JP2012215354A - Dual refrigeration cycle apparatus - Google Patents

Dual refrigeration cycle apparatus Download PDF

Info

Publication number
JP2012215354A
JP2012215354A JP2011081351A JP2011081351A JP2012215354A JP 2012215354 A JP2012215354 A JP 2012215354A JP 2011081351 A JP2011081351 A JP 2011081351A JP 2011081351 A JP2011081351 A JP 2011081351A JP 2012215354 A JP2012215354 A JP 2012215354A
Authority
JP
Japan
Prior art keywords
temperature side
heat exchanger
low temperature
refrigeration cycle
usage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011081351A
Other languages
Japanese (ja)
Inventor
Makoto Tanaka
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2011081351A priority Critical patent/JP2012215354A/en
Publication of JP2012215354A publication Critical patent/JP2012215354A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the supply of hot water of different temperature ranges to a first use side and a second use side respectively, using only a dual refrigeration cycle apparatus as a stand-alone system.SOLUTION: The dual refrigeration cycle apparatus includes: a low-temperature side refrigeration cycle 6a having a low-temperature side compressor 1a and a heat source side heat exchanger 3 that are connected by a high-temperature side refrigerant piping, and a high-temperature side refrigeration cycle 6b having a high-temperature side compressor 1b and a first use side heat exchanger 7 that are connected by a high-temperature side refrigeration piping. An intermediate heat exchanger 5, which can perform heat exchange between low-temperature side refrigerants and high-temperature side refrigerants, is disposed in the low-temperature side refrigerant piping and the high temperature side refrigerant piping. A second use side heat exchanger 8 is disposed, which is connected with the low-temperature side refrigerant piping in parallel with the intermediate heat exchanger. A flow control means is disposed, which controls the flow rate of the low-temperature side refrigerants supplied to a second use side heat exchanger and the intermediate heat exchanger.

Description

本発明の実施の形態は、二元冷凍サイクル装置に関する。   Embodiments of the present invention relate to a binary refrigeration cycle apparatus.

空気調和機やヒートポンプ給湯機などの冷凍サイクル装置には、利用側の熱量を大きくするために低温側冷凍サイクルと高温側冷凍サイクルを備えた二元冷凍サイクル装置が用いられることがある。
二元冷凍サイクル装置の低温側冷凍サイクルと高温側冷凍サイクルは、それぞれ圧縮機や膨張装置を有しており、中間熱交換器によって熱交換可能に接続されている。そして、低温側冷凍サイクルに設けられた低温側蒸発器である低温側熱交換器から汲み上げた熱を、高温側冷凍サイクルに設けられた高温側凝縮器である利用側熱交換器を介して、より高い熱量が熱利用機器へ供給される。
A refrigeration cycle apparatus such as an air conditioner or a heat pump water heater may use a dual refrigeration cycle apparatus including a low temperature side refrigeration cycle and a high temperature side refrigeration cycle in order to increase the amount of heat on the use side.
The low temperature side refrigeration cycle and the high temperature side refrigeration cycle of the binary refrigeration cycle apparatus each have a compressor and an expansion device, and are connected to each other by an intermediate heat exchanger so that heat can be exchanged. And the heat pumped from the low temperature side heat exchanger that is the low temperature side evaporator provided in the low temperature side refrigeration cycle, through the use side heat exchanger that is the high temperature side condenser provided in the high temperature side refrigeration cycle, A higher amount of heat is supplied to the heat utilization equipment.

特開2004−132647号公報JP 2004-132647 A

しかし、上記のような二元冷凍サイクル装置は、高温側冷凍サイクルの利用側熱交換器からのみしか熱が得られないため、複数温度の温湯を得る場合や、利用側が複数の熱源を必要とするシステムにおいて、別の冷凍サイクル装置を設ける必要があり、コストや設置スペースが大きくなる問題がある。   However, since the binary refrigeration cycle apparatus as described above can obtain heat only from the use side heat exchanger of the high temperature side refrigeration cycle, when the user side obtains hot water having a plurality of temperatures, the use side requires a plurality of heat sources. In such a system, it is necessary to provide another refrigeration cycle apparatus, which increases the cost and installation space.

本発明は上記問題を解決するためになされたものであり、本発明の実施形態二元冷凍サイクル装置は、低温側冷媒配管で接続され、低温側冷媒を圧縮する低温側圧縮機と、外部熱源から熱を吸収する熱源側熱交換器を有する低温側冷凍サイクルを備え、高温側冷媒配管で接続された、高温側冷媒を圧縮する高温側圧縮機と、高温側冷媒の熱を第1熱利用側機器へ供給する第1利用側熱交換器を有する高温側冷凍サイクルを備えている。
また、低温側冷媒配管と高温側冷媒配管には、低温側冷媒と高温側冷媒とを熱交換可能とする中間熱交換器が設けられ、低温側冷媒配管に中間熱交換器に対して並列に接続された第2利用側熱交換器が設けられている。第2利用側熱交換器と中間熱交換器へ供給される低温側冷媒の流量を制御する流量制御手段が備えられている。
The present invention has been made to solve the above problems, and the embodiment of the dual refrigeration cycle apparatus of the present invention is connected to a low temperature side refrigerant pipe, compresses the low temperature side refrigerant, and an external heat source. A high-temperature side compressor having a low-temperature side refrigeration cycle having a heat source-side heat exchanger that absorbs heat from the heat source and connected by a high-temperature side refrigerant pipe, and heat of the high-temperature side refrigerant is used as the first heat A high temperature side refrigeration cycle having a first usage side heat exchanger for supplying to the side equipment is provided.
The low-temperature side refrigerant pipe and the high-temperature side refrigerant pipe are provided with an intermediate heat exchanger that enables heat exchange between the low-temperature side refrigerant and the high-temperature side refrigerant, and the low-temperature side refrigerant pipe is parallel to the intermediate heat exchanger. A connected second use side heat exchanger is provided. Flow rate control means for controlling the flow rate of the low-temperature side refrigerant supplied to the second usage side heat exchanger and the intermediate heat exchanger is provided.

本発明の第1の実施形態に係る二元冷凍サイクル装置の概略図。1 is a schematic view of a dual refrigeration cycle apparatus according to a first embodiment of the present invention. 本発明の第2の実施形態に係る二元冷凍サイクル装置の概略図。Schematic of the dual refrigeration cycle apparatus according to the second embodiment of the present invention. 本発明の第3の実施形態に係る二元冷凍サイクル装置の概略図。Schematic of the dual refrigeration cycle apparatus according to the third embodiment of the present invention. 本発明の第3の実施形態に係る二元冷凍サイクル装置のその他の概略図。The other schematic of the binary refrigerating-cycle apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る二元冷凍サイクル装置のその他の概略図。The other schematic of the binary refrigerating-cycle apparatus which concerns on the 3rd Embodiment of this invention.

