するために使用
した加圧装置を示す模式図である。
FIG. 5 is a schematic diagram showing a pressurizing device used to measure the strength of a battery against pressurization.

【符号の説明】[Explanation of symbols]

1・・・負極 2・・・正極 3・・・セパレータ 4・・・絶縁板 5・・・電池缶 6・・・封口ガスケット 7・・・電池蓋 9・・・負極集電体 10・・・正極集電体 11・・・負極リード 12・・・正極リード 1...Negative electrode 2...Positive electrode 3...Separator 4...Insulating board 5...Battery can 6... Sealing gasket 7...Battery cover 9... Negative electrode current collector 10... Positive electrode current collector 11... Negative lead 12...Positive lead

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  収納缶内に、負極と正極とがセパレー
タを介して渦巻き状に積層巻回されてなる巻回体と、該
巻回体の中心空隙部に配設された中空筒状のセンターピ
ンとを収納してなる非水電解液二次電池において、上記
センターピンが金属より構成されていることを特徴とす
る非水電解液二次電池。
Claim 1: A wound body in which a negative electrode and a positive electrode are laminated and wound in a spiral manner with a separator in between, and a hollow cylindrical body disposed in a central gap of the wound body, in a storage can. 1. A non-aqueous electrolyte secondary battery containing a center pin, wherein the center pin is made of metal.
JP03130686A 1991-05-02 1991-05-02 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3143951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03130686A JP3143951B2 (en) 1991-05-02 1991-05-02 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03130686A JP3143951B2 (en) 1991-05-02 1991-05-02 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04332481A true JPH04332481A (en) 1992-11-19
JP3143951B2 JP3143951B2 (en) 2001-03-07

Family

ID=15040198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03130686A Expired - Lifetime JP3143951B2 (en) 1991-05-02 1991-05-02 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3143951B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168711A (en) * 1992-11-27 1994-06-14 Toshiba Battery Co Ltd Nonaqueous electrolyte battery
WO1996023324A1 (en) * 1995-01-27 1996-08-01 Asahi Kasei Kogyo Kabushiki Kaisha Nonaqueous battery
JP2003059539A (en) * 2001-08-22 2003-02-28 Shin Kobe Electric Mach Co Ltd Cylindrical lithium ion battery
JP2003308873A (en) * 2002-04-17 2003-10-31 Sony Corp Nonaqueous electrolyte secondary battery
US6811920B2 (en) 2002-04-19 2004-11-02 Matsushita Electric Industrial Co., Ltd. Cylindrical lithium ion secondary battery and fabrication method thereof
US6869725B2 (en) 2001-11-28 2005-03-22 Sanyo Electric Co., Ltd. Sealed battery
JP2006004792A (en) * 2004-06-18 2006-01-05 Hitachi Maxell Ltd Nonaqueous secondary battery
EP1717878A1 (en) * 2005-04-27 2006-11-02 Samsung SDI Co., Ltd. Core member for a cylindrical lithium secondary battery
JP2006313737A (en) * 2005-04-04 2006-11-16 Matsushita Electric Ind Co Ltd Cylindrical lithium secondary battery
EP1724855A1 (en) * 2005-05-18 2006-11-22 Samsung SDI Co., Ltd. Deformable core for a cylindrical lithium secondary battery
US7972717B2 (en) 2006-01-13 2011-07-05 Sony Corporation Battery
US8211561B2 (en) 2008-04-04 2012-07-03 Toyota Jidosha Kabushiki Kaisha Winding type battery and method for manufacturing the winding type battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3833056B2 (en) 2000-08-07 2006-10-11 旭化成ケミカルズ株式会社 Flame retardant aromatic polycarbonate resin composition

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168711A (en) * 1992-11-27 1994-06-14 Toshiba Battery Co Ltd Nonaqueous electrolyte battery
WO1996023324A1 (en) * 1995-01-27 1996-08-01 Asahi Kasei Kogyo Kabushiki Kaisha Nonaqueous battery
US5925482A (en) * 1995-01-27 1999-07-20 Asahi Kasei Kogyo Kabushiki Kaisha Non-aqueous battery
JP2003059539A (en) * 2001-08-22 2003-02-28 Shin Kobe Electric Mach Co Ltd Cylindrical lithium ion battery
JP4631234B2 (en) * 2001-08-22 2011-02-16 新神戸電機株式会社 Cylindrical lithium-ion battery
US6869725B2 (en) 2001-11-28 2005-03-22 Sanyo Electric Co., Ltd. Sealed battery
JP2003308873A (en) * 2002-04-17 2003-10-31 Sony Corp Nonaqueous electrolyte secondary battery
US6811920B2 (en) 2002-04-19 2004-11-02 Matsushita Electric Industrial Co., Ltd. Cylindrical lithium ion secondary battery and fabrication method thereof
JP2006004792A (en) * 2004-06-18 2006-01-05 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2006313737A (en) * 2005-04-04 2006-11-16 Matsushita Electric Ind Co Ltd Cylindrical lithium secondary battery
EP1717878A1 (en) * 2005-04-27 2006-11-02 Samsung SDI Co., Ltd. Core member for a cylindrical lithium secondary battery
US7655349B2 (en) 2005-04-27 2010-02-02 Samsung Sdi Co., Ltd. Cylindrical lithium secondary battery
JP2006310301A (en) * 2005-04-27 2006-11-09 Samsung Sdi Co Ltd Cylindrical lithium secondary battery
EP1724855A1 (en) * 2005-05-18 2006-11-22 Samsung SDI Co., Ltd. Deformable core for a cylindrical lithium secondary battery
US7955730B2 (en) 2005-05-18 2011-06-07 Samsung Sdi Co., Ltd. Secondary battery
US7972717B2 (en) 2006-01-13 2011-07-05 Sony Corporation Battery
US8211561B2 (en) 2008-04-04 2012-07-03 Toyota Jidosha Kabushiki Kaisha Winding type battery and method for manufacturing the winding type battery

Also Published As

Publication number Publication date
JP3143951B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
JP3371301B2 (en) Non-aqueous electrolyte secondary battery
JPH02265167A (en) Nonaqueous electrolyte secondary battery
JP3536391B2 (en) Wound electrode element body, method of manufacturing the same, and method of manufacturing battery using wound electrode element body
JPH04249859A (en) Nonaqueous electrolyte secondary battery
JPH11260415A (en) Nonaqueous electrolyte secondary battery
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
JP3786349B2 (en) Non-aqueous secondary battery
JP3143951B2 (en) Non-aqueous electrolyte secondary battery
JP4097443B2 (en) Lithium secondary battery
JP3237015B2 (en) Non-aqueous electrolyte secondary battery
JP2000036324A (en) Nonaqueous secondary battery
JP3748843B2 (en) Organic electrolyte secondary battery
JP2005135826A (en) Nonaqueous electrolyte secondary battery
JP2003045433A (en) Nonaqueous secondary battery
JP4767156B2 (en) Non-aqueous secondary battery
JP3309449B2 (en) Non-aqueous electrolyte secondary battery
JPH04249860A (en) Nonaqueous electrolyte secondary battery
JP3969551B2 (en) Non-aqueous secondary battery
JP5447176B2 (en) Nonaqueous electrolyte secondary battery charging method and manufacturing method
JP4272657B2 (en) Non-aqueous secondary battery
JP3580511B2 (en) Organic electrolyte secondary battery
JP2506572Y2 (en) Lithium ion secondary battery
JPH0434855A (en) Spiral type non-aqueous electrolyte battery
JP2932516B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11