JPH043247B2 - - Google Patents

Info

Publication number
JPH043247B2
JPH043247B2 JP62210245A JP21024587A JPH043247B2 JP H043247 B2 JPH043247 B2 JP H043247B2 JP 62210245 A JP62210245 A JP 62210245A JP 21024587 A JP21024587 A JP 21024587A JP H043247 B2 JPH043247 B2 JP H043247B2
Authority
JP
Japan
Prior art keywords
ozone
catalyst
decomposition
containing gas
ozone decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62210245A
Other languages
Japanese (ja)
Other versions
JPS6456123A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62210245A priority Critical patent/JPS6456123A/en
Publication of JPS6456123A publication Critical patent/JPS6456123A/en
Publication of JPH043247B2 publication Critical patent/JPH043247B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はオゾン分解方法、特にガス中に含有さ
れるオゾンを効率よく接触分解する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an ozone decomposition method, and particularly to a method for efficiently catalytically decomposing ozone contained in gas.

<従来技術とその問題点> オゾンは強い酸化能を有し、分解すると無害な
酸素になるために脱臭、殺菌、漂白または排水中
のCOD減少等の目的でさまざまな分野において、
幅広く利用されている。しかし、処理に利用され
たオゾンは一部未反応のまま大気中に放出される
ために、光化学スモツグ等の二次公害を発生させ
る恐れがある。また、航空機が成層圏を飛行する
場合機内にオゾンを含む空気が導入されるため
に、乗客や搭乗員に悪影響を及ぼす危険性があ
る。
<Prior art and its problems> Ozone has strong oxidizing ability and becomes harmless oxygen when decomposed, so it is used in various fields for purposes such as deodorization, sterilization, bleaching, and reducing COD in wastewater.
Widely used. However, some of the ozone used in the treatment is released into the atmosphere unreacted, which poses the risk of causing secondary pollution such as photochemical smog. Furthermore, when an aircraft flies in the stratosphere, air containing ozone is introduced into the cabin, which poses a risk of adversely affecting passengers and crew.

さらに、最近、各種の高電圧発生装置を組み込
んだ機器、例えば乾式の複写機等からのオゾンの
発生が問題となつており、これ等の機器は主に室
内に置かれるためにオゾンの発生量は微量であつ
ても室内が汚染される。
Furthermore, recently, ozone generation from devices that incorporate various high-voltage generators, such as dry-type copying machines, has become a problem, and since these devices are mainly placed indoors, the amount of ozone generated is low. Even a small amount of this can contaminate the room.

オゾンの臭いは1ppm以下の濃度で感知でき、
2ppm以上の濃度では呼吸器系に刺激を引き起こ
し、人体に有害となるために、各種の発生源から
排出されるオゾンを除去し、無害化する必要があ
る。
Ozone odor can be detected at concentrations below 1 ppm.
Concentrations of 2 ppm or higher cause irritation to the respiratory system and are harmful to the human body, so it is necessary to remove ozone emitted from various sources and render it harmless.

従来、用いられてきた廃オゾンの処理技術とし
ては、活性炭法、薬液洗浄法および熱分解法があ
る。活性炭法は低濃度オゾンの処理に利用されて
いるが、オゾン分解の進行に伴つて、活性炭が消
耗するために補充する必要があり、また高濃度の
オゾンを処理する場合は反応熱により活性炭自身
が発火、燃焼する危険性があるので取り扱い上問
題がある。
Conventionally used waste ozone treatment techniques include an activated carbon method, a chemical cleaning method, and a thermal decomposition method. The activated carbon method is used to treat low-concentration ozone, but as ozone decomposition progresses, the activated carbon is consumed and needs to be replenished, and when treating high-concentration ozone, the activated carbon itself is destroyed by the heat of reaction. There is a danger of ignition and combustion, which poses a problem in handling.

薬液洗浄法は還元性物質の水溶液で廃オゾンを
洗浄するために処理コストが高く、廃水処理の問
題が生じる。
In the chemical cleaning method, waste ozone is cleaned with an aqueous solution of a reducing substance, so the treatment cost is high and problems arise in wastewater treatment.

