JPH04319261A - Joining method of carbon composite substrate for fuel cell - Google Patents

Joining method of carbon composite substrate for fuel cell

Info

Publication number
JPH04319261A
JPH04319261A JP3114000A JP11400091A JPH04319261A JP H04319261 A JPH04319261 A JP H04319261A JP 3114000 A JP3114000 A JP 3114000A JP 11400091 A JP11400091 A JP 11400091A JP H04319261 A JPH04319261 A JP H04319261A
Authority
JP
Japan
Prior art keywords
adhesive
composite substrate
carbon material
carbonaceous
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3114000A
Other languages
Japanese (ja)
Inventor
Shiyouzou Ono
小野 奨造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP3114000A priority Critical patent/JPH04319261A/en
Publication of JPH04319261A publication Critical patent/JPH04319261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make the joint of a composite substrate possible to have constantly high adhesion strength and uniform and low electric resistance even if the size is large, carry out the application process within an extremely short time as a continuous process, and improve the mass production property. CONSTITUTION:In the case that an electrode plate made of a porous carbon material, a separator plate made of a dense carbon material, and side seals are integrally joined into a prescribed cell shape using an adhesive, the adhesive is screen-printed to the parts to be joined through a mesh sheet. The adhesive is preferably a composition containing graphite powders which have different average particle sizes and are kneaded in phenolic resin liquid and having 500-5000 poise viscosity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、リン酸型燃料電池用の
炭素質複合基板を製造する際に電極板、セパレータおよ
びサイドシールを一体に接着接合するための方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adhesively bonding an electrode plate, a separator, and a side seal together when manufacturing a carbonaceous composite substrate for a phosphoric acid fuel cell.

【0002】0002

【従来の技術】炭素質材料を部材としたリン酸型燃料電
池の製作に当たっては、機械的強度の向上、セル内部に
おける電気的・熱的抵抗の低減、積層組立の簡素化など
を図るため、セパレータ板と多孔質電極板を予め一体に
複合化した構造のものが開発され、実用に供されている
[Prior Art] In the production of phosphoric acid fuel cells using carbonaceous materials as components, it is necessary to improve mechanical strength, reduce electrical and thermal resistance inside the cell, and simplify stacking assembly. A structure in which a separator plate and a porous electrode plate are integrated into one body has been developed and put into practical use.

【0003】このような複合基板を製造するための簡易
で実用性の高い手段として、電極板、セパレータ板およ
びサイドシール板を所定の形態に接着剤で接合したのち
焼成する接合焼成法(特開昭60−20471 号公報
、実開昭60−15759 号公報) がある。このよ
うな接合工程を伴う部材の複合化においては、従来から
接着剤を接合部位に刷毛等を用いた手作業で塗布する方
法が採られている。
[0003] As a simple and highly practical means for producing such a composite substrate, a bonding and firing method (unexamined patent application) is used in which electrode plates, separator plates, and side seal plates are bonded to a predetermined shape with an adhesive and then fired. Publication No. 60-20471, Publication No. 15759 of Sho 60). In the composite construction of members that involves such a joining process, a method has conventionally been adopted in which an adhesive is manually applied to the joining site using a brush or the like.

【0004】近時、セルサイズの大型化に伴って部材接
着力の増大ならびに基板内部での電気抵抗の均一化が一
層要求されてきている。この性能要求に対しては、接着
剤の接合強度を高めるとともに接着界面を均一化してバ
ラツキのない接着層を形成することが重要な要件となる
。ところが、上記した刷毛塗り手作業による塗布では接
着層の形成が不均一となり易く、このため十分の発電効
率やセル耐久性を得ることが困難となるばかりでなく、
加工時、接着層に剪断力が働くために層薄の部分から電
極部材が欠落するなどの問題点があった。
[0004] In recent years, as cell sizes have increased, there has been a growing demand for increased adhesive strength of members and uniform electrical resistance within the substrate. To meet this performance requirement, it is important to increase the bonding strength of the adhesive and to make the adhesive interface uniform to form a uniform adhesive layer. However, the above-mentioned manual application with a brush tends to result in uneven formation of the adhesive layer, which not only makes it difficult to obtain sufficient power generation efficiency and cell durability;
During processing, shearing force acts on the adhesive layer, causing problems such as electrode members falling off from thin areas.

