JPH0431589B2 - - Google Patents

Info

Publication number
JPH0431589B2
JPH0431589B2 JP62011743A JP1174387A JPH0431589B2 JP H0431589 B2 JPH0431589 B2 JP H0431589B2 JP 62011743 A JP62011743 A JP 62011743A JP 1174387 A JP1174387 A JP 1174387A JP H0431589 B2 JPH0431589 B2 JP H0431589B2
Authority
JP
Japan
Prior art keywords
monomer
polymer
acid
general formula
represent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62011743A
Other languages
Japanese (ja)
Other versions
JPS63179368A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62011743A priority Critical patent/JPS63179368A/en
Priority to US07/033,002 priority patent/US4873166A/en
Publication of JPS63179368A publication Critical patent/JPS63179368A/en
Publication of JPH0431589B2 publication Critical patent/JPH0431589B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/13Developers with toner particles in liquid developer mixtures characterised by polymer components

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Developers In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は電子写真や静電記録等の静電潜像現像
用の液体現像剤に関するものであり、保存性、安
定性、定着性に優れ特に高画質を達成し得る液体
現像剤に関するものである。 (従来技術) 静電潜像液体現像剤としては既に数多くのもの
が知られている。例えばカーボンブラツクやシア
ニンブルー、ニグロシン、オイル染料等の着色剤
顔料又は染料を高絶縁性溶媒体中にロジン、アル
キツド樹脂、アクリル樹脂、合成ゴム等の樹脂と
共に、ボールミル、アトライター、ホモジナイザ
ー等で機械的に分散し、更に金属セツケンやアミ
ン、高級脂肪酸等を加えて該分散物の分散粒子に
電荷を安定に付与させる方法が最も一般的であつ
た。 しかしながら、該方法で得られた液体現像剤は
現像剤としての分散粒子の粒径分布が大きい為
に、沈澱物が多く発生したり、荷電安定性や製造
安定性に劣り、安定した画像を得にくいという欠
点を有していた。 特公昭53−54029号、同57−12985号などに述べ
られている様に前駆体ポリマーに高分子反応によ
り重合可能なビニル基をあらかじめ導入してお
き、これの存在下にモノマーを重合せしめグラフ
ト重合体を生成させ、これを染料で着色する事に
より液体現像剤を得る方法がある。 該方法は優れた方法といえるが、ビニル基の導
入のコントロール及び再現性に問題があり、しば
しばゲルの生成を伴つたり、分散粒子が安定に形
成し難い場合があり、1μ以上の粗大粒子や、0.1μ
以下の微少な粒子が生成する事があり実用上好ま
しくない。 更に特開昭59−83174号、同59−177572号、同
59−212850号、同59−212851号、同60−164757
号、同60−179751号、同60−185962号、同60−
185963号、同60−252367号、同61−116364号、同
61−116365号等には、高絶縁性媒体に可溶な重合
体存在下で該溶媒に可溶であるが重合体を形成す
ると不溶となるモノマーを重合し、得られた樹脂
分散物を液体現像剤として用いる事が述べられて
いる。該方法は工業的製造安定性、分散安定性等
優れたものである。しかしながら該方法で得られ
る樹脂を用いた液体現像剤を静電記録材上にクー
ロンカで画像形成させた場合、分散粒子自身の持
つクーロンカによる静電的相互反発や分散安定化
ポリマーの濃度が上昇して反発し合う体積排除効
果などが生ずる。この為に静電記録材の有効な表
面電位が低下してくると画像部周辺ににじみ状の
ゴーストが発生し易いという欠点を有していた。
また、該方法で得られた樹脂を用いた液体現像剤
を実際に補充しながら連続使用すると溶媒可溶性
の樹脂が蓄積し、用いた可溶性樹脂の種類にもよ
るが、分散粒子の荷電量に影響を与えるという欠
点も有していた。 (発明の目的) 本発明の目的は前記に挙げた従来の欠点を改良
した液体現像剤を提供するものであり、特に画像
周辺部ににじみ状のゴーストがない鮮明は画像を
与え、かつ長期に亘る連続使用にも画像劣化の少
ない液体現像剤を提供する事である。 本発明の他の目的は感光体として酸化亜鉛や有
機半導体を用いたオフセツト平版印刷版の現像剤
として優れた印刷品質を与える液体現像剤を提供
する事である。 (発明の構成) 本発明は、高絶縁性炭化水素媒体中に、少なく
とも分散した樹脂粒子を含む静電写真用液体現像
剤において、該樹脂が、下記の重合体Sの存在下
で、下記モノマーA及びモノマーBを重合して得
られる樹脂であることを特徴とする静電写真用液
体現像剤である。 重合体S:該媒体に不溶であり、かつアミド基を
有する重合体。 モノマーA:該媒体には可溶で重合により不溶化
するモノマー。 モノマーB:該媒体に可溶で重合しても可溶な重
合体を形成するモノマー。 本発明に用いる高絶縁性炭化水素媒体とはノル
マルパラフイン系炭化水素、イソパラフイン系炭
化水素、脂環族炭化水素、ハロゲン化脂肪族炭化
水素等が挙げられるが、安全性、揮発性等の面か
ら実用上好ましくはイソパラフイン系炭化水素溶
媒であるシエルゾル71(シエル石油製)アイソパ
ーO、アイソパーH、アイソパーK、アイソパー
L、アイソパーG(アイソバーはエクソン社の商
品名)やアイピーソルベント(出光石油化学製)
等が使用できる。 本発明の液体現像剤に用いる樹脂の構成及び樹
脂分散物(以下エマルシヨンとよぶ)の形成機構
について説明する。本発明に用いる前記溶媒に不
溶でアミド基を有する重合体Sをシエルポリマー
とよぶ事にする。又該溶媒に可溶で重合すると不
溶化するモノマーAの重合体をP1ポリマーとし、
該溶媒に可溶で重合体を形成しても可溶なモノマ
ーBの重合体をP2ポリマーとする。本発明に用
いるエマルシヨンの重合開始前の最も一般的な態
様は、前記溶媒、シエルポリマー、モノマーA及
びモノマーBである。(得られたエマルシヨン粒
子のTm、Tg等の物性をコントロールをする為
にいずれの材料も場合によつて2種以上用いても
良い)また重合時の発熱をコントロールする為に
用いるモノマーを分割して後添加しても良い。 エマルシヨン粒子の形成機構は大別して2通り
ある。その第1は前記重合開始前の状態が均一系
のケースである。この場合本来シエルポリマーは
該溶媒に不溶であるにもかかわらず均一系となる
事実は、モノマーA又はモノマーBに溶解してし
まう為である。 本系を加熱し、重合開始剤を添加する事によつ
てラジカルが発生し重合がスタートする。モノマ
ーAから生成するP1ポリマー成分は該溶媒に不
溶であるが、該溶媒に可溶なP2ポリマー成分を
保護コロイドとして粒子を形成し白濁化しエマル
シヨンを生成する。 粒子径はP2ポリマー成分量すなわち仕込みモ
ノマーB量によつて比較的自由に変える事ができ
る。仕込みモノマーA/モノマーB比は勿論生成
するポリマーの該溶媒に対する溶解性や凝集性に
依存するが、重合比で98/2〜20/80の範囲で比
較的安定なエマルシヨンが得られるが95/5〜
50/50程度が好適である。また粒子径は該溶媒と
生成するポリマーの溶解度パラメーターに最も依
存するのでこれらの選択で粒径をコントロールで
きる。 重合が進行するとシエルポリマーは可溶化され
るべきモノマーがポリマーとして消費されてしま
う為に系内に均一に溶解できなくなる。従つて不
溶化してくることになるが、実際にはP1ポリマ
ーが形成するエマルシヨン粒子表面に沈着してく
る。 エマルシヨンの沈降安定性や粒径はシエルポリ
マーの種類、量にも依存し、シエルポリマーが多
過ぎる場合沈澱が生じ易い。但しこの場合モノマ
ーBの量を増量させておけば分散安定性は改良さ
れる。 シエルポリマーの量は前述の通り、モノマー
A、モノマーBの種類、量及びシエルポリマーの
種類にもよるが、モノマーAの1%〜50%(重量
比)、好ましくは3〜25%が好適である。 従つて形成されたエマルシヨン粒子は内部に主
にP1ポリマーからなるコア層、その外側に沈積
したシエルポリマーからなるシエル層、更に最外
部に粒子を該溶媒中に安定化させている主にP2
ポリマーからなる分散層の3層構造を形成してい
ると考えられる。勿論、粒子形成機構から判る様
に各層間に明確な界面などは存在せず、各成分が
3層化状態に、より局在化していると推測され
る。 エマルシヨン粒子の第2の形成機構は、前記重
合開始前の状態が不均一系のケースである。この
場合このまま重合を開始させても良いが、好まし
くは比較的低沸点の補助溶剤を添加して系内を均
一系にした方が良い。第1の形成機構と同様に重
合を開始させるとP2ポリマー成分を保護コロイ
ドとしてP1ポリマー成分主体の白濁化したエマ
ルシヨンを生成する。重合終了後に補助溶剤を留
去すればシエルポリマーはエマルシヨン粒子の表
面に沈着する。補助溶剤を余りに多く必要とする
場合には均一なエマルシヨンが生成されない事が
ある。 補助溶媒としては、例えばテトラヒドロフラ
ン、エチルアルコール、イソプロピルアルコー
ル、メチルエチルケトン、酢酸エチル等が挙げら
れる。 本発明に用いるシエルポリマーはアミド基を有
し、高絶縁性炭化水素媒体には不溶で、重合する
と該溶媒に不溶化するモノマーには可溶な性質を
有さねばならないので、使用するモノマーによつ
て当然変つてくる。又、最も望ましい最終的なエ
マルシヨンの態様はシエルポリマーを得られたエ
マルシヨン粒子の表面に局在化させる事である。
見方を変えれば粒子表面をアミド基を有するポリ
マーで改質する事である。 この様な性質を発揮させるポリマーは例えば一
般式〔〕及び例えば一般式〔〕で示されるモ
ノマーの共重合体から得る事ができる。 一般式〔〕 CHZ1=CZ2−CONR1R2 (Z1、Z2はH又はアルキル基を表わし、R1R2
は置換基を有しても良い脂肪族基を表わす。) 一般式〔〕 (R1とR2はH、アルキル基、−COOR4、CH2
COOR5を表わし、R3、R4、R5は置換基を有して
も良い脂肪族基を表わす。) 一般式〔〕で示されるモノマーは例えば、ア
クリルアミド、メタアクリルアミド、N−イソプ
ロピルアクリルアミド、N−tert−ブチルアクリ
ルアミド、N,N−ジメチルアクリルアミド、等
が挙げられる。更にアミド基を有するモノマーと
しては、アクリルピペリジン、アクリルモルホリ
ン、アクリルピロリジン、フエニルメタアクリル
アミド、N−アニシルメタアクリルアミド、N−
トリルメタアクリルアミド、N−クロルフエニル
アクリルアミド、N−ニトロフエニルメタアクリ
ルアミド、N−メタクリル−α−アミノケトン、
N−メチロールメタアクリルアミド及びそのエス
テル類、N−β−シアノエチルメタクリルアミ
ド、ジアセトンアクリルアミド等が挙げられる。 更にアミド基を有するモノマーは「合成高分
子」(朝倉書店刊)、「高分子データハンドブツク」
(培風館刊)等に挙げられている。シエルポリマ
ーとしてはアミド基を有している事が重要である
ので使用できるモノマーが一般式〔〕に限られ
るものではない。 一般式〔〕で表わされるモノマーはアクリル
酸、メタアクリル酸、クロトン酸、マレイン酸、
イタコン酸等の不飽和カルボン酸のエステル化物
であり、脂肪族基のエステルであれば例えばメチ
ル、エチル、プロピル、ブチル、アミル、ヘキシ
ル、エチルヘキシル、ドデシル、トリデシル、ヘ
キサデシル、ドコサニル、ヘキサデセニル、オレ
イル、等が挙げられる。これらはハロゲン原子、
アミノ基、アルコキシ基等で置換されていても良
く、又窒素、酸素、イオウ等の原子で結合が結ば
れていても良い。 またシエルポリマーの物性を調整する為に第3
成分として共重合可能なモノマーを共重合しても
良い。更にシエルポリマーとして複数のポリマー
を用いてもかまわない。 シエルポリマーの重合は公知の重合方法で得る
事ができるが、シエルポリマーを原材料としてエ
マルシヨンを合成する為に、エマルシヨン合成時
に用いる溶媒と同一か又は良く混合する溶媒中で
溶液重合によつて得る事が最も好ましい。更にシ
エルポリマーの物性として該溶媒に高温で溶解し
てしまう性質を有するものは余り望ましくない。 なぜならば液体現像剤の特性が温度に依存して
しまい特に温度が上昇した時にシエルポリマーが
粒子から脱着してトナー粒子の物性を変えてしま
う恐れがあるからである。 本発明に用いるシエルポリマーの共重合体例を
挙げるが勿論これに限られるわけではない。( )
内は重量比である。 (イ) n−ヘキシルメタアクリレート−アクリルア
ミド(94/6) (ロ) ステアリルメタアクリレート−メタアクリル
アミド(95/5) (ハ) ステアリルメタアクリレート−N,N−ジメ
チルアクリルアミド(90/10) (ニ) ラウリルメタアクリレート−フエニルアクリ
ルアミド(95/5) (ホ) n−ヘキシルアクリレート−ジアセトンアク
