JPH04324632A - Manufacture of insulating film of semiconductor device - Google Patents

Manufacture of insulating film of semiconductor device

Info

Publication number
JPH04324632A
JPH04324632A JP9435291A JP9435291A JPH04324632A JP H04324632 A JPH04324632 A JP H04324632A JP 9435291 A JP9435291 A JP 9435291A JP 9435291 A JP9435291 A JP 9435291A JP H04324632 A JPH04324632 A JP H04324632A
Authority
JP
Japan
Prior art keywords
film
sio2
substrate
insulating film
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9435291A
Other languages
Japanese (ja)
Inventor
Hisakazu Miyatake
宮武 久和
Takashi Ueda
多加志 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP9435291A priority Critical patent/JPH04324632A/en
Priority to KR1019920006770A priority patent/KR100312996B1/en
Publication of JPH04324632A publication Critical patent/JPH04324632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain a method for forming insulating films to be a gate insulating film, a capacitor insulating film, etc., on a semiconductor substrate. CONSTITUTION:On an Si substrate 1, a thermal oxidation film 2 of SiO2 is formed by a thermal oxidation method, an SiO2 film 4 is deposited on the thermal oxidation film 2 by a CVD method, and heat treatment is performed in an atmosphere containing oxygen gas, thereby forming an insulating film of a semiconductor device.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、半導体装置の絶縁膜
の製造方法に関する。より詳しくは半導体基板上におけ
るゲート絶縁膜、キャパシター絶縁膜の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an insulating film for a semiconductor device. More specifically, the present invention relates to a method of manufacturing a gate insulating film and a capacitor insulating film on a semiconductor substrate.

【0002】0002

【従来の技術と課題】半導体装置において、薄いゲート
絶縁膜として、従来からSi基板を熱酸化することによ
って形成されるSiO2 の熱酸化膜が広く用いられて
いる。これはSiO2 膜/Si基板の界面特性が安定
なことと、この絶縁膜が絶縁破壊耐圧が高く(9〜10
MV/cm)かつ高電界(約7MV/cm)での電流リ
ークが低いことから半導体装置に利用した場合に長時間
の信頼性が高いなど、他の絶縁膜にない優れた特定をも
っているからである。
2. Description of the Related Art In semiconductor devices, a thermal oxide film of SiO2, which is formed by thermally oxidizing a Si substrate, has been widely used as a thin gate insulating film. This is because the interface characteristics of the SiO2 film/Si substrate are stable, and this insulating film has a high dielectric breakdown voltage (9 to 10
MV/cm) and high electric field (approximately 7 MV/cm), so it has excellent long-term reliability when used in semiconductor devices, and has excellent properties that other insulating films do not have. be.

【0003】ところが、集積回路素子の微細化がますま
す要望されているために、SiO2 膜の薄膜化が進み
、特に64M以上のDRAMでは厚みが10mm以下の
薄いSiO2 膜が要求されている。そのためトンネル
成分が直接現れてくる70Å以下の厚みの場合にはその
リーク電流が大きくなるという問題が発生し、前記のよ
うな長期の信頼性を得ることが困難である。その上に、
素子の微細化にもかかわらず、集積回路の容量が大きく
なってきている。そのためチップ面積が増大するととも
にゲート領域の総面積が増大するので、ピンホールなど
によるSiO2 膜の欠陥密度を低減する要求がますま
す高まっている。特にデバイス機構の中には、ゲート面
積がチップ面積の30%以上にも及ぶ占有率をもってい
るものがあり、歩留り向上のためにもSiO2 膜の欠
陥密度を大幅に低下させる必要が生じている。
However, as integrated circuit elements are increasingly required to be miniaturized, SiO2 films are becoming thinner, and in particular, DRAMs of 64M or more are required to have a thin SiO2 film with a thickness of 10 mm or less. Therefore, in the case of a thickness of 70 Å or less where the tunnel component directly appears, a problem arises in that the leakage current becomes large, making it difficult to obtain the above-mentioned long-term reliability. in addition,
Despite miniaturization of devices, the capacity of integrated circuits is increasing. Therefore, as the chip area increases, the total area of the gate region also increases, so there is an increasing demand for reducing the defect density of the SiO2 film due to pinholes and the like. In particular, some device mechanisms have a gate area that accounts for 30% or more of the chip area, making it necessary to significantly reduce the defect density of the SiO2 film in order to improve yield.

