JPH02112161A - Manufacture of carbon component for fuel cell - Google Patents

Manufacture of carbon component for fuel cell

Info

Publication number
JPH02112161A
JPH02112161A JP63265722A JP26572288A JPH02112161A JP H02112161 A JPH02112161 A JP H02112161A JP 63265722 A JP63265722 A JP 63265722A JP 26572288 A JP26572288 A JP 26572288A JP H02112161 A JPH02112161 A JP H02112161A
Authority
JP
Japan
Prior art keywords
separator
carbon
less
firing
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63265722A
Other languages
Japanese (ja)
Other versions
JP2571108B2 (en
Inventor
Yoshio Suzuki
義雄 鈴木
Toshiharu Uei
上井 敏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP63265722A priority Critical patent/JP2571108B2/en
Publication of JPH02112161A publication Critical patent/JPH02112161A/en
Application granted granted Critical
Publication of JP2571108B2 publication Critical patent/JP2571108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To increase reliability in a component bonding part and to simplify a manufacturing process by selecting material characteristics of a separator combined with side seals. CONSTITUTION:A material having such carbon characteristics that thermal expansion coefficient is 3X10<-6> deg.C<-1> or less, flexural strength is 900kg/cm<3> or more, gas permeability is 10<-5>cc/cm<3>.min. or less, and corrosion current density is 5mumA/cm<2> or less is selected as a separator 2 combined with side seals 1. Bonding is conducted by applying a thermosetting resin adhesive to the recess of the separator. Since the side seal 1 and the separator 2 are formed with the same material, airtightness in the bonded part is increased and interface separation is prevented. By selecting material characteristics of the separator, separation between components and wear caused by heat cycles are decreased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電極、セパレークおよびザイドシールを複合
一体的に形成してなるりん酸型燃料電池用カーボン部材
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a carbon member for a phosphoric acid fuel cell, in which an electrode, a separator, and a zide seal are integrally formed.

[従来の技術] 近時、燃料電池を構成するカーボン部材において、機械
的強度の向上、電気的・熱的抵抗の低減およびセル組立
の簡素化を図るために電極とセパレータの両部材を予め
一体形成して複合構造とする試みが盛んに進められてい
る。
[Prior Art] In recent years, in carbon components that constitute fuel cells, electrodes and separators have been integrated in advance in order to improve mechanical strength, reduce electrical and thermal resistance, and simplify cell assembly. Attempts to form composite structures are actively underway.

このような複合部材の製造手段としては、例えば特開昭
60−20471号公報、実開昭60−15759号公
報などに開示されているような電極材、セパレータ材お
よびサイドシール材を接着剤で結合したのち焼成処理す
る接合焼成法が実用性に優れて(る。この接合焼成法に
は、カーボン材からなる電極、セパレータおよびサイド
シールを接合して焼成する方法と、カーボン化(焼成炭
化)前の成形基材であるグリーン前駆体段階の電極、セ
パレータおよびサイドシールを接合して焼成する方法と
がある。
As a means of manufacturing such a composite member, for example, an electrode material, a separator material, and a side seal material as disclosed in Japanese Patent Application Laid-Open No. 60-20471 and Japanese Utility Model Application Publication No. 60-15759 are bonded with an adhesive. The bonding and firing method, in which the electrodes, separators, and side seals made of carbon materials are bonded and fired, is highly practical. There is a method in which the electrodes, separators, and side seals at the green precursor stage, which are the previous molding base materials, are bonded and fired.

一般に、上記の燃料電池用複合部材を製造するにあたっ
て要求されるポイントは、複合構成としての性能確保、
接合部分(とくにサイドシール部)の信顧性確保、そし
て工程の短縮、簡略化にあるが、上述した接合焼成法の
うち後者のグリーン前駆体接合方式はこれらの要求項目
を一応満たすものといえる。
In general, the points required in manufacturing the above-mentioned composite members for fuel cells are ensuring performance as a composite structure,
The aim is to ensure the reliability of the joint parts (especially the side seal parts) and to shorten and simplify the process, and among the above-mentioned joint firing methods, the latter green precursor joining method can be said to meet these requirements. .