リルアミド(92/8) (ヘ) ステアリルメタアクリレート−N−イソプロ
ピルアクリルアミド(85/15) 本発明に用いる、該溶媒に可溶で重合すると不
溶化するポリマーを与えるモノマーAとしては例
えば酢酸、プロピオン酸、酪酸等のビニルエステ
ル類やアリルエステル類。イタコン酸、マイレン
酸、クロトン酸等のアルキルエステル類(但し長
鎖アルキルのポリマーは可溶化してしまうので炭
素数4まで)等、更にはアクリル酸やメタアクリ
ル酸の置換基を有しても良い低級アルキルエステ
ルやアミド類。スチレン、メチルスチレン、ビニ
ルトルエン等スチレン誘導体、N−ビニルピロリ
ドン、N−ビニルオキサゾリドン等の複素環を有
するもの等が挙げられる。得られたエマルシヨン
粒子の物性を調整する為に塩基性のモノマーやエ
ーテル結合を有するモノマー等共重合可能な第2
成分を共重合してもかまわない。 本発明に用いる、該溶媒に可溶で重合しても可
溶なポリマーを与えるモノマーBは例えば下記一
般式〔〕で示される。 一般式〔〕 一般式〔〕中Rは炭素数8以上の脂肪族基を
表わし、Bはエステル基又はアミド基、Q1,Q2
は水素原子、アルキル基、−COOR′、−CH2
COOR″を表わす。R′、R″は脂肪族基を表わす。 モノマーBの例としてはアクリル酸、メタアク
リル酸、クロトン酸、マイレン酸、イタコン酸の
エステル化物及びアミド化物であり、例えば脂肪
族基の場合デシル、ドデシル、トリデシル、ヘキ
サデシル、ドコサニル、ヘキサデセニル、オレイ
ル等が挙げられる。 これらはハロゲン原子、アミノ基、アルコキシ
基、ヒドロキシ基等で置換されていても良く、又
窒素、酸素、イオウ等の原子で結合が結ばれてい
ても良い。 モノマーA及びBの必要特性は、前記シエルポ
リマーを溶解させる事が好ましいが必ずしも各々
のモノマーがシエルポリマーを溶解する必要はな
く、該溶媒、シエルポリマー、モノマーA及びB
が混合された時に実質的に均一系であれば問題な
い。また溶解性が悪く不均一系となる場合には比
較的低沸点の補助溶媒を用いて重合が完了した後
に留去すれば良い。 本発明で得られたエマルシヨンを静電写真用液
体現像剤とするには、分散樹脂粒子を着色し荷電
を与えれば良い。分散粒子の着色剤としては一般
に液体現像剤用着色剤として知られているものが
任意に使用できる。例えばオイルブラツク、オイ
ルレツド等の油溶性染料、ビスマルクブラウン、
クリソイジン等の塩基性アゾ染料、ウールブラツ
ク、アミドブラツクグリーン、ブルーブラツク
HF等の酸性アゾ染料、コンゴーレツド等の直接
染料、スーダンバイオレツド、アシツドブルー等
のアントラキノン系染料、オーラミン、マラカイ
トグリーン、クリスタルバイオレツト、ビクトリ
アブルー等のカルボニウム染料、ローダミンBの
如くローダミン染料、サフラニン、ニグロシン、
メチレンブルー等のキノンイミン染料等の染料が
挙げられる。顔料としては、カーボンブラツク、
フタロシアニンブルー、フタロシアニングリー
ン、ウオツシングレツド、ベンジジンイエロー等
が挙げられる。又表面処理を施した顔料、例えば
ニグロシンで染色したカーボンブラツク、グラフ
トカーボン、ローダミンHで染色した酸化硅素微
粉末、マイクロリスブルー等を用いる事ができ
る。 分散粒子への着色方法は、使用する着色剤を溶
解する溶剤にあらかじめ溶解しておき、この着色
剤溶液をエマルシヨン中に滴下攪拌する方法が最
も簡便である。特にオイル染料をトルエン、キシ
レン等の芳香族溶媒に溶解し滴下攪拌すると、う
まく着色できる。使用した溶媒はトナー溶媒と混
合するので品質上悪影響がない限り除去する必要
はない。また特開昭57−48738にみられる様な溶
媒系を用いて、後で溶媒除去をしても良い。 更に他の着色方法として、得られたエマルシヨ
ンと着色剤をコロイドミル、ボールミル、振動ミ
ル等の分散機に加え機械的振動を与える事によつ
て着色しても良い。 本発明の液体現像剤は電荷制御剤、着色剤等を
選択すれば正電荷を有するトナー又は負電荷を有
するトナーを自由に製造する事が可能である。 本発明の液体現像剤に用いられる電荷制御剤と
しては、例えばオレイン酸銅、ナフテン酸コバル
ト、ナフテン酸亜鉛、ナフテン酸マンガン、オク
チル酸コバルト、レシチン、ジオクチルスルホコ
ハク酸ナトリウム、ステベライトレジンのアルミ
ニウム塩等が挙げられる。 また、特公昭49−26594号、同49−26595号、特
開昭60−173558号、同60−175060号、同60−
179750号、同60−182447号、同60−218662号、特
願昭60−78062号等に挙げられた電荷制御剤も用
いる事ができる。 本発明で得られた液体現像剤は特公昭37−
17162号、同38−6961号、同41−2426号、同46−
39405号、特開昭50−19509号、同50−19510号、
同54−145538号、同54−89801号、同54−134632
号、同54−19803号、同55−105244号、同57−
161863号、同58−76843号、同58−76844号、同58
−122897号、同58−118658号、同59−170862号、
同60−194467号、同61−32861号、同61−49895
号、同61−67869号、同61−149399号等に記載さ
れる様な平版印刷版に対しても用いる事ができ
る。これらの平版印刷版用に用いた場合には、カ
ルカリ溶出液に対してレジスト性を有さねばなら
ない。本発明によつて得られた液体現像剤の場合
は、ベンジルアルコール等の浸透剤を用いない無
機アルカリ溶出液で溶出する場合に特に良好な印
刷版を与える。 合成例1(本発明のエマルシヨンの合成) 既知の溶液重合法でn−ヘキシルメタアクリレ
ート−アクリルアミド共重合体(本発明の例示シ
エルポリマー(イ))の40%キシレン溶液を得た。 この溶液30gを1のヘキサン中に加えると、
共重合体の沈澱物がスラリー状として得られた。 ヘキサンで数回洗浄デカンテーシヨンしたスラ
リーを、N2ガス導入管、温度計、攪拌機、冷却
管を備えた1の4ツ口フラスコ中に加え、
450gのIPソルベント(出光石油化学社製)を加
えた。 この段階では、良く攪拌しても該共重合体は
IPソルベントに全く溶解せずに沈澱したままで
ある。 次に130gの酢酸ビニル(モノマーAに相当)、
25gのラウリルメタアクリレート(モノマーBに
相当)を加えて良く攪拌すると均一な透明溶液と
なつた。80℃でN2ガス置換した後に、重合開始
剤としてアゾビスイソブチロニトリル(AIBN)
を1g加えると重合が開始し、約40分後に白濁し
始め内温は110℃まで上昇した。内温が80℃に低
下してからも更に2時間加熱を加えた。残存して
いる酢酸ビニルモノマーを除去する為に内部を減
圧にし留去させ、約3gの留出物を得た。得られ
た白色のエマルシヨンには全く沈澱物はなく、又
モノマー臭もほとんど感じられなかつた。電子顕
微鏡で粒径を測定したところ、0.22μの粒径で粒
度分布はほとんどなかつた。 合成例 2〜8 合成例1と同様な方法によつて、以下の表に示
される組成でエマルシヨンを合成した。シエルポ
リマーは略称Sで表わし、量は固形分で示した。
モノマーA、モノマーBは、各々、A、B、と略
して示した。なお合成例3及び6については補助
溶媒としてメチルエチルケトン20gを使用した。
(Field of Industrial Application) The present invention relates to a liquid developer for developing electrostatic latent images in electrophotography, electrostatic recording, etc., which has excellent storage stability, stability, and fixing properties, and can achieve particularly high image quality. It relates to liquid developers. (Prior Art) Many types of electrostatic latent image liquid developers are already known. For example, colorant pigments or dyes such as carbon black, cyanine blue, nigrosine, and oil dyes are mixed with resins such as rosin, alkyd resins, acrylic resins, and synthetic rubbers in a highly insulating solvent, and machined using a ball mill, attritor, homogenizer, etc. The most common method was to disperse the particles and then add metal soap, amines, higher fatty acids, etc. to stably impart an electric charge to the dispersed particles of the dispersion. However, since the liquid developer obtained by this method has a large particle size distribution of dispersed particles as a developer, it generates a lot of precipitates, has poor charge stability and manufacturing stability, and cannot produce stable images. It had the disadvantage of being difficult. As described in Japanese Patent Publication Nos. 53-54029 and 57-12985, a vinyl group that can be polymerized by a polymer reaction is introduced into a precursor polymer in advance, and monomers are polymerized in the presence of this group to form a graft. There is a method of obtaining a liquid developer by producing a polymer and coloring it with a dye. Although this method can be said to be an excellent method, there are problems in the control and reproducibility of the introduction of vinyl groups, and it is often accompanied by gel formation, and it may be difficult to form dispersed particles stably. Or, 0.1μ
The following minute particles may be generated, which is not practical. Furthermore, JP-A-59-83174, JP-A No. 59-177572, JP-A No. 59-177572,
No. 59-212850, No. 59-212851, No. 60-164757
No. 60-179751, No. 60-185962, No. 60-
No. 185963, No. 60-252367, No. 61-116364, No.
61-116365 etc., in the presence of a polymer soluble in a highly insulating medium, monomers that are soluble in the solvent but become insoluble when formed into a polymer are polymerized, and the resulting resin dispersion is made into a liquid. It is mentioned that it is used as a developer. This method has excellent industrial production stability and dispersion stability. However, when a liquid developer using a resin obtained by this method is used to form an image on an electrostatic recording material using Coulomba, electrostatic mutual repulsion due to Coulomba of the dispersed particles and the concentration of the dispersion stabilizing polymer increase. This results in a volume exclusion effect where the particles repel each other. For this reason, when the effective surface potential of the electrostatic recording material decreases, it has the disadvantage that a bleeding-like ghost is likely to occur around the image area.