熱分解法は分解効率を上げるためには300℃以
上の加熱が必要であり、多量の排ガスを処理する
ためには加熱費用がかかり、処理コストが高くな
るなどの欠点がある。
The thermal decomposition method requires heating to 300°C or higher in order to increase decomposition efficiency, and has drawbacks such as heating costs required to process a large amount of exhaust gas, which increases processing costs.

一方、近年廃オゾン処理方法として触媒分解法
が研究されており、この方法は発火、爆発の危険
性がなく、廃水処理も不要であり、低コストでオ
ゾンを分解除去できるために有利な方法とされて
いる。しかしながら従来検討されている触媒分解
法では、触媒活性を十分に高めるための加熱が必
要であつて処理コスト上の問題を有すると共に、
オゾン分解効率を高く且つ長時間維持し得る迄に
は至つていない。
On the other hand, in recent years, research has been conducted on the catalytic decomposition method as a waste ozone treatment method.This method has no risk of ignition or explosion, does not require wastewater treatment, and can decompose and remove ozone at low cost, making it an advantageous method. has been done. However, the catalytic decomposition methods that have been studied so far require heating to sufficiently increase the catalytic activity, which poses problems in terms of processing cost.
It has not yet been possible to maintain high ozone decomposition efficiency for a long period of time.

<発明の目的> 本発明の目的は、オゾン含有ガスのオゾンを接
触的に分解除去するにあたり、最良の分解効率を
発揮すると考え得る触媒を選定すると共に、ガス
中の水分をあらかじめ取り除くことにより、オゾ
ン分解効率を高く維持せしめてなる脱臭方法を提
供することにある。
<Object of the invention> The object of the invention is to select a catalyst that is considered to exhibit the best decomposition efficiency when catalytically decomposing and removing ozone from an ozone-containing gas, and to remove moisture in the gas in advance. To provide a deodorizing method that maintains high ozone decomposition efficiency.

<問題点を解決するための手段> 本発明者らは、上記目的に沿つて鋭意研究した
結果、オゾン含有ガス中のオゾンを接触的に分解
除去せしめてなるオゾン分解方法において、触媒
としてMnを含有するものを選定すると共に、あ
らかじめオゾン含有ガスの除湿を行つたのち、オ
ゾンを接触分解する方法が、事実上効率の良いオ
ゾン分解効果を奏することを見い出した。
<Means for Solving the Problems> As a result of intensive research in line with the above objectives, the present inventors have developed an ozone decomposition method in which ozone in an ozone-containing gas is catalytically decomposed and removed, using Mn as a catalyst. It has been found that a method of catalytically decomposing ozone after selecting the ozone-containing gas and dehumidifying the ozone-containing gas in advance produces a virtually efficient ozone decomposition effect.

<作用> 本発明にかかるオゾン分解方法の特徴は、オゾ
ンを接触的に分解除去するに触媒としてMnを含
有するものを選定した点、並びにあらかじめオゾ
ン含有ガスの除湿を行つたのち、オゾンを接触的
に分解除去する点にある。
<Function> The ozone decomposition method according to the present invention is characterized by the fact that a catalyst containing Mn is selected for catalytically decomposing and removing ozone, and that the ozone-containing gas is dehumidified in advance and then ozone is catalytically decomposed and removed. The point is that it can be decomposed and removed.

本発明者らは、オゾンの接触分解反応は、酸化
マンガン等のMn含有触媒を用いたときにもつと
も効率良く進行することを見出したが、更に検討
を進めたところ、Mn含有触媒は水分の影響を受
けやすい、つまりオゾン含有ガスの水分含有量が
多くなると、オゾン分解効率が低下するという知
見を得た。
The present inventors found that the catalytic cracking reaction of ozone proceeds more efficiently when using a Mn-containing catalyst such as manganese oxide. We obtained the knowledge that the ozone decomposition efficiency decreases when the moisture content of ozone-containing gas increases.

すなわち、オゾン分解効率を高く維持するため
には、オゾン含有ガスの相対湿度を60%以下、好
ましくは30%以下に除湿せしめることが必要であ
ることを見出したのである。
In other words, it has been found that in order to maintain high ozone decomposition efficiency, it is necessary to dehumidify the ozone-containing gas to a relative humidity of 60% or less, preferably 30% or less.

除湿する方法は特に限定しないが、オゾン含有
ガスの種類、量に応じて選択する必要がある。
The method of dehumidification is not particularly limited, but must be selected depending on the type and amount of ozone-containing gas.