ところが、グリーン前駆体接合方式の場合にはサイドシ
ール部の設置に困難性があって同時接合ができないため
、電極基材の接合処理後に別途接合しなければならない
工程上の煩雑性があった。
However, in the case of the green precursor bonding method, it is difficult to install the side seal portion and simultaneous bonding is not possible, resulting in a complicated process in which bonding must be performed separately after the electrode base material bonding process.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の欠点を解消する方策として、特定性状のガス隔離
セパレータ部ならびにガス漏出防止縁部(サイドシール
部)とが炭化焼成により一体化された燃料電池セパレー
タ及びその製造方法(特開昭61−19071号公報)
、気体不透過性炭素質板の両面に縁端部分を除いて互い
に直交する方向に凹設部を設iJることによりサイドシ
ール部とセパレータ材を−・体に形成し、この凹設部に
樹脂含浸した多孔性シートを介して電極材を接合したの
ち焼成処理する燃料電池用複合電極の製造方法(特開昭
62−188173号公報)などが提案されている。
As a measure to eliminate the above-mentioned drawbacks, a fuel cell separator in which a gas isolation separator part having a specific property and a gas leakage prevention edge part (side seal part) are integrated by carbonization firing and its manufacturing method (Japanese Patent Laid-Open No. 61-19071 Publication No.)
, by forming recessed portions on both sides of the gas-impermeable carbonaceous plate in directions perpendicular to each other except for the edge portions, the side seal portion and the separator material are formed into a body, and in the recessed portions. A method for manufacturing a composite electrode for a fuel cell (Japanese Patent Application Laid-Open No. 188173/1983) has been proposed, in which electrode materials are bonded via a resin-impregnated porous sheet and then fired.

しかしながら、セパレータ材とサイドシール部とを炭化
焼成により一体化する特開昭61−19071号の方法
では両部材の接合界面における気密性が十分に付与され
ない問題点があり、また特開昭621881.73号の
方法は、セパレータ材とサイドシール部間の気密性につ
いては万全に保持されるが、複合構造全体としての性能
に改良の余地があり、例えば実用過程における部材の剥
離、損耗、破損などの現象を払拭することができなかっ
た。
However, the method disclosed in JP-A No. 61-19071, in which the separator material and the side seal portion are integrated by carbonization firing, has the problem that sufficient airtightness cannot be provided at the bonding interface between the two members. Although the method of No. 73 completely maintains the airtightness between the separator material and the side seal, there is room for improvement in the performance of the composite structure as a whole, such as peeling, wear, and damage of parts during the practical process. It was not possible to dispel this phenomenon.

本発明は、複合構造としての性能を改善するとともに部
材接合部分の信顧性と製造工程の簡素化を図った製造方
法の捉供を目的とするものである。
An object of the present invention is to provide a manufacturing method that improves the performance of a composite structure, improves the reliability of joining parts, and simplifies the manufacturing process.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するための本発明による燃料電池用カ
ーボン部材の製造方法は、グリーン前駆体の段階でサイ
ドシール部を形成する縁端部分を残して凹面状に成形し
たセパレータ基材またはこれを焼成炭化したセパレータ
材に、多孔質炭素電極を構成するグリーン前駆体基材ま
たはこれを焼成炭化した電極材を嵌装して一体に接合し
たのち焼成処理して複合構造のカーボン部材を得る方法
において、セパレータ材として熱膨張係数3X10−6
゛C−1以下、曲げ強度900kg/c/以上、気体透
過量10−’cc/c+It ・min以下およびg線
電流密度5/7A/d以下のカーボン特性を有する材料
を選択し、かつ接合時、凹面に熱硬化性樹脂系の接着剤
を塗布することを構成上の特徴とする。
In order to achieve the above object, the method for producing a carbon member for fuel cells according to the present invention includes a separator base material formed into a concave shape leaving the edge portion forming the side seal portion at the green precursor stage, or In a method of obtaining a carbon member with a composite structure by inserting a green precursor base material constituting a porous carbon electrode or an electrode material obtained by firing and carbonizing this into a fired and carbonized separator material, bonding them together, and then firing them. , thermal expansion coefficient 3X10-6 as separator material
゛C-1 or less, bending strength of 900 kg/c/ or more, gas permeation of 10-'cc/c+It min or less, and g-line current density of 5/7 A/d or less. The structural feature is that a thermosetting resin adhesive is applied to the concave surface.