図面を用いて本発明の実施形態について説明を行う。
(第1の実施形態)
図1に第1の実施形態に係る二元冷凍サイクル装置100の概略図を示す。
二元冷凍サイクル装置100は、内部に低温側冷媒が流動する低温側冷凍サイクル6aと内部に高温側冷媒が流動する高温側冷凍サイクル6bと、低温側冷媒と高温側冷媒とが熱交換する中間熱交換器5とを有している。
低温側冷凍サイクル6aには、低温側冷媒を圧縮する低温側圧縮機1aと、中間熱交換器5の低温側と、低温側膨張装置4aと、外部熱源である室外空気と熱交換する熱源側熱交換器3とが備えられており、低温側圧縮機1aで圧縮された低温側冷媒が順次流動するように、低温側冷媒配管19aを介して接続されている。
高温側冷凍サイクル6bには、高温側圧縮機1bと、第1利用側熱交換器7と、高温側膨張装置4bと、中間熱交換器5の高温側とが設けられており、高温側圧縮機1bで圧縮された高温側冷媒が順次流動するように、高温側冷媒配管19bを介して接続されている。
さらに、低温側冷凍サイクル6bには、中間熱交換器5と低温側圧縮機1aとの間に第1分岐部21aが設けられているとともに、中間熱交換器5と低温側膨張装置4aとの間に第2分岐部21bが設けられており、第1分岐部21a及び第2分岐部21b間には、中間熱交換器5に対して並列に、第2利用側熱交換器8が接続されている。
また、低温側冷媒配管19aの中間熱交換器5と第2分岐部21bの間には中間熱交換器冷媒流量制御バルブ12aが設けられており、第2利用側熱交換器8と第2分岐部21bの間には第2利用側熱交換器冷媒流量制御バルブ12bが接続されている。
熱源側熱交換器3には送風機11が設けられており、室外空気との熱交換を促進させるようになっている。
Embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 shows a schematic diagram of a dual refrigeration cycle apparatus 100 according to the first embodiment.
The binary refrigeration cycle apparatus 100 includes a low temperature side refrigeration cycle 6a in which a low temperature side refrigerant flows, a high temperature side refrigeration cycle 6b in which a high temperature side refrigerant flows, and a low temperature side refrigerant and a high temperature side refrigerant in the middle of heat exchange. And a heat exchanger 5.
The low temperature side refrigeration cycle 6a includes a low temperature side compressor 1a that compresses a low temperature side refrigerant, a low temperature side of the intermediate heat exchanger 5, a low temperature side expansion device 4a, and a heat source side that exchanges heat with outdoor air that is an external heat source. The heat exchanger 3 is provided, and is connected via the low temperature side refrigerant pipe 19a so that the low temperature side refrigerant compressed by the low temperature side compressor 1a flows sequentially.
The high temperature side refrigeration cycle 6 b is provided with a high temperature side compressor 1 b, a first usage side heat exchanger 7, a high temperature side expansion device 4 b, and a high temperature side of the intermediate heat exchanger 5. It is connected via a high temperature side refrigerant pipe 19b so that the high temperature side refrigerant compressed by the machine 1b sequentially flows.
Further, the low temperature side refrigeration cycle 6b is provided with a first branch portion 21a between the intermediate heat exchanger 5 and the low temperature side compressor 1a, and between the intermediate heat exchanger 5 and the low temperature side expansion device 4a. The 2nd branch part 21b is provided in the middle, and the 2nd use side heat exchanger 8 is connected in parallel with respect to the intermediate heat exchanger 5 between the 1st branch part 21a and the 2nd branch part 21b. ing.
Further, an intermediate heat exchanger refrigerant flow control valve 12a is provided between the intermediate heat exchanger 5 and the second branch portion 21b of the low temperature side refrigerant pipe 19a, and the second use side heat exchanger 8 and the second branch are provided. A second usage-side heat exchanger refrigerant flow control valve 12b is connected between the portions 21b.
The heat source side heat exchanger 3 is provided with a blower 11 to promote heat exchange with outdoor air.

低温側冷凍サイクル6aと高温側冷凍サイクル6bには、それぞれ特性の異なる冷媒が封入されている。
封入される冷媒の種類は二元冷凍サイクル装置100の用途によって異なるが、例えば、第1利用側熱交換器7を水熱交換器とし90℃近い湯を生成するための高温ヒートポンプ給湯機である場合、低温側冷凍サイクル6aに使用される低温側冷媒に、R410Aのような低外気温(―15℃程度)においても良好な性能を有する作動冷媒が好ましく、高温側冷凍サイクル6bに用いられる高温側冷媒にはR134aのような高温(95℃程度)において良好な性能を有する作動冷媒が好ましい。
Refrigerants having different characteristics are sealed in the low temperature side refrigeration cycle 6a and the high temperature side refrigeration cycle 6b, respectively.
Although the kind of refrigerant | coolant enclosed changes with uses of the two-stage refrigerating-cycle apparatus 100, it is a high temperature heat pump water heater for producing | generating hot water close | similar to 90 degreeC by making the 1st utilization side heat exchanger 7 into a water heat exchanger, for example. In this case, the low-temperature side refrigerant used in the low-temperature side refrigeration cycle 6a is preferably a working refrigerant having good performance even at a low outside air temperature (about −15 ° C.) such as R410A, and the high temperature used in the high-temperature side refrigeration cycle 6b. The side refrigerant is preferably a working refrigerant having good performance at a high temperature (about 95 ° C.) such as R134a.

低温側冷凍サイクル6aに封入されている低温側冷媒と、高温側冷凍サイクル6bに封入されている高温側冷媒は、それぞれ低温側冷媒配管6aと高温側冷媒配管6bを介して中間熱交換器5内に流入し熱交換する。   The low temperature side refrigerant sealed in the low temperature side refrigeration cycle 6a and the high temperature side refrigerant sealed in the high temperature side refrigeration cycle 6b are respectively connected to the intermediate heat exchanger 5 via the low temperature side refrigerant pipe 6a and the high temperature side refrigerant pipe 6b. It flows into and exchanges heat.

第1利用側熱交換器7には、生成された高温の温湯を一時的に貯湯しておくための第1利用側貯湯タンク9が、第1利用側流体配管10を介して接続されている。
第1利用側流体配管10には送流ポンプ15が設けられており、第1利用側熱交換器7内で凝縮する高温側冷媒と熱交換し、過熱された高温の温湯を第1利用側貯湯タンク9へ送流するようになっている。
また、第2利用側熱交換器8には、生成された低温の温湯を一時的に貯湯しておくための第2利用側貯湯タンク13が、第2利用側流体配管14を介して接続されている。
第2利用側流体配管14には送流ポンプ15が設けられており、第2利用側熱交換器8内で凝縮する低温側冷媒と熱交換し、過熱された温湯を第2利用側貯湯タンク13へ送流するようになっている。
A first usage-side hot water storage tank 9 for temporarily storing the generated high-temperature hot water is connected to the first usage-side heat exchanger 7 via a first usage-side fluid piping 10. .
The first usage-side fluid pipe 10 is provided with a feed pump 15, which exchanges heat with the high-temperature side refrigerant condensed in the first usage-side heat exchanger 7, and converts the heated hot water that has been heated to the first usage side. The hot water is supplied to the hot water storage tank 9.
Further, a second usage-side hot water storage tank 13 for temporarily storing the generated low-temperature hot water is connected to the second usage-side heat exchanger 8 via a second usage-side fluid piping 14. ing.
The second usage-side fluid pipe 14 is provided with a feed pump 15, which exchanges heat with the low-temperature side refrigerant condensed in the second usage-side heat exchanger 8, and heats the heated hot water to the second usage-side hot water storage tank. 13 is sent to.