【0004】ゲートSiO2 膜の絶縁破壊耐圧特性に
ついては、山部ら(VLSI Research Ce
nter, Toshiba Corporation
 ) 、” Proceedings of thes
ixth International Sympos
ium on Silicon Materials 
Science and Technology ” 
p349(1990)において分類がなされている。す
なわち、電界強度が  1)0〜1MV/cm、2)1
〜8MV/cmおよび  3)8MV/cm以上のそれ
ぞれの場合に絶縁破壊をおこすモードをそれぞれA,B
およびCのモード不良と呼んでいる。Aモード不良は、
Si基板のダスト、汚染などが原因で起こるゲートSi
O2膜のピンホールによるものであり、Bモード不良は
、Si基板表面のSi結晶の結晶欠陥が原因で生ずるゲ
ートSiO2 膜の欠陥や微小SiO2結晶などの電気
的ウィークスポットなどによるものであり、Cモード不
良はSiO2固有の絶縁破壊耐圧特性によるものである
Regarding the breakdown voltage characteristics of the gate SiO2 film, Yamabe et al.
Toshiba Corporation
), “Proceedings of these
ixth International Sympos
ium on Silicon Materials
Science and Technology”
Classification is made in p.349 (1990). That is, the electric field strength is 1) 0 to 1 MV/cm, 2) 1
~8MV/cm and 3) Modes that cause dielectric breakdown in each case of 8MV/cm or more are A and B, respectively.
and C mode failure. A mode failure is
Gate Si caused by dust, contamination, etc. on the Si substrate
B-mode defects are caused by pinholes in the O2 film, and B-mode defects are caused by defects in the gate SiO2 film caused by crystal defects in the Si crystal on the Si substrate surface and electrical weak spots such as minute SiO2 crystals. The mode failure is due to the dielectric breakdown voltage characteristics inherent to SiO2.

【0005】これらのモード不良のうちAモード不良は
、ゲートSiO2 膜形成前のSi基板表面の清浄度に
大きく依存しているので、この不良を克服するには、ま
ずSi基板の清浄法を検討する必要がある。しかし洗浄
方法を改善しても防止できないピンホールがゲートSi
O2 膜に発生することがある。したがってこのような
ピンホールの欠陥を解消するには、洗浄方法以外の方法
が必要である。
[0005] Among these mode failures, the A-mode failure is highly dependent on the cleanliness of the Si substrate surface before forming the gate SiO2 film, so in order to overcome this failure, it is first necessary to consider a cleaning method for the Si substrate. There is a need to. However, pinholes that cannot be prevented even with improved cleaning methods occur on the gate Si.
It may occur in the O2 film. Therefore, methods other than cleaning methods are required to eliminate such pinhole defects.

【0006】[0006]

【課題を解決するための手段】この発明は、上記の特に
Aモード不良を解消する方法として、Si基板上に熱酸
化法でSiO2 の熱酸化膜を形成し、前記熱酸化膜の
上にCVD法でSiO2 膜を積層し、酸素ガスを含む
雰囲気下で熱処理することからなる、半導体装置の絶縁
膜の製造方法を提供するものである。この発明による絶
縁膜は、Si基板に形成されたSiO2 の熱酸化膜に
おけるピンホールが生じていても、その上にCVD法で
形成されたSiO2 膜が補償し、さらにSi基板に対
する酸素欠損が酸素雰囲気下での熱処理により補償され
ているため、ゲート電極やキャパシター電極の基板に対
する優れた絶縁膜となる。
[Means for Solving the Problems] The present invention is a method for solving the above-mentioned A-mode defects, in which a thermal oxide film of SiO2 is formed on a Si substrate by a thermal oxidation method, and then a CVD film is deposited on the thermal oxide film. The present invention provides a method for manufacturing an insulating film for a semiconductor device, which comprises stacking SiO2 films by a method and heat-treating them in an atmosphere containing oxygen gas. In the insulating film according to the present invention, even if pinholes occur in the SiO2 thermal oxide film formed on the Si substrate, the SiO2 film formed thereon by the CVD method compensates for them, and furthermore, oxygen vacancies in the Si substrate are Since it is compensated by heat treatment in an atmosphere, it becomes an excellent insulating film for the substrate of gate electrodes and capacitor electrodes.