本発明で用いられる触媒はMnを金属として、
または化合物(例えば酸化物)の形で含有するこ
とを必須の要件とするものであり、この要件を満
足する限り、他の要件については一切制限されな
い。例えば上記Mn(化合物である場合を含む)
の他に、全体の60〜99.9重量%の比率でアルミ
ナ、シリカ、シリカアルミナ、ベントナイト、ケ
イソウ土、シリコンカーバイド、チタニア、ジル
コニア、マグネシア、コーデイライト、ムライト
等を併用することもできる。尚これらのうち特に
好ましいのはTi−Si系またはTi−Zr系等の2元
系複合酸化物、Ti−Si−Zr系等の3元系複合酸
化物である。
The catalyst used in the present invention uses Mn as a metal,
or in the form of a compound (for example, an oxide), and as long as this requirement is satisfied, there are no restrictions on other requirements. For example, the above Mn (including when it is a compound)
In addition, alumina, silica, silica alumina, bentonite, diatomaceous earth, silicon carbide, titania, zirconia, magnesia, cordierite, mullite, etc. can also be used together in a proportion of 60 to 99.9% by weight of the total. Among these, particularly preferred are binary composite oxides such as Ti-Si or Ti-Zr, and ternary composite oxides such as Ti-Si-Zr.

分解反応は常温以下の温度でも十分に進行す
る。その他の条件として、空間速度は500〜
50000hr-1(STP)、とくに1000〜30000hr-1(STP)
の範囲が好適である。
The decomposition reaction proceeds satisfactorily even at temperatures below room temperature. Other conditions include space velocity of 500~
50000hr -1 (STP), especially 1000~30000hr -1 (STP)
A range of is suitable.

以下に実施例および比較例を用いて本発明をさ
らに詳細に説明するが、本発明はこれらの実施例
のみに限定されるものではない。
The present invention will be explained in more detail below using Examples and Comparative Examples, but the present invention is not limited to these Examples.

実施例 1 オゾンを10ppm含有する相対湿度100%の空気
を除湿器を通し、相対湿度を30%に低下させた
後、直径3.0mm、長さ3.0mmのペレツト状触媒
(TiO2:SiO2:MnO2=81:14:5重量比)10.5
c.c.を充填してなる、内径20mmのパイレツクス反応
管に、0.528Nm3/Hrの流速(空間速度
50000Hr-1)で導入し、反応温度2℃におけるオ
ゾン分解率を求めた。
Example 1 Air with a relative humidity of 100% containing 10 ppm of ozone was passed through a dehumidifier to reduce the relative humidity to 30%, and then a pellet-shaped catalyst (TiO 2 :SiO 2 : MnO2 = 81:14:5 weight ratio) 10.5
A Pyrex reaction tube with an inner diameter of 20 mm filled with
50000Hr -1 ), and the ozone decomposition rate at a reaction temperature of 2°C was determined.

オゾン分解率は次式により求めた。 The ozone decomposition rate was determined using the following formula.

オゾン分解率(%) =(1−触媒層出口オゾン濃度 触媒層入口オゾン濃度)×100 その結果、オゾン分解率は95%であつた。Ozone decomposition rate (%) =(1-catalyst layer outlet ozone concentration Catalyst layer inlet ozone concentration) x 100 As a result, the ozone decomposition rate was 95%.

実施例 2 ペレツト状触媒の組成をγ−Al2O3:MnO2
95.5に変えた他は実施例1と同様に実施した。オ
ゾン分解率は92%であつた。
Example 2 The composition of the pellet catalyst was γ-Al 2 O 3 :MnO 2 =
The same procedure as in Example 1 was carried out except that the temperature was changed to 95.5. The ozone decomposition rate was 92%.

実施例 3 ペレツト状触媒の組成をSiO2:Al2O3:MnO2
=75:20:5に変えた他は実施例1と同様に実施
した。オゾン分解率は93%であつた。
Example 3 The composition of pellet catalyst was SiO 2 :Al 2 O 3 :MnO 2
The same procedure as in Example 1 was carried out except that the ratio was changed to 75:20:5. The ozone decomposition rate was 93%.