二元冷凍サイクル装置100には、装置の運転を制御するための運転制御手段である制御器23が設けられている。制御器23は、低温側圧縮機1a及び高温側圧縮機1bを駆動する図示しないインバータ回路の出力周波数と、低温側膨張装置4a及び高温側膨張装置4bの開度と、中間熱交換器冷媒流量制御バルブ12a及び第2利用側熱交換器冷媒流量制御バルブ12bの開度を制御する。中間熱交換器冷媒流量制御バルブ12a及び第2利用側熱交換器冷媒流量制御バルブ12bは制御器23に制御されることで、冷媒流れを制御する流量制御手段として機能する。
これらインバータ回路及び制御器23によって、低温側冷凍サイクル6aと高温側冷凍サイクル6bは最適な運転条件で制御される。
The dual refrigeration cycle apparatus 100 is provided with a controller 23 that is an operation control means for controlling the operation of the apparatus. The controller 23 outputs the output frequency of an inverter circuit (not shown) that drives the low temperature side compressor 1a and the high temperature side compressor 1b, the opening degree of the low temperature side expansion device 4a and the high temperature side expansion device 4b, and the intermediate heat exchanger refrigerant flow rate. The opening degree of the control valve 12a and the second use side heat exchanger refrigerant flow control valve 12b is controlled. The intermediate heat exchanger refrigerant flow control valve 12a and the second usage-side heat exchanger refrigerant flow control valve 12b function as flow control means for controlling the refrigerant flow by being controlled by the controller 23.
By these inverter circuit and controller 23, the low temperature side refrigeration cycle 6a and the high temperature side refrigeration cycle 6b are controlled under optimum operating conditions.

第1利用側で高温の温湯を利用し、第2利用側を利用しない場合、二元冷凍サイクル装置100の冷媒の流れは図1の実線矢印のようになる。
制御器23の指令により、中間熱交換器冷媒流量制御バルブ12aが開放され、第2利用側熱交換器冷媒流量制御バルブ12bが閉鎖される。
そして、図示しないインバータ装置から低温側圧縮機1a及び高温側圧縮機1bに電力が供給され、それぞれが低温側冷媒及び高温側冷媒を圧縮する。低温側膨張装置4a及び高温側膨張装置4bの開度が調節され、低温側冷凍サイクル6aと高温側冷凍サイクル6bが運転される。
低温側冷凍サイクル6aでは、低温側圧縮機1aから、吐出された低温側冷媒が中間熱交換器5の低温側、低温側膨張装置4a及び熱源側熱交換器3を順次通過し、低温側圧縮機1aへと戻る。
同様に高温側冷凍サイクル6bでは、高温側圧縮機1bで圧縮された高温側冷媒が、第1利用側熱交換器7、高温側膨張装置4b及び中間熱交換器5の高温側を順次通過し、高温側圧縮機1bへと戻る。
このとき、低温側冷媒は熱源側熱交換器3で蒸発し、中間熱交換器5の低温側で凝縮する。また、高温側冷媒は第1利用側熱交換器7において凝縮し、利用側である利用側配管10内を流動する水に温熱を供給する。中間熱交換器5の高温側では高温側膨張装置4bによって減圧された液状の冷媒が蒸発し、蒸発熱として低温側冷媒の凝縮熱を吸収する。
When hot hot water is used on the first usage side and the second usage side is not used, the refrigerant flow in the two-way refrigeration cycle apparatus 100 is as indicated by the solid line arrows in FIG.
In response to a command from the controller 23, the intermediate heat exchanger refrigerant flow control valve 12a is opened, and the second use side heat exchanger refrigerant flow control valve 12b is closed.
And electric power is supplied to the low temperature side compressor 1a and the high temperature side compressor 1b from the inverter apparatus which is not shown in figure, and each compresses a low temperature side refrigerant | coolant and a high temperature side refrigerant | coolant. The opening degree of the low temperature side expansion device 4a and the high temperature side expansion device 4b is adjusted, and the low temperature side refrigeration cycle 6a and the high temperature side refrigeration cycle 6b are operated.
In the low temperature side refrigeration cycle 6a, the low temperature side refrigerant discharged from the low temperature side compressor 1a sequentially passes through the low temperature side of the intermediate heat exchanger 5, the low temperature side expansion device 4a, and the heat source side heat exchanger 3, and the low temperature side compression Return to machine 1a.
Similarly, in the high temperature side refrigeration cycle 6b, the high temperature side refrigerant compressed by the high temperature side compressor 1b sequentially passes through the high temperature side of the first usage side heat exchanger 7, the high temperature side expansion device 4b, and the intermediate heat exchanger 5. Return to the high temperature side compressor 1b.
At this time, the low temperature side refrigerant evaporates in the heat source side heat exchanger 3 and condenses on the low temperature side of the intermediate heat exchanger 5. In addition, the high temperature side refrigerant is condensed in the first usage side heat exchanger 7 and supplies warm temperature to the water flowing in the usage side piping 10 which is the usage side. On the high temperature side of the intermediate heat exchanger 5, the liquid refrigerant decompressed by the high temperature side expansion device 4b evaporates and absorbs the condensation heat of the low temperature side refrigerant as the evaporation heat.