In addition, if a liquid developer using a resin obtained by this method is used continuously while being actually replenished, solvent-soluble resin will accumulate, which will affect the amount of charge on the dispersed particles, depending on the type of soluble resin used. It also had the disadvantage of giving (Objective of the Invention) The object of the present invention is to provide a liquid developer which improves the conventional drawbacks listed above, and which provides a clear image with no smudge-like ghost in the peripheral area of the image and which is long-lasting. It is an object of the present invention to provide a liquid developer that exhibits little image deterioration even after continuous use. Another object of the present invention is to provide a liquid developer that provides excellent printing quality as a developer for offset lithographic printing plates using zinc oxide or organic semiconductors as photoreceptors. (Structure of the Invention) The present invention provides an electrostatic photographic liquid developer containing at least resin particles dispersed in a highly insulating hydrocarbon medium, in which the resin is formed with the following monomer in the presence of the following polymer S. This is a liquid developer for electrostatic photography, characterized in that it is a resin obtained by polymerizing monomer A and monomer B. Polymer S: A polymer that is insoluble in the medium and has an amide group. Monomer A: A monomer that is soluble in the medium and becomes insolubilized by polymerization. Monomer B: A monomer that is soluble in the medium and forms a soluble polymer upon polymerization. The highly insulating hydrocarbon medium used in the present invention includes normal paraffinic hydrocarbons, isoparaffinic hydrocarbons, alicyclic hydrocarbons, halogenated aliphatic hydrocarbons, etc. Preferred isoparaffinic hydrocarbon solvents such as Ciel Sol 71 (Ciel Sekiyu Co., Ltd.), Isopar O, Isopar H, Isopar K, Isopar L, Isopar G (Isobar is a trade name of Exxon) and IP Solvent (Idemitsu Petrochemical Co., Ltd.) made)
etc. can be used. The structure of the resin used in the liquid developer of the present invention and the formation mechanism of the resin dispersion (hereinafter referred to as emulsion) will be explained. The polymer S that is insoluble in the solvent and has an amide group used in the present invention will be referred to as a shell polymer. Further, a polymer of monomer A that is soluble in the solvent and becomes insolubilized when polymerized is referred to as P 1 polymer,
A polymer of monomer B that is soluble in the solvent and soluble even when a polymer is formed is referred to as a P 2 polymer. The most common aspects of the emulsion used in the present invention before the start of polymerization include the solvent, shell polymer, monomer A, and monomer B. (In order to control the physical properties such as Tm and Tg of the obtained emulsion particles, two or more of these materials may be used depending on the case.) In addition, the monomers used may be divided to control the heat generation during polymerization. It may be added after. The formation mechanism of emulsion particles can be roughly divided into two types. The first case is that the state before the start of polymerization is a homogeneous system. In this case, the fact that the shell polymer becomes a homogeneous system even though it is originally insoluble in the solvent is because it dissolves in monomer A or monomer B. By heating this system and adding a polymerization initiator, radicals are generated and polymerization starts. The P 1 polymer component produced from monomer A is insoluble in the solvent, but the P 2 polymer component soluble in the solvent is used as a protective colloid to form particles and become cloudy to produce an emulsion. The particle size can be changed relatively freely depending on the amount of P 2 polymer component, that is, the amount of monomer B charged. The charged monomer A/monomer B ratio naturally depends on the solubility and cohesiveness of the resulting polymer in the solvent, but a relatively stable emulsion can be obtained at a polymerization ratio of 98/2 to 20/80; 5~
Approximately 50/50 is suitable. Furthermore, since the particle size most depends on the solubility parameters of the solvent and the polymer to be produced, the particle size can be controlled by selecting these factors. As the polymerization progresses, the shell polymer cannot be uniformly dissolved in the system because the monomer to be solubilized is consumed as a polymer. Therefore, it becomes insolubilized, but actually it is deposited on the surface of the emulsion particles formed by the P 1 polymer. The sedimentation stability and particle size of the emulsion also depend on the type and amount of shell polymer, and if there is too much shell polymer, precipitation is likely to occur. However, in this case, if the amount of monomer B is increased, the dispersion stability will be improved. As mentioned above, the amount of shell polymer depends on the type and amount of monomer A and monomer B, and the type of shell polymer, but it is preferably 1% to 50% (weight ratio) of monomer A, preferably 3 to 25%. be. Therefore, the formed emulsion particles have a core layer consisting mainly of P 1 polymer inside, a shell layer consisting of a shell polymer deposited on the outside, and an outermost layer consisting mainly of P which stabilizes the particles in the solvent. 2