【0005】[0005]

【発明が解決しようとする課題】さらにセルの量産化を
図るためには、接着剤の塗布工程が簡単で連続的に接合
化し得ることが重要な課題となる。本発明者は、これら
課題を解決する接着剤の塗布手段としてスプレー法、ド
クターブレード法等を試みたが、いずれも短時間内に均
一な接着層を連続的に形成することができなかった。し
かし、メッシュシートを用いてスクリーン印刷する塗布
方法を採る場合には、これらの要求課題を全面的に満足
することを実証した。
[Problems to be Solved by the Invention] Furthermore, in order to mass-produce cells, it is important that the adhesive application process be simple and that continuous bonding can be achieved. The inventors of the present invention have tried spraying methods, doctor blade methods, and the like as methods for applying adhesives to solve these problems, but none of them have been able to continuously form a uniform adhesive layer within a short period of time. However, it has been demonstrated that these requirements are fully met when applying the coating method by screen printing using a mesh sheet.

【0006】本発明は前記の知見に基づいて開発された
もので、その目的は均一な接着層を短時間内に連続的に
形成することができる燃料電池用炭素質複合基板の接合
方法を提供することにある。
The present invention was developed based on the above-mentioned knowledge, and its purpose is to provide a method for bonding carbonaceous composite substrates for fuel cells that can continuously form a uniform adhesive layer within a short period of time. It's about doing.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による燃料電池用炭素質複合基板の接合方法
は、多孔質炭素材からなる電極板と緻密質炭素材からな
るセパレータ板ならびにサイドシール板を接着剤により
所定のセル形態に一体接合するにあたり、接着剤をメッ
シュシートを介して部材接着部分にスクリーン印刷する
ことを構成上の特徴とする。
[Means for Solving the Problems] A method for joining carbonaceous composite substrates for fuel cells according to the present invention to achieve the above object includes an electrode plate made of a porous carbon material, a separator plate made of a dense carbon material, When integrally joining the side seal plate into a predetermined cell shape using an adhesive, the configuration is characterized in that the adhesive is screen printed on the parts to which the members are bonded through a mesh sheet.

【0008】本発明の構成部材となる電極板には、炭素
繊維あるいはポリアクリロニトリル、セルロースなどの
有機繊維を例えばフェノール樹脂のような熱硬化性樹脂
とともに薄板状に成形したのち、焼成炭化した高多孔質
組織をもつ炭素材料が使用される。セパレータ板および
サイドシール板としては、黒鉛基板にフェノール系、フ
ラン系などの熱硬化性樹脂液を含浸硬化して焼成する方
法、黒鉛微粉末をフェノール樹脂、フラン樹脂またはタ
ールピッチなどと混練して板状成形したのち焼成する方
法、フェノール樹脂またはフラン樹脂の成形板を焼成し
てガラス状カーボン化する方法等で得られる不透過性の
緻密質組織と表面平滑性を備える薄板炭素材料が用いら
れる。
[0008] The electrode plate, which is a component of the present invention, is made of highly porous carbon fibers formed by forming carbon fibers or organic fibers such as polyacrylonitrile or cellulose into a thin plate together with a thermosetting resin such as phenolic resin, and then firing and carbonizing them. A carbon material with a textured structure is used. Separator plates and side seal plates can be made by impregnating a graphite substrate with a thermosetting resin liquid such as phenol or furan and curing it, or by kneading fine graphite powder with phenol resin, furan resin, tar pitch, etc. A thin plate carbon material with an impermeable dense structure and a smooth surface obtained by a method of forming a plate and then firing it, or a method of firing a molded plate of phenol resin or furan resin and turning it into glassy carbon is used. .