サイドシール部を備えるセパレータのグリーン前駆体は
、好ましくは黒鉛のようなカーボン質の微粉末とフェノ
ール系あるいはフラン系など高炭化性の熱硬化性樹脂と
の混練物を縁端部分を残して凹面状に成形しえる所定形
態の金型に填めて熱圧することにより形成される。形成
されたグリーン前駆体によるセパレータ基材は、非酸化
雰囲気中で800°C以上の温度に加熱処理し樹脂成分
を焼成炭化することによってカーボンセパレータ材とす
ることもできる。
The green precursor of the separator with the side seal part is preferably a mixture of carbonaceous fine powder such as graphite and highly carbonizable thermosetting resin such as phenol type or furan type, and is formed into a concave surface with the edges remaining. It is formed by placing it in a mold of a predetermined shape that can be molded into a shape and pressing it under heat. The separator base material made of the formed green precursor can also be made into a carbon separator material by heat-treating it at a temperature of 800° C. or higher in a non-oxidizing atmosphere to sinter and carbonize the resin component.

上記工程において、フェラーとして用いる黒鉛微粉末の
粒度、熱硬化性樹脂バインダーの配合比率、混練の条件
等を調整制御することにより、本発明で特定した熱膨張
係数3XlO−’℃−1以下、曲げ強度900kg/c
+f1以上、気体透過量10−’cc/c+fl ・m
in以下および腐蝕電流密度5ハ/ c+!以下のカー
ボン特性が付与される。
In the above process, by adjusting and controlling the particle size of the graphite fine powder used as the feller, the blending ratio of the thermosetting resin binder, the kneading conditions, etc., the thermal expansion coefficient specified in the present invention is 3 Strength 900kg/c
+f1 or more, gas permeation amount 10-'cc/c+fl ・m
in and corrosive current density 5 ha/c+! The following carbon properties are imparted.

なお、これらのカーボン特性のうち、気体透過量は使用
ガス;窒素、圧カニ]kg/c+fl、温度;常温での
測定値、また、ここでいう腐蝕電流密度とは200°C
のりん酸中において陽極電位0.8VRHE。
Of these carbon properties, the gas permeation amount is the gas used: nitrogen, pressure crab] kg/c+fl, the temperature: the value measured at room temperature, and the corrosion current density here is the value measured at 200°C.
Anode potential 0.8 VRHE in phosphoric acid.

通電開始後500分後での測定値をさし、更に曲げ強度
はJIS K6911、熱膨張係数は炭素協会規格JC
AS−18−1978を適用して得られた値を用いるも
のとする。但し、熱膨張係数は常温から200°Cまで
のものとする。
Refers to the measured value 500 minutes after the start of energization.Furthermore, the bending strength is JIS K6911, and the thermal expansion coefficient is the Carbon Society Standard JC.
The value obtained by applying AS-18-1978 shall be used. However, the coefficient of thermal expansion is from room temperature to 200°C.

上記のカーボン特性は複合構造の性能改善に必要な要件
で、この限界値を外れるとヒートサイクルに伴う部材の
剥離、損耗、破損などの発生が著増する。
The above-mentioned carbon properties are necessary for improving the performance of composite structures, and if these limits are exceeded, the occurrence of peeling, wear, damage, etc. of members due to heat cycling increases significantly.

凹面の成形はセパレータ材の片面または両面に形成され
るが、両面に形成する場合には第1図に示すようにサイ
ドシール部1となる縁端部分およびセパレータ材2とな
る凹面の方向が上下面において互いに直交する状態に成
形される。
The concave surface can be formed on one or both sides of the separator material, but if it is formed on both sides, the direction of the edge portion that will become the side seal part 1 and the concave surface that will become the separator material 2 is upward, as shown in Figure 1. They are formed so that they are perpendicular to each other on the lower surface.