次に、第1利用側熱交換器7で高温の温湯を生成し、第2利用側熱交換器8で低温の温湯を生成する場合、二元冷凍サイクル装置100の冷媒の流れは図1の実線矢印及び破線矢印のようになる。
制御器23の指令により、中間熱交換器冷媒流量制御バルブ12aと第2利用側熱交換器冷媒流量制御バルブ12bが開放される。ここで、中間熱交換器冷媒流量制御バルブ12aと第2利用側熱交換器冷媒流量制御バルブ12bのそれぞれの開度は、第2利用側機器の必要とする熱量に応じて変更される。
そして、図示しないインバータ装置から低温側圧縮機1a及び高温側圧縮機1bに電力が供給され、それぞれが低温側冷媒及び高温側冷媒を圧縮する。低温側膨張装置4a及び高温側膨張装置4bの開度が調節され、低温側冷凍サイクル6aと高温側冷凍サイクル6bが運転される。
低温側冷凍サイクル6aでは、低温側圧縮機1aから圧縮された低温側冷媒が中間熱交換器5の低温側と第2利用側熱交換器8、低温側膨張装置4a及び熱源側熱交換器3を順次通過し、低温側圧縮機1aへと戻る。
同様に高温側冷凍サイクル6bでは、高温側圧縮機1bで圧縮された高温側冷媒が、第1利用側熱交換器7、高温側膨張装置4b及び中間熱交換器5の高温側を順次通過し、高温側圧縮機1bへと戻る。
このとき、中間熱交換器5の低温側と第2利用側熱交換器8に流入した高温高圧の低温側冷媒は凝縮し、中間熱交換器5の高温側を流動する高温側冷媒及び、第2利用側熱交換器8内を流動する。そして、中間熱交換器5の高温側では高温側膨張装置4bによって減圧された液状の冷媒が蒸発し、蒸発熱として低温側冷媒の凝縮熱を吸収する。また、第2利用側熱交換器8へ流入した水へ凝縮熱を供給し温湯を生成する。
そして、低温側冷媒は熱源側熱交換器3で蒸発し、送風機11によって送風された室外空気と熱交換する。また、高温側冷媒は第1利用側熱交換器7において凝縮し、第1利用側熱交換器7内を流動する水に温熱を供給し高温の温湯を生成する。
Next, when high temperature hot water is generated by the first usage side heat exchanger 7 and low temperature hot water is generated by the second usage side heat exchanger 8, the flow of the refrigerant in the dual refrigeration cycle apparatus 100 is as shown in FIG. It looks like a solid line arrow and a broken line arrow.
The intermediate heat exchanger refrigerant flow control valve 12a and the second usage side heat exchanger refrigerant flow control valve 12b are opened by the command of the controller 23. Here, the respective opening degrees of the intermediate heat exchanger refrigerant flow control valve 12a and the second usage side heat exchanger refrigerant flow control valve 12b are changed according to the amount of heat required by the second usage side device.
And electric power is supplied to the low temperature side compressor 1a and the high temperature side compressor 1b from the inverter apparatus which is not shown in figure, and each compresses a low temperature side refrigerant | coolant and a high temperature side refrigerant | coolant. The opening degree of the low temperature side expansion device 4a and the high temperature side expansion device 4b is adjusted, and the low temperature side refrigeration cycle 6a and the high temperature side refrigeration cycle 6b are operated.
In the low temperature side refrigeration cycle 6 a, the low temperature side refrigerant compressed from the low temperature side compressor 1 a is converted into the low temperature side of the intermediate heat exchanger 5, the second usage side heat exchanger 8, the low temperature side expansion device 4 a, and the heat source side heat exchanger 3. Are sequentially passed and returned to the low temperature side compressor 1a.
Similarly, in the high temperature side refrigeration cycle 6b, the high temperature side refrigerant compressed by the high temperature side compressor 1b sequentially passes through the high temperature side of the first usage side heat exchanger 7, the high temperature side expansion device 4b, and the intermediate heat exchanger 5. Return to the high temperature side compressor 1b.
At this time, the low temperature side refrigerant of high temperature and high pressure flowing into the low temperature side of the intermediate heat exchanger 5 and the second usage side heat exchanger 8 is condensed, and the high temperature side refrigerant flowing on the high temperature side of the intermediate heat exchanger 5 and the second 2 Flows in the use side heat exchanger 8. And the liquid refrigerant decompressed by the high temperature side expansion device 4b evaporates on the high temperature side of the intermediate heat exchanger 5, and absorbs the condensation heat of the low temperature side refrigerant as the evaporation heat. Further, the heat of condensation is supplied to the water flowing into the second usage-side heat exchanger 8 to generate hot water.
The low-temperature side refrigerant evaporates in the heat source side heat exchanger 3 and exchanges heat with outdoor air blown by the blower 11. Further, the high-temperature side refrigerant is condensed in the first usage-side heat exchanger 7, and hot water is supplied to the water flowing in the first usage-side heat exchanger 7 to generate high-temperature hot water.

さらに、第1利用側で高温の温湯を利用せず、第2利用側で低温の温湯のみを利用する場合、二元冷凍サイクル装置100のそれぞれの冷媒の流れは図1の破線矢印のようになる。
制御器23の指令により、中間熱交換器冷媒流量制御バルブ12aが閉鎖され、第2利用側熱交換器冷媒流量制御バルブ12bが開放される。ここで、中間熱交換器冷媒流量制御バルブ12aは閉鎖され、第2利用側熱交換器冷媒流量制御バルブ12bは開放される。
そして、図示しないインバータ装置から低温側圧縮機1aに圧縮機の運転周波数電流が供給され、低温側冷媒が圧縮され、低温側膨張装置4aの開度が調節され、低温側冷凍サイクル6aが運転される。また、インバータ装置からの高温側圧縮機1bへの運転周波数電流は供給されず、高温側冷凍サイクル6bの運転は停止される。
低温側冷凍サイクル6aでは、低温側圧縮機1aから、中間熱交換器5の低温側、低温側膨張装置4a及び熱源側熱交換器3を順次通過し、低温側圧縮機1aへと戻る。
このとき、低温側冷媒は熱源側熱交換器3で蒸発し、蒸発熱として熱源である外気から熱を吸収し、第2利用側熱交換器7内で凝縮し、凝縮熱として利用側流体へ温熱を供給する。
Furthermore, when not using hot hot water on the first usage side and using only low temperature hot water on the second usage side, the flow of each refrigerant in the dual refrigeration cycle apparatus 100 is as indicated by the dashed arrows in FIG. Become.
In response to a command from the controller 23, the intermediate heat exchanger refrigerant flow control valve 12a is closed, and the second use side heat exchanger refrigerant flow control valve 12b is opened. Here, the intermediate heat exchanger refrigerant flow control valve 12a is closed, and the second use side heat exchanger refrigerant flow control valve 12b is opened.
Then, the operating frequency current of the compressor is supplied from the inverter device (not shown) to the low temperature side compressor 1a, the low temperature side refrigerant is compressed, the opening degree of the low temperature side expansion device 4a is adjusted, and the low temperature side refrigeration cycle 6a is operated. The Further, the operation frequency current from the inverter device to the high temperature side compressor 1b is not supplied, and the operation of the high temperature side refrigeration cycle 6b is stopped.
In the low temperature side refrigeration cycle 6a, the low temperature side compressor 1a sequentially passes through the low temperature side of the intermediate heat exchanger 5, the low temperature side expansion device 4a, and the heat source side heat exchanger 3, and returns to the low temperature side compressor 1a.
At this time, the low temperature side refrigerant evaporates in the heat source side heat exchanger 3, absorbs heat from the outside air as the heat source as evaporation heat, condenses in the second usage side heat exchanger 7, and becomes condensed side heat as a usage side fluid. Supply warm heat.

上記のように二元冷凍サイクル装置100を構成し、運転制御することで、単体のシステムである二元冷凍サイクル装置100のみで、第1利用側と第2利用側へ異なる温度態の温湯を効率よく供給することができる。   By configuring the binary refrigeration cycle apparatus 100 and controlling the operation as described above, hot water having different temperature states can be supplied to the first usage side and the second usage side only by the dual refrigeration cycle apparatus 100 as a single system. It can be supplied efficiently.