【0009】接着剤の組成は、炭素質粉末を含む熱硬化
性樹脂液が好ましく用いられる。特に平均粒子径1〜1
0μm の炭素質粉末10〜40重量部と平均粒子径2
0〜80μm の炭素質粉末60〜90重量部を混合し
たのち残炭率40%以上の液状熱硬化性樹脂と混練して
調製した粘度 500〜5000ポイズの接着剤 (特
願平2−296334号) の使用が好適である。炭素
質粉末としては、コークス、炭素、天然黒鉛、人造黒鉛
、ガラス状カーボンなどを所定粒度範囲に粉砕したもの
が適用される。残炭率40%以上の液状熱硬化性樹脂と
は非酸化性雰囲気中で1000℃の温度に焼成した際に
40重量%以上の炭素分が残留する性質の熱硬化性樹脂
液を指し、例えばフェノール系樹脂、フラン系樹脂、ポ
リイミド樹脂などの初期縮合物が該当する。
[0009] As for the composition of the adhesive, a thermosetting resin liquid containing carbonaceous powder is preferably used. In particular, the average particle size is 1 to 1.
10 to 40 parts by weight of carbonaceous powder of 0 μm and an average particle size of 2
Adhesive with a viscosity of 500 to 5000 poise prepared by mixing 60 to 90 parts by weight of carbonaceous powder with a diameter of 0 to 80 μm and then kneading it with a liquid thermosetting resin having a residual carbon content of 40% or more (Japanese Patent Application No. 2-296334) ) is preferred. As the carbonaceous powder, those obtained by pulverizing coke, carbon, natural graphite, artificial graphite, glassy carbon, etc. into a predetermined particle size range are used. A liquid thermosetting resin with a residual carbon content of 40% or more refers to a thermosetting resin liquid that has a carbon content of 40% by weight or more remaining when fired at a temperature of 1000°C in a non-oxidizing atmosphere. This includes initial condensates such as phenolic resins, furan resins, and polyimide resins.

【0010】上記の組成において、平均粒子径範囲の異
なる炭素質粉末を特定された配合比で混合使用するのは
、焼成炭化後の接着強度を向上させ且つ低い電気抵抗を
与えるための組成条件であり、前記の粒子径範囲と配合
範囲を満すことにより効果的な接着強度の増大および低
位の電気抵抗の付与がもたらされる。また、接着剤の粘
度が 500ポイズを下廻ると接着剤が電極板の多孔組
織内に浸透して接着強度の低下を招き、5000ポイズ
を越えると塗布むらができ易くなる。
[0010] In the above composition, the reason why carbonaceous powders having different average particle diameter ranges are mixed and used in a specified blending ratio is to improve the adhesive strength after firing and carbonization and to provide a low electrical resistance. By satisfying the above particle size range and blending range, an effective increase in adhesive strength and a low electrical resistance can be achieved. Furthermore, if the viscosity of the adhesive is less than 500 poise, the adhesive will penetrate into the porous structure of the electrode plate, resulting in a decrease in adhesive strength, and if it exceeds 5000 poise, uneven coating will likely occur.

【0011】本発明の要点は、上記の電極板とセパレー
タ板およびサイドシール板を所定のセル形態に一体接合
するにあたり、接着剤をメッシュシートを介して部材接
着部分にスクリーン印刷して塗布するところにある。こ
の塗布工程は、接着剤を接合部位に応じた面積のマスク
を施したメッシュシート面に薄く延ばし、これを接合部
位上に重ねて上部から圧力を加えることによってメッシ
ュに付着した接着剤をマスク通りのパターンに転写する
ことによっておこなわれる。
The key point of the present invention is that when integrally joining the above electrode plate, separator plate, and side seal plate into a predetermined cell configuration, an adhesive is applied by screen printing to the bonded portion of the members through a mesh sheet. It is in. In this application process, the adhesive is spread thinly on the surface of a mesh sheet with an area masked according to the area to be joined, and this is placed over the area to be joined and pressure is applied from above to spread the adhesive adhered to the mesh through the mask. This is done by transferring it to a pattern.