多孔質炭素電極は、炭素繊維あるいはポリアクリルニト
リル、セルロースなどの有機質繊維を例えばフェノール
樹脂のような熱硬化性樹脂と共にモールド法、抄紙法等
の手段を用いて薄板状に成形し加熱硬化する方法でグリ
ーン前駆体基材が得られ、これを非酸化雰囲気中800
’C以上に焼成炭化することによりカーボン化電極材が
形成される。
Porous carbon electrodes are produced by molding carbon fibers or organic fibers such as polyacrylonitrile or cellulose together with thermosetting resins such as phenol resin into a thin plate using methods such as molding or papermaking, and then heating and curing the electrodes. A green precursor substrate was obtained, which was heated at 800 °C in a non-oxidizing atmosphere.
A carbonized electrode material is formed by firing and carbonizing the material to a temperature higher than 'C.

サイドシール部を有するセパレータ基材またはセパレー
タ材と電極基板または電極材の接合は、セパレータの凹
面に熱硬化性樹脂系の接着剤を塗布したのち電極部材を
嵌装し50〜200°C程度の温度と1kg/c++T
以上の加圧力を適用して熱圧することによっておこなわ
れる。
To join the separator base material or separator material having a side seal portion to the electrode substrate or electrode material, apply a thermosetting resin adhesive to the concave surface of the separator, fit the electrode member, and heat at approximately 50 to 200°C. Temperature and 1kg/c++T
This is done by applying the above pressure and applying heat.

使用される熱硬化性樹脂系の接着剤にはフェノール系ま
たはフラン系樹脂の初期縮合物に適宜な硬化剤を配合し
たものが好適であるが、これに黒鉛、コークス等のカー
ボン微粉末を30〜70重量%の範囲で均一混合すると
固有抵抗を低下させるために有効である。
The thermosetting resin adhesive to be used is preferably a mixture of an initial condensate of phenol or furan resin with an appropriate hardening agent. Uniform mixing in the range of ~70% by weight is effective for lowering the resistivity.

また、接合時、予め凹面を10μmRZ以上の表面粗さ
に研磨処理することにより、接合強度が著しく向上する
Moreover, by polishing the concave surface in advance to a surface roughness of 10 μmRZ or more during bonding, the bonding strength is significantly improved.

接合後の複合部材は、常法に従って非酸化性雰囲気下に
1000〜2000’Cの温度域で焼成炭化し、更に必
要に応して3000°Cの温度で黒鉛化処理をおこなう
。第2図は、焼成処理後の形態を示したもので、1はサ
イドシール部、2はセパレータ材、3はセパレータ材の
上下凹面に一体接合した電極材である。
The composite member after bonding is fired and carbonized in a non-oxidizing atmosphere at a temperature range of 1000 to 2000°C according to a conventional method, and further graphitized at a temperature of 3000°C if necessary. FIG. 2 shows the form after the firing process, in which 1 is a side seal part, 2 is a separator material, and 3 is an electrode material integrally joined to the upper and lower concave surfaces of the separator material.

このようにして得られた複合構造のカーボン部材は、第
3図に示すように電極材に所定の溝4を切削するととも
に外形仕上げ加工を施して燃料電池用セルとする。
The carbon member having the composite structure thus obtained is made into a fuel cell by cutting a predetermined groove 4 into the electrode material and finishing the outer shape as shown in FIG.

〔作 用〕[For production]

このように、本発明により製造される複合構造の燃料電
池用カーボン部材は、サイドシール部とセパレータ材が
同一材料で一体形成されているためこの部位の気密性お
よび界面剥離が間匙となることはなく、そのうえセパレ
ータ材の材質特性を選択して実用性能の向上を図ってい
るので、ヒートサイクルによる部材の剥離、損耗、破損
等の現象発生は効果的に減少する。
As described above, in the carbon member for fuel cells having a composite structure manufactured according to the present invention, since the side seal portion and the separator material are integrally formed of the same material, the airtightness of this portion and interfacial peeling are limited. Moreover, since the material properties of the separator material are selected to improve practical performance, the occurrence of phenomena such as peeling, wear, and damage of members due to heat cycles is effectively reduced.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と対比して説明する。 Examples of the present invention will be described below in comparison with comparative examples.