(第2の実施形態)
本第2の実施形態に係る二元冷凍サイクル装置100は、図2に示すように、第1の実施形態の二元冷凍サイクル装置100同様に低温側冷凍サイクル6aと高温側冷凍サイクル6bを備えている。
第1の実施形態の冷凍サイクル装置100と異なり、中間熱交換器冷媒流量制御バルブ12aと第2利用側熱交換器冷媒流量制御バルブ12bを有しておらず、以下に第2の実施形態の二元冷凍サイクル装置100特有の構成について詳述する。
本実施形態の二元冷凍サイクル装置100において、第2分岐部21bは、中間熱交換器5と熱源側熱交換器3との間に設けられており、第2利用側熱交換器8に接続されている。低温側冷媒配管19aの中間熱交換器5と第2分岐部21bの間には低温側第1膨張装置4cが設けられており、第2利用側熱交換器8と第2分岐部21bの間には第2低温側膨張装置4dが設けられている。第1低温側膨張装置4c及び第2低温側膨張装置4dは、開閉可能又は絞り量が調整可能な電動膨張弁を用いられる。
制御器23によって、低温側圧縮機1a及び高温側圧縮機1bを駆動するインバータ回路から供給される電力と、第1、第2低温側膨張装置4c、4d及び高温側膨張装置4bの開度が制御される。インバータ回路及び制御器23によって、低温側冷凍サイクル6aと高温側冷凍サイクル6bは最適な運転条件で制御される。また、第1低温側膨張装置4c及び第2低温側膨張装置4dの開度が制御器23に制御されることで、中間熱交換器5及び第2利用側熱交換器8へ流入される低温側冷媒の流量を制御する流量制御手段として機能する。
(Second Embodiment)
As shown in FIG. 2, the binary refrigeration cycle apparatus 100 according to the second embodiment includes a low temperature side refrigeration cycle 6a and a high temperature side refrigeration cycle 6b, as in the dual refrigeration cycle apparatus 100 of the first embodiment. ing.
Unlike the refrigeration cycle apparatus 100 of the first embodiment, the intermediate heat exchanger refrigerant flow rate control valve 12a and the second usage side heat exchanger refrigerant flow rate control valve 12b are not provided. A configuration unique to the binary refrigeration cycle apparatus 100 will be described in detail.
In the two-stage refrigeration cycle apparatus 100 of the present embodiment, the second branch portion 21b is provided between the intermediate heat exchanger 5 and the heat source side heat exchanger 3, and is connected to the second usage side heat exchanger 8. Has been. A low temperature side first expansion device 4c is provided between the intermediate heat exchanger 5 and the second branch portion 21b of the low temperature side refrigerant pipe 19a, and between the second usage side heat exchanger 8 and the second branch portion 21b. Is provided with a second low temperature side expansion device 4d. The first low temperature side expansion device 4c and the second low temperature side expansion device 4d use an electric expansion valve that can be opened and closed or whose throttle amount can be adjusted.
The controller 23 controls the power supplied from the inverter circuit that drives the low temperature side compressor 1a and the high temperature side compressor 1b, and the opening degrees of the first and second low temperature side expansion devices 4c and 4d and the high temperature side expansion device 4b. Be controlled. The inverter circuit and controller 23 control the low temperature side refrigeration cycle 6a and the high temperature side refrigeration cycle 6b under optimum operating conditions. Further, the opening degree of the first low temperature side expansion device 4c and the second low temperature side expansion device 4d is controlled by the controller 23 so that the low temperature flowing into the intermediate heat exchanger 5 and the second usage side heat exchanger 8 is controlled. It functions as a flow rate control means for controlling the flow rate of the side refrigerant.

上記のように構成された二元冷凍サイクル装置100について、第1利用側で高温の温湯を利用し、第2利用側で低温の温湯を利用する場合の運転について、低温側冷媒及び高温側冷媒の流れを図2の実線矢印及び破線矢印に示す。
上記のように構成された二元冷凍サイクル装置100について、第1利用側で高温の温湯を利用し、第2利用側で低温の温湯を利用しない場合、低温側冷媒及び高温側冷媒の流れは図2の実線矢印のようになる。
制御器23の指令により、第1低温側膨張装置4cが開放され、第2低温側膨張装置4dは閉鎖される。そして、図示しないインバータ装置から低温側圧縮機1a及び高温側圧縮機1bに圧縮機の運転周波数電流が供給され、低温側冷媒及び高温側冷媒を圧縮する。制御器23は、第2低温側膨張装置4dを閉塞し、第1低温側膨張装置4c及び高温側膨張装置4bの開度を調節する。
これにより、低温側冷凍サイクル6aでは、低温側圧縮機1aから、中間熱交換器5の低温側、第1低温側膨張装置4c及び熱源側熱交換器3を順次通過し、低温側圧縮機1aへと戻る。
同様に高温側冷凍サイクル6bでは、高温側圧縮機1bで圧縮された高温側冷媒が、利用側熱交換器7、高温側膨張装置4b及び中間熱交換器5の高温側を順次通過し、高温側圧縮機1bへと戻る。
このとき、低温側冷媒は熱源側熱交換器3で蒸発し中間熱交換器5の低温側で凝縮する。また、高温側冷媒は利用側熱交換器7において凝縮し、利用側である利用側配管10内を流動する水に温熱を供給して高温の温湯が生成される。中間熱交換器5の高温側では高温側膨張装置4bによって減圧された液状の冷媒が蒸発し、蒸発熱として低温側冷媒の凝縮熱を吸収する。
With respect to the dual refrigeration cycle apparatus 100 configured as described above, a low-temperature side refrigerant and a high-temperature side refrigerant will be described for operation in which high-temperature hot water is used on the first usage side and low-temperature hot water is used on the second usage side. This flow is shown by solid line arrows and broken line arrows in FIG.
For the dual refrigeration cycle apparatus 100 configured as described above, when hot hot water is used on the first usage side and low temperature hot water is not used on the second usage side, the flow of the low temperature side refrigerant and the high temperature side refrigerant is As shown by the solid line arrow in FIG.
In response to a command from the controller 23, the first low temperature side expansion device 4c is opened, and the second low temperature side expansion device 4d is closed. And the operating frequency current of a compressor is supplied to the low temperature side compressor 1a and the high temperature side compressor 1b from the inverter apparatus which is not shown in figure, and compresses a low temperature side refrigerant | coolant and a high temperature side refrigerant | coolant. The controller 23 closes the second low temperature side expansion device 4d and adjusts the opening degrees of the first low temperature side expansion device 4c and the high temperature side expansion device 4b.
Thus, in the low temperature side refrigeration cycle 6a, the low temperature side compressor 1a sequentially passes through the low temperature side of the intermediate heat exchanger 5, the first low temperature side expansion device 4c, and the heat source side heat exchanger 3, and the low temperature side compressor 1a. Return to.
Similarly, in the high temperature side refrigeration cycle 6b, the high temperature side refrigerant compressed by the high temperature side compressor 1b sequentially passes through the high temperature side of the use side heat exchanger 7, the high temperature side expansion device 4b, and the intermediate heat exchanger 5 to obtain a high temperature. It returns to the side compressor 1b.
At this time, the low temperature side refrigerant evaporates in the heat source side heat exchanger 3 and condenses on the low temperature side of the intermediate heat exchanger 5. Further, the high temperature side refrigerant is condensed in the use side heat exchanger 7, and hot water is generated by supplying warm heat to the water flowing in the use side pipe 10 which is the use side. On the high temperature side of the intermediate heat exchanger 5, the liquid refrigerant decompressed by the high temperature side expansion device 4b evaporates and absorbs the condensation heat of the low temperature side refrigerant as the evaporation heat.