【0007】この発明の方法によるSi基板上における
絶縁膜は次のようにして形成される。Si基板としては
、Siの単結晶からなる基板が用いられる。Si基板は
、表面にFeなどの重金属や微小欠陥を有することがあ
るので、通常希フッ化水素酸水溶液(例えば約1%HF
水溶液)で洗浄し、1000℃以上の高温下で一旦熱酸
化膜を形成し、この熱酸化膜を希フッ化水素酸水溶液で
除去して使用するのが望ましい。
An insulating film on a Si substrate according to the method of the present invention is formed as follows. As the Si substrate, a substrate made of single crystal Si is used. Si substrates may have heavy metals such as Fe or micro defects on their surfaces, so they are usually treated with a dilute hydrofluoric acid aqueous solution (for example, about 1% HF).
It is desirable to use the substrate by cleaning with aqueous solution), forming a thermal oxide film once at a high temperature of 1000° C. or higher, and removing this thermal oxide film with a dilute hydrofluoric acid aqueous solution.

【0008】このように予め洗浄したSi基板上に、S
iO2 の熱酸化膜が形成される。この熱酸化膜の形成
は、それ自体公知の方法で行うことができる。例えば、
Si基板をHCl/O2 雰囲気下で約900℃に保持
することによって熱酸化膜を形成することができる。熱
酸化膜の膜厚は、約100Åが好ましい。
[0008] On the Si substrate that has been cleaned in advance in this way, S
A thermal oxide film of iO2 is formed. This thermal oxide film can be formed by a method known per se. for example,
A thermal oxide film can be formed by maintaining the Si substrate at about 900° C. in an HCl/O2 atmosphere. The thickness of the thermal oxide film is preferably about 100 Å.

【0009】次に、熱酸化膜(SiO2 )上に、CV
D法によってSiO2 膜が積層される。CVD法の条
件は、高温で(例えば800℃〜900℃、好ましくは
820℃〜860℃)、減圧(10−4Torr以下)
下が好ましい。蒸発材料としては、ケイ素化合物(例え
ばSiH4 )が用いられる。雰囲気ガスとしては、O
2 ,N2Oなどが用いられる。このCVD法によって
形成するSiO2 膜の膜厚は、約30〜80Å、好ま
しくは40〜60Åである。このSiO2 膜は、いわ
ゆる高温酸化膜〔HTO(High Temperat
ure Oxide)膜〕で、上記工程で形成されたS
iO2 熱酸化膜中にピンホールが存在しても、それを
充分に埋め込みピンホールの補償をすることになる。
Next, on the thermal oxide film (SiO2), CV
SiO2 films are laminated by method D. The conditions for the CVD method are high temperature (e.g. 800°C to 900°C, preferably 820°C to 860°C) and reduced pressure (10-4 Torr or less).
Lower is preferred. A silicon compound (for example, SiH4) is used as the evaporation material. As the atmospheric gas, O
2, N2O, etc. are used. The thickness of the SiO2 film formed by this CVD method is about 30 to 80 Å, preferably 40 to 60 Å. This SiO2 film is a so-called high temperature oxide film (HTO).
ure Oxide film] formed in the above process.
Even if a pinhole exists in the iO2 thermal oxide film, it will be sufficiently buried to compensate for the pinhole.

【0010】この発明の方法では、上記工程で得られた
基板を、酵素ガス雰囲気下で熱処理に付される。酸素ガ
ス雰囲気下は、少なくともO2 ガスを50%以上が存
在するのが好ましい。より好ましくは、O2 ガスのみ
である。O2 ガス以外に不活性ガス(例えばN2 ガ
ス、Arガス)やO3 ガスが存在してもよい。熱処理
は、約900〜1000℃で、約0.5〜1時間が好ま
しい。なお、O3 ガスが存在する場合は、熱処理を1
00℃〜200℃のような低温にすることができる。
In the method of the present invention, the substrate obtained in the above step is subjected to heat treatment in an enzyme gas atmosphere. In the oxygen gas atmosphere, it is preferable that at least 50% of O2 gas is present. More preferably, only O2 gas is used. In addition to O2 gas, an inert gas (for example, N2 gas, Ar gas) or O3 gas may be present. The heat treatment is preferably performed at about 900 to 1000°C for about 0.5 to 1 hour. Note that if O3 gas is present, the heat treatment is
The temperature can be as low as 00°C to 200°C.