It is thought that a three-layer structure of dispersed layers made of polymer is formed. Of course, as can be seen from the particle formation mechanism, there are no clear interfaces between the layers, and it is presumed that each component is more localized in a three-layered state. The second formation mechanism of emulsion particles is a case where the state before the start of polymerization is heterogeneous. In this case, the polymerization may be started as is, but it is preferable to add an auxiliary solvent having a relatively low boiling point to make the system homogeneous. When polymerization is initiated in the same way as in the first formation mechanism, a cloudy emulsion mainly consisting of the P 1 polymer component is produced using the P 2 polymer component as a protective colloid. If the co-solvent is distilled off after the polymerization is completed, the shell polymer will be deposited on the surface of the emulsion particles. If too much co-solvent is required, a uniform emulsion may not be produced. Examples of the auxiliary solvent include tetrahydrofuran, ethyl alcohol, isopropyl alcohol, methyl ethyl ketone, and ethyl acetate. The shell polymer used in the present invention has an amide group, is insoluble in highly insulating hydrocarbon media, and must have the property of being soluble in monomers that become insolubilized in the solvent when polymerized, so it depends on the monomers used. Of course things will change. Moreover, the most desirable final emulsion embodiment is that the shell polymer is localized on the surface of the resulting emulsion particles.
Another way to look at it is to modify the particle surface with a polymer having an amide group. A polymer exhibiting such properties can be obtained, for example, from a copolymer of monomers represented by the general formula [] and, for example, the general formula []. General formula [] CHZ 1 = CZ 2 −CONR 1 R 2 (Z 1 and Z 2 represent H or an alkyl group, R 1 R 2
represents an aliphatic group which may have a substituent. ) General formula [] (R 1 and R 2 are H, alkyl group, -COOR 4 , CH 2
COOR 5 is represented, and R 3 , R 4 and R 5 represent an aliphatic group which may have a substituent. ) Examples of the monomer represented by the general formula [] include acrylamide, methacrylamide, N-isopropylacrylamide, N-tert-butylacrylamide, N,N-dimethylacrylamide, and the like. Furthermore, examples of monomers having an amide group include acrylpiperidine, acrylmorpholine, acrylpyrrolidine, phenylmethacrylamide, N-anisylmethacrylamide, N-
tolylmethacrylamide, N-chlorophenylacrylamide, N-nitrophenylmethacrylamide, N-methacryl-α-aminoketone,
Examples include N-methylolmethacrylamide and its esters, N-β-cyanoethylmethacrylamide, diacetone acrylamide, and the like. Furthermore, monomers with amide groups are described in "Synthetic Polymers" (published by Asakura Shoten) and "Polymer Data Handbook".
(Published by Baifukan) etc. Since it is important for the shell polymer to have an amide group, the monomers that can be used are not limited to the general formula []. The monomers represented by the general formula [] are acrylic acid, methacrylic acid, crotonic acid, maleic acid,
It is an esterified product of unsaturated carboxylic acids such as itaconic acid, and esters of aliphatic groups include methyl, ethyl, propyl, butyl, amyl, hexyl, ethylhexyl, dodecyl, tridecyl, hexadecyl, docosanyl, hexadecenyl, oleyl, etc. can be mentioned. These are halogen atoms,
It may be substituted with an amino group, an alkoxy group, etc., or may be bonded with atoms such as nitrogen, oxygen, sulfur, etc. In addition, in order to adjust the physical properties of the shell polymer, a third
A copolymerizable monomer may be copolymerized as a component. Furthermore, a plurality of polymers may be used as the shell polymer. Shell polymers can be obtained by known polymerization methods, but in order to synthesize emulsions using shell polymers as raw materials, they can be obtained by solution polymerization in a solvent that is the same as or mixes well with the solvent used for emulsion synthesis. is most preferred. Furthermore, it is not very desirable that the shell polymer has the property of being dissolved in the solvent at high temperatures. This is because the properties of the liquid developer depend on temperature, and particularly when the temperature rises, there is a risk that the shell polymer will be desorbed from the particles and change the physical properties of the toner particles. Examples of shell polymer copolymers used in the present invention will be listed below, but of course the present invention is not limited thereto. ( )
The figures in the figure are weight ratios. (a) n-hexyl methacrylate-acrylamide (94/6) (b) stearyl methacrylate-methacrylamide (95/5) (c) stearyl methacrylate-N,N-dimethylacrylamide (90/10) (d) lauryl methacrylate-phenylacrylamide (95/5) (e) n-hexyl acrylate-diacetone acrylamide (92/8) (f) stearyl methacrylate-N-isopropylacrylamide (85/15) Examples of the monomer A that provides a polymer that is soluble in a solvent and becomes insolubilized upon polymerization include vinyl esters and allyl esters such as acetic acid, propionic acid, and butyric acid. Alkyl esters such as itaconic acid, maleic acid, and crotonic acid (however, long-chain alkyl polymers are solubilized, so up to 4 carbon atoms), and even those with substituents such as acrylic acid and methacrylic acid. Good lower alkyl esters and amides. Examples include styrene derivatives such as styrene, methylstyrene and vinyltoluene, and those having a heterocycle such as N-vinylpyrrolidone and N-vinyloxazolidone. In order to adjust the physical properties of the obtained emulsion particles, a copolymerizable secondary monomer such as a basic monomer or a monomer having an ether bond is added.
The components may be copolymerized. Monomer B, which is used in the present invention and provides a polymer that is soluble in the solvent and is soluble upon polymerization, is represented by, for example, the following general formula []. General formula [] In the general formula [], R represents an aliphatic group having 8 or more carbon atoms, B represents an ester group or an amide group, Q 1 , Q 2
is a hydrogen atom, an alkyl group, -COOR', -CH 2