第1利用側で高温の温湯を利用し、第2利用側で低温の温湯を利用する場合の運転について、二元冷凍サイクル装置100の冷媒の流れは図2の実線矢印及び破線矢印のようになる。
制御器23の指令により、第1低温側膨張装置4cと第2低温側膨張装置4dが開放され、中間熱交換器5と低温側熱交換器8に低温側冷媒が流入するようになる。ここで、第1低温側膨張装置4cと第2低温側膨張装置4dの開度は必要に応じて、制御器23により調整される。
そして、図示しないインバータ装置から低温側圧縮機1a及び高温側圧縮機1bに電力が供給され、低温側冷媒及び高温側冷媒を圧縮する。第1低温側膨張装置4cと第2低温側膨張装置4d及び高温側膨張装置4bの開度が調節され、低温側冷凍サイクル6aと高温側冷凍サイクル6bが運転する。
低温側冷凍サイクル6aでは、低温側圧縮機1aから、中間熱交換器5の低温側及び第2利用側熱交換器8、第1低温側膨張装置4c及び熱源側熱交換器3を順次通過し、低温側圧縮機1aへと戻る。
同様に高温側冷凍サイクル6bでは、高温側圧縮機1bで圧縮された高温側冷媒が、利用側熱交換器7、高温側膨張装置4b及び中間熱交換器5の高温側を順次通過し、高温側圧縮機1bへと戻る。
このとき、中間熱交換器5の低温側と第2利用側熱交換器8に流入した高温高圧の低温側冷媒は凝縮し、中間熱交換器5の高温側を流動する高温側冷媒及び、第2利用側熱交換器8内を流動する。そして、中間熱交換器5の高温側では高温側膨張装置4bによって減圧された液状の冷媒が蒸発し、蒸発熱として低温側冷媒の凝縮熱を吸収する。また、第2利用側熱交換器8へ流入した水へ凝縮熱を供給し温湯を生成する。
そして、低温側冷媒は熱源側熱交換器3で蒸発し、送風機11によって送風された室外空気と熱交換する。また、高温側冷媒は第1利用側熱交換器7において凝縮し、第1利用側熱交換器7内を流動する水に温熱を供給し高温の温湯を生成する。
Regarding the operation in the case of using high-temperature hot water on the first usage side and low-temperature hot water on the second usage side, the refrigerant flow of the dual refrigeration cycle apparatus 100 is as indicated by the solid line arrows and broken line arrows in FIG. Become.
In response to a command from the controller 23, the first low temperature side expansion device 4c and the second low temperature side expansion device 4d are opened, and the low temperature side refrigerant flows into the intermediate heat exchanger 5 and the low temperature side heat exchanger 8. Here, the opening degree of the first low temperature side expansion device 4c and the second low temperature side expansion device 4d is adjusted by the controller 23 as necessary.
And electric power is supplied to the low temperature side compressor 1a and the high temperature side compressor 1b from the inverter apparatus which is not shown in figure, and compresses a low temperature side refrigerant | coolant and a high temperature side refrigerant | coolant. The opening degrees of the first low temperature side expansion device 4c, the second low temperature side expansion device 4d, and the high temperature side expansion device 4b are adjusted, and the low temperature side refrigeration cycle 6a and the high temperature side refrigeration cycle 6b are operated.
In the low temperature side refrigeration cycle 6a, the low temperature side compressor 1a sequentially passes the low temperature side of the intermediate heat exchanger 5, the second usage side heat exchanger 8, the first low temperature side expansion device 4c, and the heat source side heat exchanger 3. Return to the low temperature side compressor 1a.
Similarly, in the high temperature side refrigeration cycle 6b, the high temperature side refrigerant compressed by the high temperature side compressor 1b sequentially passes through the high temperature side of the use side heat exchanger 7, the high temperature side expansion device 4b, and the intermediate heat exchanger 5 to obtain a high temperature. It returns to the side compressor 1b.
At this time, the low temperature side refrigerant of high temperature and high pressure flowing into the low temperature side of the intermediate heat exchanger 5 and the second usage side heat exchanger 8 is condensed, and the high temperature side refrigerant flowing on the high temperature side of the intermediate heat exchanger 5 and the second 2 Flows in the use side heat exchanger 8. And the liquid refrigerant decompressed by the high temperature side expansion device 4b evaporates on the high temperature side of the intermediate heat exchanger 5, and absorbs the condensation heat of the low temperature side refrigerant as the evaporation heat. Further, the heat of condensation is supplied to the water flowing into the second usage-side heat exchanger 8 to generate hot water.
The low-temperature side refrigerant evaporates in the heat source side heat exchanger 3 and exchanges heat with outdoor air blown by the blower 11. Further, the high-temperature side refrigerant is condensed in the first usage-side heat exchanger 7, and hot water is supplied to the water flowing in the first usage-side heat exchanger 7 to generate high-temperature hot water.

さらに、第1利用側で高温の温湯を利用せず、第2利用側で低温の温湯のみを利用する場合の運転について、二元冷凍サイクル装置100のそれぞれの冷媒の流れは図1の破線矢印のようになる。
制御器23の指令により、第2低温側膨張装置4dが開放され、第1低温側膨張装置4cが閉鎖される。それぞれの開度は、第1利用側機器及び第2利用側機器の必要とする熱量に応じて変更される。
そして、図示しないインバータ装置から低温側圧縮機1aに電力が供給され、低温側冷媒が圧縮される。
低温側冷凍サイクル6aでは、低温側圧縮機1aから、第2利用側熱交換器8、第2低温側膨張装置4d、熱源側熱交換器3を順次通過し、低温側圧縮機1aへと戻る。
低温側冷媒は熱源側熱交換器3で蒸発し、第2利用側熱交換器8で凝縮する。第2利用側熱交換器8内で凝縮した低温側冷媒の凝縮熱は、第2利用側配管14を介して送水ポンプ15により流動する温湯に吸収され、第2利用側側貯タンク13へ貯湯される。
Furthermore, regarding the operation in the case of using only the low-temperature hot water on the second usage side without using the high-temperature hot water on the first usage side, the flow of each refrigerant in the dual refrigeration cycle apparatus 100 is indicated by the broken-line arrows in FIG. become that way.
In response to a command from the controller 23, the second low temperature side expansion device 4d is opened, and the first low temperature side expansion device 4c is closed. Each opening degree is changed according to the calorie | heat amount which a 1st utilization side apparatus and a 2nd utilization side apparatus require.
And electric power is supplied to the low temperature side compressor 1a from the inverter apparatus which is not shown in figure, and a low temperature side refrigerant | coolant is compressed.
In the low temperature side refrigeration cycle 6a, the low temperature side compressor 1a sequentially passes through the second usage side heat exchanger 8, the second low temperature side expansion device 4d, and the heat source side heat exchanger 3, and returns to the low temperature side compressor 1a. .
The low temperature side refrigerant evaporates in the heat source side heat exchanger 3 and condenses in the second usage side heat exchanger 8. The heat of condensation of the low-temperature side refrigerant condensed in the second usage-side heat exchanger 8 is absorbed by the hot water flowing by the water supply pump 15 through the second usage-side piping 14 and is stored in the second usage-side storage tank 13. Is done.

第2の実施形態の二元冷凍サイクル装置のように、第1膨張装置4cと第2膨張装置4dの開度を調節し流量制御手段とすることで、二元冷凍サイクル装置100に設けられる部品点数が減少し、構造を簡略化し小型で、低コストの装置とすることができる。   As in the two-stage refrigeration cycle apparatus of the second embodiment, the components provided in the two-stage refrigeration cycle apparatus 100 by adjusting the opening degree of the first expansion device 4c and the second expansion device 4d to serve as flow control means. The number of points can be reduced, the structure can be simplified, and the device can be reduced in size and cost.

(第3の実施形態)
上記第1、第2の実施形態の二元冷凍サイクル装置100は、装置全体を保守するために筐体内に収納される。筐体は温湯を必要とする利用側の形態や、二元冷凍サイクル装置100の形態によって形状がことなる。
二元冷凍サイクル装置100は、熱源側筐体31と利用側筐体32の2つの筐体を有している。熱源側筐体31には熱源側熱交換器3が収容されており、利用側筐体32には第1利用側熱交換器と高温側圧縮機1bが収容されている。
(Third embodiment)
The binary refrigeration cycle apparatus 100 of the first and second embodiments is housed in a housing in order to maintain the entire apparatus. The shape of the casing differs depending on the form of the use side that requires hot water or the form of the dual refrigeration cycle apparatus 100.
The dual refrigeration cycle apparatus 100 has two housings, a heat source housing 31 and a use housing 32. The heat source side housing 31 houses the heat source side heat exchanger 3, and the usage side housing 32 houses the first usage side heat exchanger and the high temperature side compressor 1b.