【0012】形成する接着層の厚さは、50〜200 
μm の範囲に設定することが好ましい。この厚さが5
0μm 未満では接着力が不足して部分的な剥離が発生
し易くなり、200μm を越えると接合界面の剥離が
生じるようになる。接着層の塗膜厚さは、使用するメッ
シュシートの紗厚と空間率を相違させるか、同一メッシ
ュシートを用いて塗布回数を変えることによって調整す
ることができる。
[0012] The thickness of the adhesive layer to be formed is 50 to 200 mm.
It is preferable to set it in the range of μm. This thickness is 5
If the thickness is less than 0 μm, the adhesive force will be insufficient and partial peeling will easily occur, and if it exceeds 200 μm, peeling will occur at the bonding interface. The coating thickness of the adhesive layer can be adjusted by varying the gauze thickness and porosity of the mesh sheets used, or by changing the number of coatings using the same mesh sheet.

【0013】上記の本発明による工程でセル形態に一体
接合された複合基板は、接着層を硬化したのち焼成炉に
移し、非酸化性雰囲気中で 800℃以上の温度域で焼
成炭化処理する。ついで所要の加工 (平面、外周、溝
などの加工) を施して燃料電池用炭素質複合基板を得
る。
[0013] After the adhesive layer of the composite substrate integrally bonded into a cell shape by the process according to the present invention is cured, the composite substrate is transferred to a firing furnace and subjected to firing carbonization treatment in a non-oxidizing atmosphere at a temperature range of 800°C or higher. Then, the required processing (processing of flat surface, outer periphery, grooves, etc.) is performed to obtain a carbonaceous composite substrate for fuel cells.

【0014】[0014]

【作用】本発明に従えば、接着剤をメッシュシートを用
いて部材接着部分にスクリーン印刷する塗布手段を採る
ことにより、電極板、セパレータ板およびサイドシール
板を所望の接着面積で均一薄膜の接着層を介して接合す
ることができる。そのうえ、塗布作業は数十秒範囲の短
時間内に完了することができ、連続作業化も容易である
[Operation] According to the present invention, the electrode plate, separator plate, and side seal plate are bonded in a uniform thin film over the desired bonding area by employing an application method in which the adhesive is screen printed on the bonded parts using a mesh sheet. They can be bonded through layers. Moreover, the coating operation can be completed within a short period of several tens of seconds, and can be easily carried out continuously.

【0015】前記の接合工程において、接着剤を平均粒
子径1〜10μmの炭素質粉末10〜40重量部と平均
粒子径20〜80μm の炭素質粉末60〜90重量部
を混合したのち残炭率40%以上の液状熱硬化性樹脂と
混練して粘度 500〜5000ポイズの組成とした場
合には、大型材料であっても一層優れた接着層の均一性
を付与することが可能となる。
In the above bonding step, after mixing 10 to 40 parts by weight of carbonaceous powder with an average particle diameter of 1 to 10 μm and 60 to 90 parts by weight of carbonaceous powder with an average particle diameter of 20 to 80 μm, the residual carbon content is determined. When it is kneaded with 40% or more of a liquid thermosetting resin to obtain a composition with a viscosity of 500 to 5000 poise, it is possible to impart even more excellent adhesive layer uniformity even to large-sized materials.

【0016】このような作用により、大型サイズの燃料
電池用複合基板に要求される高度の接合強度と電気抵抗
の均一化が効果的に達成される。
[0016] Due to such an effect, the high level of bonding strength and uniformity of electrical resistance required for a large-sized composite substrate for fuel cells can be effectively achieved.