【0011】この熱処理工程では、HTO膜中に酸素欠
損が存在する際にそれを補い、またSiO2 /Si界
面における未結合のSi(多くは3価のSi)にO2 
を結合させて界面準位密度を低下されるのに役立つと考
えられる。
[0011] This heat treatment process compensates for oxygen vacancies that exist in the HTO film, and also adds O2 to unbonded Si (mostly trivalent Si) at the SiO2/Si interface.
This is thought to be useful in lowering the interface state density by combining the two.

【0012】この発明の方法では、場合により更に不活
性ガス(例えばN2ガス、Arガス)の雰囲気下で高温
の約900〜1000℃で約30分〜1時間の熱処理を
行ってもよい。この熱処理により、HTO膜/SiO2
 膜間のトラップ準位の一層の低下を行うことができる
。 なおこの処理は、上記のO2 ガス雰囲気下の熱処理の
際に、不活性ガスが存在すれば特に必要とされない。
[0012] In the method of the present invention, if necessary, heat treatment may be further performed at a high temperature of about 900 to 1000°C for about 30 minutes to 1 hour in an atmosphere of inert gas (eg, N2 gas, Ar gas). Through this heat treatment, HTO film/SiO2
The trap level between the films can be further lowered. Note that this treatment is not particularly required if an inert gas is present during the heat treatment in the O2 gas atmosphere.

【0013】かくして、Si基板上に形成された絶縁膜
上には、その上に必要な各素子を常法に従って形成され
るが、この発明の絶縁膜は長期に安定した絶縁性を提供
することになる。
[0013]Thus, each necessary element is formed on the insulating film formed on the Si substrate according to a conventional method, and the insulating film of the present invention provides stable insulation over a long period of time. become.

【0014】[0014]

【実施例】次に実施例によってこの発明を説明するがこ
の発明を限定するものではない。まずP(100)Si
基板を約1%の希フッ化水素水溶液で洗浄後、1050
℃で1〜2時間処理してSiO2 酸化膜を形成し、上
記希フッ化水素水溶液で除去した。次に塩化水素/酸素
雰囲気下、900℃の温度にて約100Åの厚みでSi
O2 の熱酸化膜をSi基板上に形成させた。この熱酸
化膜の上に、SiH4 +N2Oを用い850℃、20
0mTorrでのCVD法にてSiO2 膜を約50Å
の厚みで形成させた。次に実質的に酸素ガスのみからな
る雰囲気下約900℃で30〜60分間熱処理させた。 最後に電気炉を用いて窒素ガス雰囲気中900〜100
0℃で30〜60分間熱処理した。
EXAMPLES Next, the present invention will be explained by examples, but the present invention is not limited to the following examples. First, P(100)Si
After cleaning the substrate with an approximately 1% dilute hydrogen fluoride aqueous solution,
℃ for 1 to 2 hours to form a SiO2 oxide film, which was removed with the dilute hydrogen fluoride aqueous solution. Next, under a hydrogen chloride/oxygen atmosphere at a temperature of 900°C, Si was deposited to a thickness of approximately 100 Å.
A thermal oxide film of O2 was formed on a Si substrate. On top of this thermal oxide film, SiH4 +N2O was used to heat the film at 850°C for 20 minutes.
A SiO2 film of approximately 50 Å was formed using the CVD method at 0 mTorr.
It was formed with a thickness of . Next, heat treatment was performed at about 900° C. for 30 to 60 minutes in an atmosphere consisting essentially of oxygen gas. Finally, using an electric furnace in a nitrogen gas atmosphere,
Heat treatment was performed at 0°C for 30 to 60 minutes.