このように構成された二元冷凍サイクル装置100の熱源側筐体31と利用側筐体32を、建造物の屋外や屋内のように互いに異なる雰囲気中に設置することで、高温側圧縮機1bで圧縮された高温側冷媒が第1利用側熱交換器7内へ流動する際に、熱源側筐体31の周囲温度に影響され、高温冷媒温度が低下することがなく、熱損失が少なく効率の良い二元冷凍サイクル装置とすることができる。   By installing the heat source side casing 31 and the use side casing 32 of the dual refrigeration cycle apparatus 100 configured in this way in different atmospheres such as outdoors or indoors of a building, the high temperature side compressor 1b. When the high-temperature side refrigerant compressed in step flows into the first usage-side heat exchanger 7, it is affected by the ambient temperature of the heat-source-side casing 31, and the high-temperature refrigerant temperature does not decrease, and heat loss is low and efficient. A good dual refrigeration cycle apparatus.

例えば、図3の二元冷凍サイクル装置100は、利用側筐体32に中間熱交換器5と第1利用側熱交換器7と第2利用側熱交換器8や、低温側圧縮機1a及び高温側圧縮機1bなどの大きなスペースを必要とし、重量の大きい主要部品が収納されている。これに対して、熱源側筐体31には熱源側熱交換器3と送風機11が収納されており、軽量で内容積を小さく抑えることができる。これにより、屋外スペースが制限されるような建築物であっても、熱源側筐体31を容易に屋外へ設置することができ、熱源側熱交換器3を効率よく大気と熱交換させることができる。   For example, the two-stage refrigeration cycle apparatus 100 of FIG. 3 includes an intermediate heat exchanger 5, a first use side heat exchanger 7, a second use side heat exchanger 8, a low temperature side compressor 1 a, and a use side housing 32. A large space such as the high temperature side compressor 1b is required, and a heavy main part is accommodated. On the other hand, the heat source side housing 31 accommodates the heat source side heat exchanger 3 and the blower 11, which is lightweight and can keep the internal volume small. Thereby, even if it is a building where an outdoor space is restricted, the heat source side housing 31 can be easily installed outdoors, and the heat source side heat exchanger 3 can efficiently exchange heat with the atmosphere. it can.

また、図4の二元冷凍サイクル装置100は、利用側筐体32に中間熱交換器5と、代1利用側熱交換器7と、高温側圧縮機1bを収納しており、これに対して、熱源側筐体31は、熱源側熱交換器3と第2利用側熱交換器8と、低温側圧縮機1aを収納している。
これにより、第1利用側熱交換器7と第2利用側熱交換器8を別筐体に収容することで、第1利用側と第2利用側が離れた位置に設けられた場合に、第1利用側付近に利用側筐体32を設置し、第2利用側付近に熱源側筐体31を設置することにより、それぞれの利用側へ送流される温湯の熱損失を低減することができる。
Further, the two-stage refrigeration cycle apparatus 100 of FIG. 4 houses the intermediate heat exchanger 5, the substitute 1 use side heat exchanger 7, and the high temperature side compressor 1 b in the use side housing 32, The heat source side housing 31 houses the heat source side heat exchanger 3, the second usage side heat exchanger 8, and the low temperature side compressor 1a.
Accordingly, when the first usage side heat exchanger 7 and the second usage side heat exchanger 8 are accommodated in separate housings, the first usage side and the second usage side are provided at positions separated from each other. By installing the usage-side casing 32 near the first usage side and the heat source-side casing 31 near the second usage side, it is possible to reduce the heat loss of the hot water sent to each usage side.

また、図5の二元冷凍サイクル装置100は、利用側筐体32には第1利用側熱交換器7と高温側圧縮機1bが収容されており、これに対して、熱源側筐体31には、熱源側熱交換器3と、中間熱交換器5と第2利用側熱交換器8と、低温側圧縮機1a及び高温側圧縮機1bを収容されている。
これにより、利用側筐体32を小型にすることができ、設置スペースの狭い屋内などにおいても、容易に利用側筐体32を設置することができる。
Further, in the dual refrigeration cycle apparatus 100 of FIG. 5, the use side housing 32 accommodates the first use side heat exchanger 7 and the high temperature side compressor 1 b, whereas the heat source side housing 31. The heat source side heat exchanger 3, the intermediate heat exchanger 5, the second usage side heat exchanger 8, the low temperature side compressor 1a and the high temperature side compressor 1b are accommodated.
Thereby, the use side housing | casing 32 can be reduced in size and the use side housing | casing 32 can be easily installed also in the indoor where an installation space is narrow.

本発明は、上記実施形態に限定されない。さらに、本発明の実施の形態に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成できる。例えば、本発明の実施の形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施の形態に亘る構成要素を適宜組み合わせてもよい。   The present invention is not limited to the above embodiment. Furthermore, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments of the present invention. For example, you may delete some components from all the components shown by embodiment of this invention. Furthermore, you may combine the component covering different embodiment suitably.

1a…低温側圧縮機、1b…高温側圧縮機、3…熱源側熱交換器、4a…低温側膨張装置、4b…高温側膨張装置、4c…第1低温側膨張装置、4d…第2低温側膨張装置、5…中間熱交換器、6a…低温側冷凍サイクル、6b…高温側冷凍サイクル、7…第1利用側熱交換器、8…第2利用側熱交換器、12a…中間熱交換器冷媒流量制御バルブ、12b…水熱交換器冷媒流量制御バルブ、23…制御器、100…二元冷凍サイクル装置 DESCRIPTION OF SYMBOLS 1a ... Low temperature side compressor, 1b ... High temperature side compressor, 3 ... Heat source side heat exchanger, 4a ... Low temperature side expansion device, 4b ... High temperature side expansion device, 4c ... 1st low temperature side expansion device, 4d ... 2nd low temperature Side expansion device, 5 ... intermediate heat exchanger, 6a ... low temperature side refrigeration cycle, 6b ... high temperature side refrigeration cycle, 7 ... first use side heat exchanger, 8 ... second use side heat exchanger, 12a ... intermediate heat exchange Refrigerant flow control valve, 12b ... water heat exchanger refrigerant flow control valve, 23 ... controller, 100 ... dual refrigeration cycle apparatus

Claims (3)