実施例1〜3、比較例1〜2 平均粒径5μmの黒鉛微粉末と液状フェノール樹脂(住
友デュレズ■製、“PR940” )をニーグーで均質
に混練したのち、凹形状金型を用い温度150°C1圧
カニ  100kg / cdlの条件で15分間熱圧
成形した。成形されたグリーン前駆体は、上下面にサイ
ドシール部を形成する縁端部分を残して厚さIIIII
llの凹面が直交状に形成された一辺150mmの正方
形薄板であった。ついで、成形品を電気炉に移し、窒素
ガス雰囲気中で1300″Cまでの温度で焼成炭化して
特性の異なる5種類のカーボンセパレータ材(第1図形
状)を得た。
Examples 1 to 3, Comparative Examples 1 to 2 Fine graphite powder with an average particle size of 5 μm and liquid phenol resin (manufactured by Sumitomo Durez ■, "PR940") were homogeneously kneaded in a Ni-Goo, and then kneaded at a temperature of 150 using a concave mold. It was hot-pressed for 15 minutes at 100 kg/cdl at 1°C. The molded green precursor has a thickness of Ⅲ, leaving edge portions forming side seals on the top and bottom surfaces.
It was a square thin plate with a side of 150 mm and a concave surface of 150 mm perpendicular to each other. Next, the molded products were transferred to an electric furnace and fired and carbonized at a temperature up to 1300''C in a nitrogen gas atmosphere to obtain five types of carbon separator materials (shaped in FIG. 1) having different characteristics.

炭素繊維チョップ(平均径15デニール、平均長8mm
)70重量部、水溶性フェノール樹脂〔日本ライヒホー
ルド■製、“プライオーフェンJ303 ”“〕110
重量および水20重量部を攪拌混合して均一なスラリー
状分散液を調製した。このスラリーを抄紙法によって薄
板状に成形し、170°Cで加熱硬化したのち窒素雰囲
気に保持した電気炉中で1000°Cの温度により焼成
炭化して緬150m+n、横100mm、厚さl mm
の多孔質炭素電極材を作成した。得られた電極材の特性
は、見掛比重0.56g/cc、気孔率68.1%であ
った。
Carbon fiber chop (average diameter 15 denier, average length 8mm)
) 70 parts by weight, water-soluble phenol resin [manufactured by Nippon Reichhold ■, "Pryophen J303"] 110
A uniform slurry-like dispersion was prepared by stirring and mixing 20 parts by weight of water. This slurry was formed into a thin plate shape using a papermaking method, heated and hardened at 170°C, and then fired and carbonized at a temperature of 1000°C in an electric furnace kept in a nitrogen atmosphere to form a sheet with a length of 150m+n, a width of 100mm, and a thickness of 1 mm.
A porous carbon electrode material was created. The characteristics of the obtained electrode material were that the apparent specific gravity was 0.56 g/cc and the porosity was 68.1%.

次に、セパレーク材の上下凹面をサンドペーパ研磨によ
り20μmRZの表面粗さに仕上げ、この面にフェノー
ル樹脂初期縮合物100重量部、黒鉛微粉(平均粒径2
0fm)80重量部、パラトルエンスルホン酸クロライ
ド5重量部を各配合した接着剤を均質に塗布した。引続
き上下凹面に電極材を嵌装し、80゛Cの温度と5 k
g / ciの圧力に1時間保持して接合した。
Next, the upper and lower concave surfaces of the separator material were polished with sandpaper to a surface roughness of 20 μm RZ, and this surface was coated with 100 parts by weight of a phenolic resin initial condensate and fine graphite powder (average particle size 2
An adhesive containing 80 parts by weight of 0fm) and 5 parts by weight of para-toluenesulfonic acid chloride was uniformly applied. Subsequently, electrode materials were fitted on the upper and lower concave surfaces, and heated at a temperature of 80°C and 5k.
Bonding was carried out by holding at a pressure of g/ci for 1 hour.

接合部材は、電気炉に移し窒素雰囲気下で1300°C
の温度で焼成処理したのち、電極材の溝加工その他の仕
上加工を施して第3図のような複合構造の燃料電池用カ
ーボン部材を製造した。
The joining members were transferred to an electric furnace and heated at 1300°C under a nitrogen atmosphere.
After firing at a temperature of , the electrode material was subjected to grooving and other finishing processes to produce a carbon member for a fuel cell having a composite structure as shown in FIG. 3.