COOR''. R' and R'' represent an aliphatic group. Examples of monomer B include esters and amides of acrylic acid, methacrylic acid, crotonic acid, maleic acid, and itaconic acid; for example, in the case of aliphatic groups, decyl, dodecyl, tridecyl, hexadecyl, docosanyl, hexadecenyl, oleyl, etc. can be mentioned. These may be substituted with a halogen atom, an amino group, an alkoxy group, a hydroxy group, etc., or may be bonded with atoms such as nitrogen, oxygen, sulfur, etc. It is preferable that the monomers A and B dissolve the shell polymer, but it is not necessary that each monomer dissolve the shell polymer.
There is no problem if the mixture is substantially homogeneous. If the solubility is poor and a heterogeneous system is formed, an auxiliary solvent with a relatively low boiling point may be used and distilled off after the polymerization is completed. In order to use the emulsion obtained in the present invention as a liquid developer for electrostatic photography, the dispersed resin particles may be colored and charged. As the colorant for the dispersed particles, any colorant generally known as a colorant for liquid developers can be used. For example, oil-soluble dyes such as oil black and oil red, Bismarck brown,
Basic azo dyes such as chrysoidine, wool black, amido black green, blue black
Acidic azo dyes such as HF, direct dyes such as Congo Red, anthraquinone dyes such as Sudan Violet and Acid Blue, carbonium dyes such as auramine, malachite green, crystal violet, and Victoria blue, rhodamine dyes such as Rhodamine B, safranin, and nigrosine. ,
Examples include dyes such as quinone imine dyes such as methylene blue. As pigments, carbon black,
Examples include phthalocyanine blue, phthalocyanine green, washing red, and benzidine yellow. Also, surface-treated pigments such as carbon black dyed with nigrosine, grafted carbon, silicon oxide fine powder dyed with rhodamine H, microlith blue, etc. can be used. The simplest method for coloring the dispersed particles is to previously dissolve the colorant to be used in a solvent, and then dropwise dropwise stir the colorant solution into the emulsion. In particular, coloring can be achieved well by dissolving the oil dye in an aromatic solvent such as toluene or xylene and adding it dropwise with stirring. Since the used solvent is mixed with the toner solvent, there is no need to remove it unless there is an adverse effect on quality. Further, the solvent may be removed later by using a solvent system as disclosed in JP-A-57-48738. As another method of coloring, the emulsion and coloring agent may be added to a dispersing machine such as a colloid mill, a ball mill, or a vibration mill and subjected to mechanical vibration. For the liquid developer of the present invention, by selecting a charge control agent, a colorant, etc., it is possible to freely produce a toner having a positive charge or a toner having a negative charge. Examples of the charge control agent used in the liquid developer of the present invention include copper oleate, cobalt naphthenate, zinc naphthenate, manganese naphthenate, cobalt octylate, lecithin, sodium dioctyl sulfosuccinate, aluminum salt of steverite resin, etc. can be mentioned. Also, Japanese Patent Publications No. 49-26594, No. 49-26595, No. 173558-1983, No. 60-175060, No. 60-
Charge control agents mentioned in Japanese Patent Application No. 179750, No. 60-182447, No. 60-218662, Japanese Patent Application No. 78062/1980, etc. can also be used. The liquid developer obtained by the present invention is
No. 17162, No. 38-6961, No. 41-2426, No. 46-
39405, Japanese Patent Publication No. 50-19509, Japanese Patent Publication No. 50-19510,
No. 54-145538, No. 54-89801, No. 54-134632
No. 54-19803, No. 55-105244, No. 57-
No. 161863, No. 58-76843, No. 58-76844, No. 58
−122897, No. 58-118658, No. 59-170862,
No. 60-194467, No. 61-32861, No. 61-49895
It can also be used for lithographic printing plates such as those described in No. 61-67869, No. 61-149399, etc. When used in these lithographic printing plates, it must have resistivity to calcareous eluents. The liquid developer obtained according to the invention gives particularly good printing plates when eluted with an inorganic alkaline eluent without a penetrant such as benzyl alcohol. Synthesis Example 1 (Synthesis of emulsion of the present invention) A 40% xylene solution of n-hexyl methacrylate-acrylamide copolymer (exemplary shell polymer (a) of the present invention) was obtained by a known solution polymerization method. When 30g of this solution is added to 1 hexane,
A copolymer precipitate was obtained in the form of a slurry. The slurry, which had been washed and decanted several times with hexane, was added to a four-necked flask equipped with a N2 gas inlet tube, a thermometer, a stirrer, and a cooling tube.
450 g of IP solvent (manufactured by Idemitsu Petrochemical Co., Ltd.) was added. At this stage, even if well stirred, the copolymer
It remains precipitated without being dissolved in the IP solvent at all. Next, 130g of vinyl acetate (corresponding to monomer A),
After adding 25 g of lauryl methacrylate (corresponding to monomer B) and stirring well, a homogeneous and transparent solution was obtained. After purging with N2 gas at 80℃, azobisisobutyronitrile (AIBN) was added as a polymerization initiator.
Polymerization started when 1 g of was added, and after about 40 minutes, the mixture began to become cloudy and the internal temperature rose to 110°C. Heating was continued for an additional 2 hours even after the internal temperature had dropped to 80°C. In order to remove the remaining vinyl acetate monomer, the internal pressure was reduced and distillation was performed to obtain about 3 g of distillate. The white emulsion thus obtained had no precipitates at all, and almost no monomer odor was detected. When the particle size was measured using an electron microscope, the particle size was 0.22μ, with almost no particle size distribution. Synthesis Examples 2 to 8 Emulsions were synthesized using the same method as in Synthesis Example 1 with the compositions shown in the table below. Shell polymers are designated by the abbreviation S and amounts are expressed in terms of solids content.
Monomer A and monomer B are abbreviated as A and B, respectively. In addition, for Synthesis Examples 3 and 6, 20 g of methyl ethyl ketone was used as an auxiliary solvent.