【0017】[0017]

【実施例】以下、本発明を実施例に基づいて説明する。 実施例1〜3 (1) 接着剤の調製 平均粒子径3μm の人造黒鉛粉末40重量部と平均粒
子径40μm の人造黒鉛粉末60重量部を混合し、こ
れをフェノール樹脂初期縮合物〔住友デュレズ(株)製
、PR940 〕に加えてニーダーにより十分に混練し
、粘度1000ポイズのペースト状接着剤を調製した。
EXAMPLES The present invention will be explained below based on examples. Examples 1 to 3 (1) Preparation of adhesive 40 parts by weight of artificial graphite powder with an average particle diameter of 3 μm and 60 parts by weight of artificial graphite powder with an average particle diameter of 40 μm were mixed, and this was mixed with a phenolic resin initial condensate [Sumitomo Durez ( Co., Ltd., PR940] and sufficiently kneaded with a kneader to prepare a paste adhesive having a viscosity of 1000 poise.

【0018】(2) 複合基板の炭素質部材多孔質炭素
電極板として、ピッチ系炭素繊維のチョップ (平均長
さ20mm) をフェノール樹脂と混合してモールド成
形したのち2000℃で焼成して得た気孔率64%、平
均気孔径50μm の正常を有する板状体を用いた。緻
密質炭素材のセパレータ板およびサイドシール板は、黒
鉛微粉末 (平均粒径5μm)を混練したフェノール樹
脂を圧延成形したのち硬化し、ついで1300℃で焼成
して得た材料を用いた。
(2) Carbonaceous member of composite substrate A porous carbon electrode plate was obtained by mixing pitch-based carbon fiber chops (average length 20 mm) with phenol resin, molding, and then firing at 2000°C. A plate-like material having a normal porosity of 64% and an average pore diameter of 50 μm was used. The separator plate and side seal plate made of dense carbon material were made of a material obtained by rolling a phenol resin kneaded with fine graphite powder (average particle size 5 μm), hardening it, and then firing it at 1300°C.

【0019】(3) 接合工程 電極板とサイドシール板を接合する部位以外をマスクし
たメッシュシート(紗厚40μm 、空間率55%) 
に接着剤を付着してセパレータ板面に重ね、スクリーン
印刷機〔岨野工業(株)製〕を用いてパターン印刷した
。パターン印刷は1〜3回おこなった。このようにスク
リーン印刷された接着層は極めて均一で平滑であること
が認められた。ついで、スクリーン印刷した接着剤の塗
布面に電極板とサイドシール板を所定のセル形態に接合
した。 接合後の部材は、80℃に加熱しながらプレスにより5
kg/cm2の圧力を加えて接着剤の樹脂成分を硬化し
た。
(3) Bonding process Mesh sheet masking the area other than the area where the electrode plate and side seal plate are bonded (gauge thickness 40 μm, void ratio 55%)
Adhesive was applied to the surface of the separator plate, and a pattern was printed using a screen printer (manufactured by Kano Kogyo Co., Ltd.). Pattern printing was performed 1 to 3 times. The adhesive layer thus screen printed was found to be very uniform and smooth. Next, an electrode plate and a side seal plate were bonded to the screen-printed adhesive-coated surface in a predetermined cell configuration. After joining, the members are heated to 80°C and pressed for 55 minutes.
The resin component of the adhesive was cured by applying a pressure of kg/cm2.

【0020】(4) 接着層の状況 接合した各接着層の厚さを測定し、その結果を表1に示
した。
(4) Status of adhesive layer The thickness of each bonded adhesive layer was measured, and the results are shown in Table 1.

【0021】[0021]

【表1】[Table 1]

【0022】上記の接着部材を電気焼成炉に入れ、コー
クスで被包したのち5℃/分の昇温速度で1000℃ま
で上昇して焼成処理を施した。この接合部位の接合強度
は105kg/cm2 、電気抵抗は 135×10−
4Ωcmで良好な性能であることが確認された。
The adhesive member described above was placed in an electric firing furnace, covered with coke, and then fired at a temperature increase rate of 5°C/min to 1000°C. The joint strength of this joint part is 105 kg/cm2, and the electrical resistance is 135 x 10-
Good performance was confirmed at 4Ωcm.