【0015】上記のように処理して得られたSi基板(
a)と、Si基板を上記のように熱酸化してSiO2 
の熱酸化膜を形成し、CVD法によるSiO2 膜の積
層と酸素ガス雰囲気下での熱処理を行わずに、最後の熱
処理を行っただけのSi基板(b)の両者を用いてMO
Sバラクターを作製し、次のようにして破壊耐圧特性を
比較した。
[0015] The Si substrate (
a) and SiO2 by thermally oxidizing the Si substrate as described above.
A thermal oxide film was formed, and the Si substrate (b) was subjected to the final heat treatment without stacking the SiO2 film by the CVD method and heat treatment in an oxygen gas atmosphere.
S varactors were produced and their breakdown voltage characteristics were compared in the following manner.

【0016】リンをドープしたポリシリコンをパターン
形成して試料のゲートSiO2 膜上の電極とし、電極
面積Sを4mm2 とし、8MV/cm以上の電界強度
で破壊するに至る前記Cモード不良のMOSバラクター
を良品とし、1つのSiウエーハ上の約100ヶのMO
Sバラクターを母数として、これに対する上記良品バラ
クターの数の比率すなわち良品比をPとしたときの欠陥
密度ρを計算した。pは、欠陥がアトランダムに存在す
る領域に発生し、その領域に発生した欠陥が複数個あっ
ても1個の欠陥と仮定するいわゆるポアソンの式ρ=1
nP/Sを用いて算出した。その結果は以下の表のとお
りである。
[0016] Polysilicon doped with phosphorus was patterned to form an electrode on the gate SiO2 film of the sample, and the electrode area S was set to 4 mm2. about 100 MOs on one Si wafer.
Using the S varactor as a parameter, the defect density ρ was calculated, where P is the ratio of the number of non-defective varactors to this, that is, the non-defective ratio. p is the so-called Poisson's formula ρ = 1, which assumes that defects occur in a region where they exist randomly, and that even if there are multiple defects in that region, they are one defect.
Calculated using nP/S. The results are shown in the table below.

【0017】[0017]

【表1】 上記の結果からこの発明の方法による試料(a)は、対
照試料(b)に比べてAモード不良が著しく少なく、欠
陥密度が小さくなっている。また界面準位密度θss/
qも〜10−10/cm2 となっており、ゲート絶縁
膜としても良好な値となっている。
[Table 1] From the above results, the sample (a) prepared by the method of the present invention has significantly fewer A-mode defects and has a lower defect density than the control sample (b). Also, the interface state density θss/
q is also ~10-10/cm2, which is a good value for a gate insulating film.

【0018】[0018]

【発明の効果】この発明を用いれば、大面積ゲート絶縁
膜の欠陥密度を大幅に低減させることが可能となり、大
容量MOSメモリーに用いた場合良品数が著しく向上す
ることが期待できる。
[Effects of the Invention] By using the present invention, it is possible to significantly reduce the defect density of a large-area gate insulating film, and it is expected that the number of non-defective products will be significantly increased when used in a large-capacity MOS memory.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の方法の効果を示す説明図である。FIG. 1 is an explanatory diagram showing the effects of the method of the present invention.

【符号の説明】[Explanation of symbols]

1  Si基板 2  SiO2 の熱酸化膜 3  ピンホール 4  CVD法によるSiO2 膜 1 Si substrate 2 SiO2 thermal oxide film 3 Pinhole 4 SiO2 film by CVD method

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Si基板上に熱酸化法でSiO2 の熱酸
化膜を形成し、前記熱酸化膜の上にCVD法でSiO2
 膜を積層し、酸素ガスを含む雰囲気下で熱処理するこ
とを特徴とする半導体装置の絶縁膜の製造方法。
1. A thermally oxidized film of SiO2 is formed on a Si substrate by a thermal oxidation method, and an SiO2 film is formed on the thermally oxidized film by a CVD method.
A method for manufacturing an insulating film for a semiconductor device, which comprises stacking films and heat-treating the films in an atmosphere containing oxygen gas.
【請求項2】酸素ガスを含む雰囲気下での熱処理が、乾
燥ガスを用い、約800℃以上の高温下で行われる請求
項1記載の製造方法。
2. The manufacturing method according to claim 1, wherein the heat treatment in an atmosphere containing oxygen gas is performed at a high temperature of about 800° C. or higher using a dry gas.
【請求項3】酸素ガスを含む雰囲気下での熱処理を行っ
た後、さらに不活性ガスの雰囲気下で高温短時間の熱処
理に付される請求項1〜2項の何れかに記載の製造方法
3. The manufacturing method according to claim 1, wherein after the heat treatment in an atmosphere containing oxygen gas, the product is further subjected to high temperature and short time heat treatment in an inert gas atmosphere. .
JP9435291A 1991-04-24 1991-04-24 Manufacture of insulating film of semiconductor device Pending JPH04324632A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9435291A JPH04324632A (en) 1991-04-24 1991-04-24 Manufacture of insulating film of semiconductor device
KR1019920006770A KR100312996B1 (en) 1991-04-24 1992-04-22 Insulation film manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9435291A JPH04324632A (en) 1991-04-24 1991-04-24 Manufacture of insulating film of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04324632A true JPH04324632A (en) 1992-11-13