【表】 本合成剤で得られたエマルシヨンは沈澱物がほ
とんどなくかつ数カ月自然保存しても沈澱物は増
加せず安定なものであつた。エマルシヨンの粒径
は電子顕微鏡撮影から測定した結果エマルシヨン
の種類によつて差はあるが0.15〜0.3μ程度であつ
た。しかし各々のエマルシヨンはほとんど単分散
の粒度分布を示し、かつ粗大粒子や微小粒子がみ
られず、極めて良く粒径が揃つていた。なお室温
で粒子が融着して観察できないものはレプリカ法
で測定した。 比較合成例 1(比較エマルシヨンの合成) 既知の溶液重合法でステアリルメタアクリレー
ト−メタアクリル酸共重合体(重量比98/2)の
40%ヘキサン溶液を得た。このポリマー溶液70g
を450gのIPソルベントとともに実施例1と同様
に4ツ口フラスコに加えると均一な透明溶液とな
つた。(本ポリマーはシエルポリマーではなく、
従来技術に用いられていた可溶性ポリマーに相当
する) 以下、合成例1と全く同様にモノマーを加えて
重合を行なつたところ内温は105℃まで上昇した。
残存モノマーを留去後の白色エマルシヨンには全
く沈澱物もなく、モノマー臭もほとんどなかつ
た。粒径は0.2μで粒度分布はなかつた。 実施例 1(正帯電性液体現像剤の製造例) 合成例1で得られた250gのエマルシヨン中に、
40gのキシレンに溶解した5gのオイルブラツク
HBB(オリエント化学社製)の超音波をかけなが
ら滴下しエマルシヨン粒子を着色した。 次いで電荷制御剤として1%のステベライトレ
ジンのアルミニウム塩のキシレン溶液8gを加え、
コンク(濃縮)トナーを得た。 このコンクトナーをアイソパーGでトータルを
10lに希釈し正帯電性の液体現像剤(P−1トナ
ー)を得た。 実施例 2(負帯電性液体現像剤の製造例) エマルシヨン粒子の着色までは実施例1と全く
同様に行ない、負帯電性の電荷制御剤としてジオ
クチルスルホサクシネートのナトリウム塩を0.3g
を加え、コンクトナーを得た。 得られたコンクトナーをアイソパーGでトータ
ルを10lに希釈し、負帯電性の液体現像剤(N−
1トナー)を得た。 実施例 3 合成例2〜8で得られたエマルシヨンを正帯電
性現像剤とする為に実施例1と同様な方法で製造
したところ、粒子帯電能は各々多少異なるものの
良好な正帯電性液体現像剤が得られた。(P−2
〜P−8トナー)。 実施例 4 合成例2〜8で得られたエマルシヨンを負帯電
性現像剤とする為に実施例2と同様な方法で製造
したところ、粒子帯電能は各々多少異なるものの
良好な負帯電性液体現像剤が得られた(N−2〜
N−8トナー)。 比較例 1(比較用液体現像剤の製造) 比較合成例1で合成したエマルシヨンを用い
て、正帯電性用として実施例1と全く同様な方法
で、負帯電性用として実施例2と全く同様な方法
で液体現像剤を得た(比較P−1トナー、比較N
−1トナー)。 実施例 5 実施例1で得られたP−1トナー及び実施例3
で得られたP−2〜P−8トナーを液体現像剤と
し、EP−12(三菱製紙(株)製ダイレクト製版機)を
用いて、電子写真ダイレクト印刷版LOM−B
を製版したところいずれもエツヂのしつかりした
画像が得られ、本刷版を用いた印刷物も美しい仕
上りであつた。比較として比較例1で得られた比
較トナーP−1の場合画像部の周囲に、にじみ状
のゴーストが発生した。また画像も崩れ気味であ
つた。本刷版を使用した印刷物は生じた画像故障
のパターンが印刷物に現われてしまい不可であつ
た。 実施例 6 親水化処理が施されたアルミニウム版に、酸価
の高いアクリル樹脂中に分散したε−型銅フタロ
シアニン顔料を塗布乾燥し印刷用原版とした(バ
インダー/顔料比=75/25)。該原版を暗所でコ
ロナ帯電にて正帯電させた後に画像露光を行なつ
た。 実施例4で得られたN−2トナーで現像した後
に熱定着した。冷却後にDP−4(富士写真フイル
ム(株)PS版現像液)を水で10倍に希釈した液の中
に10秒間浸漬した後に水洗した。トナー画像部だ
けが美しい画像として残り、非画像部は完全に溶
出された印刷版が出来た。 一方比較例1で得られた比較N−1トナーで、
現像した場合には画像部の周囲に、にじみ状のゴ
ーストが発生し、DP−4で非画像部を溶出した
後もそのパターンは残つてしまつた。また、N−
3〜N−8トナーで実施した場合も良好な印刷版
がえられ、印刷物もシヤープが画像であつたが、
比較N−1トナーだけは画像部周辺のゴーストの
為に美しい仕上りとはならなかつた。 更にN−2トナー及び比較N−1トナーの各1l
を用いてB−4版の原版で連続処理を行なうと20
版目で比較N−1トナーの場合ゴーストの発生が
激しく使用不可となつてしまつたが、N−2トナ
ーは100版処理しても全く異常はなかつた。 以上の実施例より本発明のエマルシヨンを用い
た液体現像剤を用いた場合、良好は刷版及び美し
い仕上りの印刷物が得られる事が判る。
[Table] The emulsion obtained with this synthetic agent contained almost no precipitates and remained stable without increasing the amount of precipitates even after being stored naturally for several months. The particle size of the emulsion was measured by electron microscopy and was about 0.15 to 0.3 μm, although it varied depending on the type of emulsion. However, each emulsion exhibited an almost monodisperse particle size distribution, with no coarse particles or fine particles observed, and the particle sizes were extremely uniform. In addition, particles that could not be observed due to fusion at room temperature were measured using the replica method. Comparative Synthesis Example 1 (Synthesis of Comparative Emulsion) Stearyl methacrylate-methacrylic acid copolymer (weight ratio 98/2) was prepared by a known solution polymerization method.
A 40% hexane solution was obtained. 70g of this polymer solution
was added to a four-necked flask together with 450 g of IP solvent in the same manner as in Example 1, resulting in a homogeneous and transparent solution. (This polymer is not a shell polymer,
(corresponding to the soluble polymer used in the prior art) Thereafter, monomers were added and polymerization was carried out in exactly the same manner as in Synthesis Example 1, and the internal temperature rose to 105°C.
After distilling off the residual monomer, the white emulsion had no precipitate at all and almost no monomer odor. The particle size was 0.2μ and there was no particle size distribution. Example 1 (Production example of positively charged liquid developer) In 250 g of the emulsion obtained in Synthesis Example 1,
5g oil black dissolved in 40g xylene
HBB (manufactured by Orient Chemical Co., Ltd.) was added dropwise while applying ultrasound to color the emulsion particles. Next, 8 g of a xylene solution of 1% aluminum salt of steverite resin was added as a charge control agent.
A concentrated toner was obtained. Total this conctner with Isopar G
The solution was diluted to 10 liters to obtain a positively chargeable liquid developer (P-1 toner). Example 2 (Manufacturing example of a negatively chargeable liquid developer) The coloring of emulsion particles was carried out in exactly the same manner as in Example 1, and 0.3 g of sodium salt of dioctyl sulfosuccinate was added as a negatively chargeable charge control agent.
was added to obtain conctner. The obtained compactor was diluted with Isopar G to a total of 10 liters, and a negatively charged liquid developer (N-
1 toner) was obtained. Example 3 The emulsions obtained in Synthesis Examples 2 to 8 were produced in the same manner as in Example 1 in order to make positively chargeable developers, and although the particle charging ability was slightly different, a good positively chargeable liquid developer was obtained. A drug was obtained. (P-2
~P-8 toner). Example 4 The emulsions obtained in Synthesis Examples 2 to 8 were produced in the same manner as in Example 2 to produce negatively chargeable developers, and although the particle charging ability was slightly different, a good negatively chargeable liquid developer was obtained. The agent was obtained (N-2~
N-8 toner). Comparative Example 1 (Manufacture of Comparative Liquid Developer) Using the emulsion synthesized in Comparative Synthesis Example 1, the emulsion was prepared in exactly the same manner as in Example 1 for positive chargeability, and in the same manner as in Example 2 for negative chargeability. A liquid developer was obtained using a method (Comparative P-1 toner, Comparative N toner).
-1 toner). Example 5 P-1 toner obtained in Example 1 and Example 3
Using the P-2 to P-8 toners obtained in the above as a liquid developer, an electrophotographic direct printing plate LOM-B was prepared using an EP-12 (direct plate making machine manufactured by Mitsubishi Paper Industries, Ltd.).
When the plates were made, images with solid edges were obtained in all cases, and the prints made using the actual printing plates also had a beautiful finish. For comparison, in the case of comparative toner P-1 obtained in Comparative Example 1, a smudge-like ghost was generated around the image area. Also, the image seemed to be distorted. Printed matter using this printing plate was not acceptable because the pattern of the resulting image failure appeared on the printed matter. Example 6 An ε-type copper phthalocyanine pigment dispersed in an acrylic resin having a high acid value was coated and dried on an aluminum plate that had been subjected to a hydrophilic treatment to obtain a printing original plate (binder/pigment ratio = 75/25). The original plate was positively charged by corona charging in a dark place, and then imagewise exposed. After development with the N-2 toner obtained in Example 4, heat fixing was performed. After cooling, the sample was immersed for 10 seconds in a solution prepared by diluting DP-4 (Fuji Photo Film Co., Ltd. PS plate developer) 10 times with water, and then washed with water. A printing plate was created in which only the toner image area remained as a beautiful image, and the non-image area was completely eluted. On the other hand, with Comparative N-1 toner obtained in Comparative Example 1,
When developed, a smudge-like ghost appeared around the image area, and the pattern remained even after the non-image area was eluted with DP-4. Also, N-
Good printing plates were also obtained when using 3 to N-8 toners, and the printed images had sharpness, but
Only Comparison N-1 toner did not provide a beautiful finish due to ghosts around the image area. Additionally, 1 liter each of N-2 toner and comparative N-1 toner
When continuous processing is performed on the original B-4 version using
In the case of the comparison N-1 toner, ghosting occurred so much that it became unusable, but the N-2 toner showed no abnormalities even after processing 100 plates. From the above examples, it can be seen that when a liquid developer using the emulsion of the present invention is used, a good printing plate and a printed matter with a beautiful finish can be obtained.