比較例 1 オゾンを10ppm含有する相対湿度100%の空気
を除湿器に通さずに反応管に導入したということ
を除いて、実施例1と同様の方法でオゾン分解率
を求めた。
Comparative Example 1 The ozone decomposition rate was determined in the same manner as in Example 1, except that air containing 10 ppm of ozone and having a relative humidity of 100% was introduced into the reaction tube without passing through a dehumidifier.

その結果、オゾン分解率は69%であつた。 As a result, the ozone decomposition rate was 69%.

実施例および比較例の結果より本発明のオゾン
分解方法は優れた方法であることがわかる。
The results of Examples and Comparative Examples show that the ozone decomposition method of the present invention is an excellent method.

Claims (1)

【特許請求の範囲】[Claims] 1 オゾン含有ガス中のオゾンを触媒上で接触的
に分解除去するにあたり、まずオゾン含有ガスの
除湿を行い、次いで触媒としてMn含有触媒を用
い常温以下の温度でオゾンを接触的に分解除去す
ることを特徴とするオゾン分解方法。
1. To catalytically decompose and remove ozone in ozone-containing gas on a catalyst, first dehumidify the ozone-containing gas, and then catalytically decompose and remove ozone at a temperature below room temperature using a Mn-containing catalyst as a catalyst. An ozone decomposition method characterized by:
JP62210245A 1987-08-26 1987-08-26 Method for decomposing ozone Granted JPS6456123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62210245A JPS6456123A (en) 1987-08-26 1987-08-26 Method for decomposing ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62210245A JPS6456123A (en) 1987-08-26 1987-08-26 Method for decomposing ozone

Publications (2)

Publication Number Publication Date
JPS6456123A JPS6456123A (en) 1989-03-03
JPH043247B2 true JPH043247B2 (en) 1992-01-22

Family

ID=16586187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62210245A Granted JPS6456123A (en) 1987-08-26 1987-08-26 Method for decomposing ozone

Country Status (1)

Country Link
JP (1) JPS6456123A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221649A (en) * 1988-11-28 1993-06-22 Sakai Chemical Industry Co., Ltd. Catalysts and methods for ozone decomposition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314688A (en) * 1976-07-28 1978-02-09 Toshiba Corp Production of ozone decomposition catalyst
JPS5387972A (en) * 1977-01-12 1978-08-02 Takeda Chem Ind Ltd Ozone removing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147819U (en) * 1979-04-12 1980-10-24

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314688A (en) * 1976-07-28 1978-02-09 Toshiba Corp Production of ozone decomposition catalyst
JPS5387972A (en) * 1977-01-12 1978-08-02 Takeda Chem Ind Ltd Ozone removing method

Also Published As

Publication number Publication date
JPS6456123A (en) 1989-03-03

Similar Documents

Publication Publication Date Title
JP3326836B2 (en) Catalyst body and method for producing catalyst body
JP2006075832A (en) Treating method and device of exhaust gas
GB2292698A (en) Decomposition of ozone
CN109414647B (en) Method for low-temperature gas cleaning and catalyst used for method
JP3230427B2 (en) Catalyst for purifying fumigation exhaust gas and method for purifying fumigation exhaust gas
JPS62201648A (en) Catalyst for decomposing ozone
CN108057327A (en) A kind of purification of pollution air containing ammonia and recycling processing method
KR100506813B1 (en) Mn oxide catalyst for decomposing ozone and the method therefor
JP2739025B2 (en) Ozone decomposition catalyst
JPH043247B2 (en)
KR101817907B1 (en) Apparatus for eliminating stink and harzardous gas
JPS6297643A (en) Ozone decomposing catalyst
JP2743437B2 (en) Method for producing ozone decomposition catalyst
JP2009082785A (en) Method and apparatus for treating gas containing harmful substance
JPH0618613B2 (en) Ozone deodorization method
JPH02253848A (en) Catalyst for decomposition of ozone
JP2699666B2 (en) Deodorizing device
JP2928983B2 (en) Nitrous oxide containing gas decomposition method
JPH057776A (en) Catalyst and its manufacture
JPH08963A (en) Cleaing equipment for organohalogen compound-polluted material
JPH0555185B2 (en)
JPH0738936B2 (en) Ozone decomposition method
JPH04176324A (en) Deodorizing device
JPH07331121A (en) Coating for decomposing ozone and its use
JPH05293162A (en) Air cleaner and its production