上記のようにして製造した各カーボン部材を5セル積層
した試験セルを用いて発電テスト(200°C10,8
VRHE、 100Ohr、  l kg/c+fl)
を実施した。
Power generation test (200°C10,8
VRHE, 100Ohr, l kg/c+fl)
was carried out.

その結果をセパレータ材の特性と対比させて下表に示し
た。
The results are shown in the table below in comparison with the characteristics of the separator material.

上表に示したように、本発明のセパレータ材′+h性要
件を満たす実施例はいずれも異常は認められなかった。
As shown in the above table, no abnormality was observed in any of the examples satisfying the separator material'+h property requirements of the present invention.

(発明の効果) 異常のとおり、本発明に従えばザイトシール部と一体化
したセパレータ材の材質特性を選択することによって複
合構造としての性能、部材接合部の信頼性等を改善した
燃料電池用カーボン部材を簡素なプロセスで製造するこ
とができるから、常に安全な発熱操業が保証される。
(Effects of the Invention) As unusual, according to the present invention, carbon for fuel cells has improved performance as a composite structure, reliability of member joints, etc. by selecting the material properties of the separator material integrated with the zyte seal part. Since the parts can be manufactured using a simple process, safe heat-generating operations are always guaranteed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のセパレータ材を示した斜視図、第2図
はセパレータ材に電極材を接合して焼成処理した形態を
示す斜視図、第3図は最終形態を示す斜視図である。 1・・・ザイドシール部、  2・・セパレータ材、3
・・電極材、     4・・・溝。
FIG. 1 is a perspective view showing the separator material of the present invention, FIG. 2 is a perspective view showing a form in which an electrode material is bonded to the separator material and fired, and FIG. 3 is a perspective view showing the final form. 1... Zyde seal part, 2... Separator material, 3
...electrode material, 4...groove.

Claims (1)

【特許請求の範囲】 1、グリーン前駆体の段階でサイドシール部を形成する
縁端部分を残して凹面状に成形したセパレータ基材また
はこれを焼成炭化したセパレータ材に、多孔質炭素電極
を構成するグリーン前駆体基材またはこれを焼成炭化し
た電極材を嵌装して一体に接合したのち焼成処理して複
合構造のカーボン部材を得る方法において、セパレータ
材として熱膨張係数3×10^−^6℃^−^1以下、
曲げ強度900kg/cm^2以上、気体透過量10^
−^5cc/cm^2・min以下および腐蝕電流密度
5μA/cm^2以下のカーボン特性を有する材料を選
択し、かつ接合時、凹面に熱硬化性樹脂系の接着剤を塗
布することを特徴とする燃料電池用カーボン部材の製造
方法。 2、接合時、予め凹面を10μmRZ以上の表面粗さに
処理する請求項1記載の燃料電池用カーボン部材の製造
方法。
[Scope of Claims] 1. A porous carbon electrode is formed on a separator base material formed into a concave shape leaving the edge part forming the side seal part at the green precursor stage, or on a separator material obtained by firing and carbonizing this separator base material. In the method of obtaining a carbon member with a composite structure by inserting a green precursor base material or an electrode material obtained by firing and carbonizing the green precursor base material, bonding them together, and then firing the same, a thermal expansion coefficient of 3 × 10^-^ is used as a separator material. Below 6℃^-^1,
Bending strength 900kg/cm^2 or more, gas permeation rate 10^
- A material with carbon properties of less than 5 cc/cm^2 min and a corrosion current density of less than 5 μA/cm^2 is selected, and a thermosetting resin adhesive is applied to the concave surface during bonding. A method for manufacturing a carbon member for a fuel cell. 2. The method for manufacturing a carbon member for a fuel cell according to claim 1, wherein the concave surface is treated in advance to a surface roughness of 10 μm RZ or more during bonding.
JP63265722A 1988-10-21 1988-10-21 Method for producing carbon member for fuel cell Expired - Lifetime JP2571108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63265722A JP2571108B2 (en) 1988-10-21 1988-10-21 Method for producing carbon member for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63265722A JP2571108B2 (en) 1988-10-21 1988-10-21 Method for producing carbon member for fuel cell