Claims (1)

【特許請求の範囲】 1 高絶縁性炭化水素媒体中に、少なくとも分散
した樹脂粒子を含む静電写真用液体現像剤におい
て、該樹脂が、下記の重合体Sの存在下で、下記
のモノマーA及びモノマーBを重合して得られる
樹脂であり、かつモノマーA/モノマーBの比が
重量比で98/2〜20/80及び重合体Sがモノマー
Aの1〜50重量%であることを特徴とする静電写
真用液体現像剤。 重合体S:下記一般式〔〕及び下記一般式
〔〕で示されるモノマーを共重合して得
られる上記媒体に不溶の重合体。 一般式〔〕 CHZ1=CZ2−CONR1R2(Z1、Z2はH又はアル
キル基を表わし、R1、R2は置換基を有しても良
い脂肪族基を表わす。) 一般式〔〕 (R1とR2はH、アルキル基、−COOR4、−CH2
COOR5を表わし、R3、R4、R5は置換基を有して
も良い脂肪族基を表わす。) モノマーA: 酢酸、プロピオン酸又は酪酸のビニルエステル
類、酢酸、プロピオン酸又は酪酸のアリルエステ
ル類、イタコン酸、マレイン酸又はクロトン酸の
炭素数4以下のアルキルエステル類、アクリル酸
又はメタアクリル酸の(置換基を有していてもよ
い)低級アルキルエステル類、アクリル酸又はメ
タアクリル酸の(置換基を有していてもよい)ア
ミド類、スチレン誘導体及び複素環類から選ばれ
る上記媒体に可溶で重合により不溶化するモノマ
ー。 モノマーB: 下記一般式〔〕で示される上記媒体に可溶で
重合しても可溶な重合体を形成するモノマー。 一般式〔〕 (Rは炭素数8以上の脂肪族基を表し、Bはエ
ステル基又はアミド基、Q1、Q2は水素原子、ア
ルキル基、−COOR′、−CH2COOR″を表わす。
R′、R″は脂肪族基を表わす。)
[Scope of Claims] 1. An electrostatographic liquid developer comprising at least resin particles dispersed in a highly insulating hydrocarbon medium, in which the resin comprises the following monomer A in the presence of the following polymer S. and a resin obtained by polymerizing monomer B, and characterized in that the ratio of monomer A/monomer B is 98/2 to 20/80 by weight, and the polymer S is 1 to 50% by weight of monomer A. A liquid developer for electrostatic photography. Polymer S: A polymer insoluble in the above medium obtained by copolymerizing monomers represented by the following general formula [] and the following general formula []. General formula [] CHZ 1 = CZ 2 -CONR 1 R 2 (Z 1 and Z 2 represent H or an alkyl group, and R 1 and R 2 represent an aliphatic group that may have a substituent.) General formula〔〕 (R 1 and R 2 are H, alkyl group, -COOR 4 , -CH 2
COOR 5 is represented, and R 3 , R 4 and R 5 represent an aliphatic group which may have a substituent. ) Monomer A: Vinyl esters of acetic acid, propionic acid or butyric acid, allyl esters of acetic acid, propionic acid or butyric acid, alkyl esters of itaconic acid, maleic acid or crotonic acid having 4 or less carbon atoms, acrylic acid or methacrylic acid The above medium selected from lower alkyl esters (which may have substituents), amides (which may have substituents) of acrylic acid or methacrylic acid, styrene derivatives, and heterocycles. A monomer that is soluble and becomes insolubilized by polymerization. Monomer B: A monomer represented by the following general formula [] that forms a polymer that is soluble in the above medium and is soluble even when polymerized. General formula [] (R represents an aliphatic group having 8 or more carbon atoms, B represents an ester group or an amide group, Q 1 and Q 2 represent a hydrogen atom, an alkyl group, -COOR', -CH 2 COOR'').
R′ and R″ represent aliphatic groups.)
JP62011743A 1986-03-31 1987-01-20 Liquid developer for electrostatic photography Granted JPS63179368A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62011743A JPS63179368A (en) 1987-01-20 1987-01-20 Liquid developer for electrostatic photography
US07/033,002 US4873166A (en) 1986-03-31 1987-03-31 Liquid developer for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62011743A JPS63179368A (en) 1987-01-20 1987-01-20 Liquid developer for electrostatic photography