【0023】比較例1〜4 実施例1のメッシュシートによるパターン印刷に代えて
、刷毛塗り法、スプレー法、ドクターブレード法、フロ
ーコーター法を用いて接着剤の塗布をおこなった外は同
様にして接合した。この場合の塗布工程に要する作業時
間、接着層の均一性、連続塗布性、塗布膜の性状等を実
施例1の場合と対比して表2に示した。表2の結果は、
実施例1が各比較例例に比べて短時間内で連続的に接着
剤を均一塗布する機能に優れていることを示している。
Comparative Examples 1 to 4 The same procedure was used except that instead of pattern printing using a mesh sheet as in Example 1, adhesive was applied using a brush coating method, a spray method, a doctor blade method, or a flow coater method. Joined. The working time required for the coating process, the uniformity of the adhesive layer, the continuous coating property, the properties of the coated film, etc. in this case are shown in Table 2 in comparison with those in Example 1. The results in Table 2 are:
This shows that Example 1 is superior to each of the comparative examples in its ability to uniformly apply the adhesive continuously within a short period of time.

【0024】[0024]

【表2】[Table 2]

【0025】[0025]

【発明の効果】以上のとおり、本発明によれば接着剤を
メッシュシートを介して部材接着部分にスクリーン印刷
することにより、大型サイズであっても常に優れた接着
強度と均一な低電気抵抗を備える燃料電池用炭素質複合
基板の接合化が可能となる。そのうえ、接着剤の塗布工
程が極めて短時間内に連続作業として処理できるから、
量産性が向上する。
[Effects of the Invention] As described above, according to the present invention, by screen-printing the adhesive on the adhesive part of the member through a mesh sheet, excellent adhesive strength and uniform low electrical resistance can be achieved even in large sizes. It becomes possible to bond carbonaceous composite substrates for fuel cells. Moreover, the adhesive application process can be done as a continuous operation within an extremely short time.
Mass productivity improves.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  多孔質炭素材からなる電極板と緻密質
炭素材からなるセパレータ板ならびにサイドシール板を
接着剤により所定のセル形態に一体接合するにあたり、
接着剤をメッシュシートを介して部材接着部分にスクリ
ーン印刷することを特徴とする燃料電池等炭素質複合基
板の接合方法。
Claim 1: When integrally joining an electrode plate made of a porous carbon material, a separator plate and a side seal plate made of a dense carbon material into a predetermined cell shape using an adhesive,
1. A method for joining carbonaceous composite substrates such as fuel cells, which comprises screen printing an adhesive through a mesh sheet onto the parts to be bonded.
【請求項2】  接着剤が、平均粒子径1〜10μm 
の炭素質粉末10〜40重量部と平均粒子径20〜80
μm の炭素質粉末60〜90重量部を混合したのち残
炭率40%以上の液状熱硬化性樹脂と混練して粘度 5
00〜5000ポイズの組成である請求項1記載の燃料
電池用炭素質複合基板の接合方法。
[Claim 2] The adhesive has an average particle size of 1 to 10 μm.
10 to 40 parts by weight of carbonaceous powder and an average particle size of 20 to 80
After mixing 60 to 90 parts by weight of carbonaceous powder of μm, the mixture is kneaded with a liquid thermosetting resin having a residual carbon content of 40% or more to reduce the viscosity to 5.
2. The method for bonding a carbonaceous composite substrate for a fuel cell according to claim 1, wherein the carbonaceous composite substrate has a composition of 00 to 5000 poise.
JP3114000A 1991-04-18 1991-04-18 Joining method of carbon composite substrate for fuel cell Pending JPH04319261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3114000A JPH04319261A (en) 1991-04-18 1991-04-18 Joining method of carbon composite substrate for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3114000A JPH04319261A (en) 1991-04-18 1991-04-18 Joining method of carbon composite substrate for fuel cell