Publications (2)

Publication Number Publication Date
JPH02112161A true JPH02112161A (en) 1990-04-24
JP2571108B2 JP2571108B2 (en) 1997-01-16

Family

ID=17421098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63265722A Expired - Lifetime JP2571108B2 (en) 1988-10-21 1988-10-21 Method for producing carbon member for fuel cell

Country Status (1)

Country Link
JP (1) JP2571108B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234110A (en) * 2002-02-07 2003-08-22 Mitsubishi Pencil Co Ltd Separator for fuel cell and its manufacturing method
US6794078B1 (en) * 1999-12-06 2004-09-21 Hitachi Chemical Company, Ltd. Fuel cell, fuel cell separator, and method of manufacture thereof
JP2005310804A (en) * 2005-07-21 2005-11-04 Hitachi Ltd Separator for solid polymer fuel cell, solid polymer fuel cell using the same, and power generation system
JP5924444B1 (en) * 2015-10-29 2016-05-25 富士電機株式会社 Phosphoric acid fuel cell and manufacturing method of phosphoric acid fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188173A (en) * 1986-02-13 1987-08-17 Tokai Carbon Co Ltd Manufacture of complex electrode for fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188173A (en) * 1986-02-13 1987-08-17 Tokai Carbon Co Ltd Manufacture of complex electrode for fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794078B1 (en) * 1999-12-06 2004-09-21 Hitachi Chemical Company, Ltd. Fuel cell, fuel cell separator, and method of manufacture thereof
JP2003234110A (en) * 2002-02-07 2003-08-22 Mitsubishi Pencil Co Ltd Separator for fuel cell and its manufacturing method
JP4587632B2 (en) * 2002-02-07 2010-11-24 三菱鉛筆株式会社 Fuel cell separator and method for producing the same
JP2005310804A (en) * 2005-07-21 2005-11-04 Hitachi Ltd Separator for solid polymer fuel cell, solid polymer fuel cell using the same, and power generation system
JP4647421B2 (en) * 2005-07-21 2011-03-09 株式会社日立製作所 Separator for polymer electrolyte fuel cell, seal member thereof, polymer electrolyte fuel cell using the same, and power generation system
JP5924444B1 (en) * 2015-10-29 2016-05-25 富士電機株式会社 Phosphoric acid fuel cell and manufacturing method of phosphoric acid fuel cell

Also Published As

Publication number Publication date
JP2571108B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
JP4361636B2 (en) Composite carbonaceous heat insulating material and method for producing the same
JPS62123662A (en) Electrode substrate for fuel cell
KR20100045501A (en) High thermal conductivity electrode substrate
WO2002092327A1 (en) Process for complex shape formation using flexible graphite sheets
JPH02112161A (en) Manufacture of carbon component for fuel cell
JPS6042213A (en) Manufacture of carbon sheet
JPH03112871A (en) Silicon carbide zygote and its junction
JP2008268191A (en) Plasma facing material and method for manufacturing
JPH03248838A (en) Heat insulation material
JP2004139885A (en) Fuel cell separator and manufacturing method of the same
JPS6348766A (en) Composite electrode substrate having different rib height and its manufacture
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPH01255170A (en) Manufacture of carbon composite member for fuel battery
JP2524820B2 (en) Method for producing carbonaceous composite base material for fuel cell
JP2603138B2 (en) Method for manufacturing carbonaceous composite member for fuel cell
JP2002321987A (en) Bonded graphite material and its manufacturing method
JPH06190962A (en) Molded heat insulating material
JP3240062B2 (en) Method for manufacturing fuel cell separator with end seal
JPS59195514A (en) Molded impermeable carbon body and its manufacture
JPH02103862A (en) Manufacture of carbon compound member for fuel cell
JPS62126563A (en) Manufacture of carbon member for fuel cell
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH04169070A (en) Manufacture of carbonaceous composite electrode substrate for fuel cell
JP2002343374A (en) Separator for fuel cell, and manufacturing method of the same
JP2004273449A (en) Separator for fuel cell and manufacturing method of the same