Publications (2)

Publication Number Publication Date
JPS63179368A JPS63179368A (en) 1988-07-23
JPH0431589B2 true JPH0431589B2 (en) 1992-05-26

Family

ID=11786502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62011743A Granted JPS63179368A (en) 1986-03-31 1987-01-20 Liquid developer for electrostatic photography

Country Status (1)

Country Link
JP (1) JPS63179368A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4118434C2 (en) * 1990-06-06 1996-01-04 Mitsubishi Paper Mills Ltd A method of electrophotographic reversible wet development
JP6484938B2 (en) * 2014-07-03 2019-03-20 コニカミノルタ株式会社 Liquid developer and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164757A (en) * 1984-02-07 1985-08-27 Fuji Photo Film Co Ltd Liquid developer for electrophotography
JPS60179751A (en) * 1984-02-28 1985-09-13 Fuji Photo Film Co Ltd Liquid developer for electrostatic photography

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164757A (en) * 1984-02-07 1985-08-27 Fuji Photo Film Co Ltd Liquid developer for electrophotography
JPS60179751A (en) * 1984-02-28 1985-09-13 Fuji Photo Film Co Ltd Liquid developer for electrostatic photography

Also Published As

Publication number Publication date
JPS63179368A (en) 1988-07-23

Similar Documents

Publication Publication Date Title
US4241159A (en) Electrophotographic liquid developer comprising acrylic or methacrylic acid ester of hydrogenated abietyl alcohol polymer
JPH08505710A (en) Liquid developer for electrostatic photography
JPS6359141B2 (en)
US4873166A (en) Liquid developer for electrophotography
US3743503A (en) Electro-photographic process using a liquid developer containing a polymeric dye
JPH0431589B2 (en)
JP2640288B2 (en) Non-aqueous dispersant and liquid developer for electrostatography
JPH0431587B2 (en)
JPH0431586B2 (en)
JPS6015063B2 (en) Mixed liquid toner for electrophotography
JPH06157618A (en) Production of nonaqueous resin dispersion, and liquid developer for electrostatic photography
JPH073606B2 (en) Electrophotographic liquid developer
JPH0434151B2 (en)
US4965163A (en) Liquid developer for electrostatic image
JP2684378B2 (en) Liquid developer for electrostatic image
JPH09160389A (en) Electrophotographic wet developing method
JPS616662A (en) Electrostatic photographic liquid developer
JP2614070B2 (en) Lithographic printing plate
JP2855022B2 (en) Liquid developer for electrostatography and method for producing printing plate using the same
JPH0431588B2 (en)
JP3088530B2 (en) Electrophotographic toner
JPS60252367A (en) Production of liquid developer for electrophotography
JPS62231265A (en) Liquid developer for electrostatic photography
JPH0545937A (en) Liquid developer for electrostatic photography
JPH08262809A (en) Wet cyan developer for transfer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term