Publications (1)

Publication Number Publication Date
JPH04319261A true JPH04319261A (en) 1992-11-10

Family

ID=14626557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3114000A Pending JPH04319261A (en) 1991-04-18 1991-04-18 Joining method of carbon composite substrate for fuel cell

Country Status (1)

Country Link
JP (1) JPH04319261A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454370B1 (en) * 2000-06-19 2004-10-26 니폰 필라고교 가부시키가이샤 Separator for fuel cell and method of fabricating thereof
JP2005317372A (en) * 2004-04-28 2005-11-10 Unitika Ltd Glass-like carbon structure and its manufacturing method
EP1271678A3 (en) * 2001-06-22 2007-03-07 Ballard Power Systems Inc. Systems, apparatus and methods for bonding and/or sealing electrochemical cell elements and assemblies
WO2008056778A1 (en) * 2006-11-10 2008-05-15 Toyota Jidosha Kabushiki Kaisha Fuel cell and fuel cell manufacturing method
JP4682453B2 (en) * 2001-06-08 2011-05-11 トヨタ自動車株式会社 Method and apparatus for applying solid component-containing liquid composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454370B1 (en) * 2000-06-19 2004-10-26 니폰 필라고교 가부시키가이샤 Separator for fuel cell and method of fabricating thereof
JP4682453B2 (en) * 2001-06-08 2011-05-11 トヨタ自動車株式会社 Method and apparatus for applying solid component-containing liquid composition
EP1271678A3 (en) * 2001-06-22 2007-03-07 Ballard Power Systems Inc. Systems, apparatus and methods for bonding and/or sealing electrochemical cell elements and assemblies
JP2005317372A (en) * 2004-04-28 2005-11-10 Unitika Ltd Glass-like carbon structure and its manufacturing method
WO2008056778A1 (en) * 2006-11-10 2008-05-15 Toyota Jidosha Kabushiki Kaisha Fuel cell and fuel cell manufacturing method

Similar Documents

Publication Publication Date Title
JP3686364B2 (en) Electrode material and its application to fuel cells
CN110190295A (en) Low pressure low humidity fuel battery gas diffusion layer, fuel cell and preparation method
CN104877157B (en) A kind of efficient fast-curing resin base light composite material and preparation method thereof
JPH04319261A (en) Joining method of carbon composite substrate for fuel cell
JP2845550B2 (en) Insulating coating agent and coating method using the same
JP7326317B2 (en) sealing material
JPS62272465A (en) Separator fuel cell
JPH07120532B2 (en) Method for producing carbonaceous composite electrode substrate for fuel cell
JP2004139885A (en) Fuel cell separator and manufacturing method of the same
JPH01255170A (en) Manufacture of carbon composite member for fuel battery
JPH05229886A (en) Method for antioxidizing treatment of carbon-fiber reinforced carbon material
JP3215701B2 (en) Method for producing high heat load resistant C / C material and first wall material of fusion reactor
JP2002321987A (en) Bonded graphite material and its manufacturing method
JPH04335079A (en) Adhesive for carbonaceous material and its manufacture
JP3342508B2 (en) Method for producing impermeable carbonaceous plate
WO2015045700A1 (en) Method for producing carbon-coated graphite material
JPH01253163A (en) Electrode substrate for fuel cell and manufacture thereof
JPS60127284A (en) Impermeable carbon material
CN116154185A (en) Fuel cell electrode catalytic layer and membrane electrode comprising same
JPH02112161A (en) Manufacture of carbon component for fuel cell
JPS5930708A (en) Manufacture of carbon product having porous-dense structure
EP0581367A1 (en) Substrates containing resin, fibers and anti-agglomeration agent
JPS62126562A (en) Manufacture of carbon member for fuel cell
JPS6241787A (en) Manufacture of electroconductive aggregated mica plate
JP2002343374A (en) Separator for fuel cell, and manufacturing method of the same