内部に低温側冷媒が流通する低温側冷媒配管で接続され、低温側冷媒を圧縮する低温側圧縮機と、外部熱源から熱を吸収する熱源側熱交換器と、を有する低温側冷凍サイクルと、
内部に高温側冷媒が流通する高温側冷媒配管で接続された、高温側冷媒を圧縮する高温側圧縮機と、高温側冷媒の熱を第1熱利用側機器へ供給する第1利用側熱交換器と、を有する高温側冷凍サイクルと、
前記低温側冷媒配管と前記高温側冷媒配管に接続され、前記低温側冷媒と前記高温側冷媒とを熱交換可能する中間熱交換器と、
前記低温側冷媒配管の前記中間熱交換器に対して並列に接続され、前記低温側冷媒の熱を第2熱利用機器へ供給する第2利用側熱交換器と、
前記第2利用側熱交換器と前記中間熱交換器へ供給される低温側冷媒の流量を制御する流量制御手段を備えたことを特徴とする二元冷凍サイクル装置。
A low temperature side refrigeration cycle, which is connected by a low temperature side refrigerant pipe through which the low temperature side refrigerant circulates and has a low temperature side compressor that compresses the low temperature side refrigerant, and a heat source side heat exchanger that absorbs heat from an external heat source,
A high-temperature side compressor that compresses the high-temperature side refrigerant, connected by a high-temperature side refrigerant pipe through which the high-temperature side refrigerant circulates, and a first usage-side heat exchange that supplies heat from the high-temperature side refrigerant to the first heat-use side device A high temperature side refrigeration cycle comprising:
An intermediate heat exchanger connected to the low temperature side refrigerant pipe and the high temperature side refrigerant pipe and capable of exchanging heat between the low temperature side refrigerant and the high temperature side refrigerant;
A second usage side heat exchanger connected in parallel to the intermediate heat exchanger of the low temperature side refrigerant pipe and supplying heat of the low temperature side refrigerant to a second heat utilization device;
A dual refrigeration cycle apparatus comprising flow rate control means for controlling a flow rate of a low-temperature side refrigerant supplied to the second usage side heat exchanger and the intermediate heat exchanger.
前記中間熱交換器と前記第2利用側熱交換器は、
前記低温側圧縮機と前記中間熱交換器との間に設けられた第1分岐部と、前記中間熱交換器と前記熱源側熱交換器の間に設けられた第2分岐部とによって並列に接続されており、
前記第2分岐部と前記中間熱交換器との間に設けられた第1低温側膨張装置と、
前記第2分岐部と前記第2利用側熱交換器との間に設けられた第2低温側膨張装置とを有しており、
前記流量制御手段は、前記第1低温側膨張装置と、前記第2低温側膨張装置の開度によって前記中間熱交換器及び前記第2利用側熱交換器に流入する低温側冷媒の流量を制御することを特徴とする請求項1に記載の二元冷凍サイクル装置。
The intermediate heat exchanger and the second usage side heat exchanger are:
A first branch portion provided between the low temperature side compressor and the intermediate heat exchanger and a second branch portion provided between the intermediate heat exchanger and the heat source side heat exchanger in parallel. Connected,
A first low temperature side expansion device provided between the second branch and the intermediate heat exchanger;
A second low-temperature side expansion device provided between the second branch portion and the second usage-side heat exchanger;
The flow rate control means controls the flow rate of the low temperature side refrigerant flowing into the intermediate heat exchanger and the second usage side heat exchanger according to the opening degree of the first low temperature side expansion device and the second low temperature side expansion device. The dual refrigeration cycle apparatus according to claim 1, wherein:
前記熱源側熱交換器を収容する熱源側筐体と、前記第1利用側熱交換器を収容する利用側筐体を備えたことを特徴とする請求項1に記載の二元冷凍サイクル装置。 The dual refrigeration cycle apparatus according to claim 1, further comprising: a heat source side housing that houses the heat source side heat exchanger; and a usage side housing that houses the first usage side heat exchanger.
JP2011081351A 2011-04-01 2011-04-01 Dual refrigeration cycle apparatus Pending JP2012215354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011081351A JP2012215354A (en) 2011-04-01 2011-04-01 Dual refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011081351A JP2012215354A (en) 2011-04-01 2011-04-01 Dual refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
JP2012215354A true JP2012215354A (en) 2012-11-08

Family

ID=47268259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011081351A Pending JP2012215354A (en) 2011-04-01 2011-04-01 Dual refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP2012215354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737625A (en) * 2019-03-04 2019-05-10 珠海格力电器股份有限公司 A kind of heat pump system, control method and heat pump drying device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432669A (en) * 1990-05-25 1992-02-04 Matsushita Electric Ind Co Ltd Heat pump system controlling method therefor
JPH04263758A (en) * 1991-02-18 1992-09-18 Kansai Electric Power Co Inc:The Heat pump hot-water supplier
JPH0727380A (en) * 1993-07-15 1995-01-27 Matsushita Electric Works Ltd Heat storage tank of cooler/heater
JP2004132647A (en) * 2002-10-11 2004-04-30 Daikin Ind Ltd Hot-water supplier, air-conditioning hot-water supply system, and hot-water supply system
JP2006183980A (en) * 2004-12-28 2006-07-13 Daikin Ind Ltd Variable constant temperature testing device
JP2006194538A (en) * 2005-01-14 2006-07-27 Taikisha Ltd Heat transfer liquid supply/discharge structure of temperature stratified heat accumulation tank
JP2010236817A (en) * 2009-03-31 2010-10-21 Mitsubishi Electric Corp Combined system of air conditioning device and hot-water supply device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432669A (en) * 1990-05-25 1992-02-04 Matsushita Electric Ind Co Ltd Heat pump system controlling method therefor
JPH04263758A (en) * 1991-02-18 1992-09-18 Kansai Electric Power Co Inc:The Heat pump hot-water supplier
JPH0727380A (en) * 1993-07-15 1995-01-27 Matsushita Electric Works Ltd Heat storage tank of cooler/heater
JP2004132647A (en) * 2002-10-11 2004-04-30 Daikin Ind Ltd Hot-water supplier, air-conditioning hot-water supply system, and hot-water supply system
JP2006183980A (en) * 2004-12-28 2006-07-13 Daikin Ind Ltd Variable constant temperature testing device
JP2006194538A (en) * 2005-01-14 2006-07-27 Taikisha Ltd Heat transfer liquid supply/discharge structure of temperature stratified heat accumulation tank
JP2010236817A (en) * 2009-03-31 2010-10-21 Mitsubishi Electric Corp Combined system of air conditioning device and hot-water supply device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737625A (en) * 2019-03-04 2019-05-10 珠海格力电器股份有限公司 A kind of heat pump system, control method and heat pump drying device
CN109737625B (en) * 2019-03-04 2023-07-25 珠海格力电器股份有限公司 Heat pump system, control method and heat pump drying device

Similar Documents

Publication Publication Date Title
US7240505B2 (en) Cogeneration system
JP6625242B2 (en) Air conditioner
WO2012085970A1 (en) Hot-water-supplying, air-conditioning composite device
KR101645845B1 (en) Air conditioner
JP2006292313A (en) Geothermal unit
EP2541170A1 (en) Air-conditioning hot-water-supply system
WO2012121326A1 (en) Binary refrigeration cycle device
WO2013128668A1 (en) Exhaust heat recovery system and operating method therefor
KR102122574B1 (en) An accumulator and an air conditioner using thereof
KR100738354B1 (en) Heat pump type compound air conditioning apparatus using brine system
WO2014115496A1 (en) Heater system
JP2012202581A (en) Refrigeration cycle device and control method thereof
JPWO2013080297A1 (en) Air conditioning and hot water supply system
WO2010109619A1 (en) Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon
CN101558267A (en) Freezing device
JP2008082601A (en) Heat pump hot water supply device
EP2339267B1 (en) Refrigerating cycle apparatus, heat pump type hot water supply air conditioner and outdoor unit thereof
JP2012215354A (en) Dual refrigeration cycle apparatus
KR101977884B1 (en) Heat pump system for recovery waste heat and coldness
JP2019158311A (en) Air conditioner and control method of the same
KR100796373B1 (en) Constant temperature/humidity device
KR20180067094A (en) Hybrid heat pump system
JP2017172901A (en) Ventilation device
JP2012215353A (en) Dual refrigeration cycle device
JP5250519B2 (en) Cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151105