Family

ID=14107893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9435291A Pending JPH04324632A (en) 1991-04-24 1991-04-24 Manufacture of insulating film of semiconductor device

Country Status (2)

Country Link
JP (1) JPH04324632A (en)
KR (1) KR100312996B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318588A (en) * 1993-03-11 1994-11-15 Nec Corp Manufacture of semiconductor device
JPH07106543A (en) * 1993-10-07 1995-04-21 Nec Corp Manufacture of solid-state image sensing device
US6847079B2 (en) 1999-09-13 2005-01-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a stacked gate insulation film and a gate electrode and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910001880B1 (en) * 1988-02-26 1991-03-28 금성일렉트론 주식회사 Method manufacturing oxide thin film by 2 stage oxide processing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318588A (en) * 1993-03-11 1994-11-15 Nec Corp Manufacture of semiconductor device
JPH07106543A (en) * 1993-10-07 1995-04-21 Nec Corp Manufacture of solid-state image sensing device
US6847079B2 (en) 1999-09-13 2005-01-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a stacked gate insulation film and a gate electrode and manufacturing method thereof
US7180131B2 (en) 1999-09-13 2007-02-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a stacked gate insulation film and a gate electrode and manufacturing method thereof
US7229882B2 (en) 1999-09-13 2007-06-12 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a field effect semiconductor device having a stacked gate insulation film and a gate electrode

Also Published As

Publication number Publication date
KR100312996B1 (en) 2003-08-06

Similar Documents

Publication Publication Date Title
US5780115A (en) Methods for fabricating electrode structures including oxygen and nitrogen plasma treatments
EP0468758B1 (en) Method of forming insulating films, capacitances, and semiconductor devices
KR100325048B1 (en) Thin-flim capacitor and method of producing same
JPH11233723A (en) Electronic element and its manufacture, and dielectric capacitor and its manufacture, and optical element and its manufacture
JPH0563205A (en) Semiconductor device
JPH0766369A (en) Manufacture of semiconductor device
JP4003888B2 (en) Semiconductor device and manufacturing method thereof
US20020175358A1 (en) Semiconductor memory device and method of manufacturing the same
JPH11121704A (en) Dielectric capacitor and manufacture thereof
JPH04324632A (en) Manufacture of insulating film of semiconductor device
JP2924753B2 (en) Method for manufacturing thin film capacitor
JP2834344B2 (en) Method for manufacturing insulating film of semiconductor device
JPH11177048A (en) Semiconductor element and manufacture thereof
JPH06310654A (en) Semiconductor device and its manufacture
JP4261021B2 (en) Semiconductor device and manufacturing method thereof
KR20030074108A (en) Semiconductor device and method of manufactuing the same
JP3142457B2 (en) Method of manufacturing ferroelectric thin film capacitor
JP2504558B2 (en) Method of forming thermal oxide film
JPH06275776A (en) Capacitor
JPH11214385A (en) Manufacture of semiconductor device
JPH08335580A (en) Manufacture of dielectric thin film and manufacture of ferroelectric memory device employing the dielectric thin film
JPH0682652B2 (en) Method for forming silicon thermal oxide film
KR100219518B1 (en) Method of fabricating a capacitor of semiconductor device
JP3336772B2 (en) Method of forming insulating film on polycrystalline semiconductor pattern and method of manufacturing semiconductor device using the same
JP3499769B2 (en) Method of forming oxide film, capacitor