JPH0431587B2 - - Google Patents

Info

Publication number
JPH0431587B2
JPH0431587B2 JP61074507A JP7450786A JPH0431587B2 JP H0431587 B2 JPH0431587 B2 JP H0431587B2 JP 61074507 A JP61074507 A JP 61074507A JP 7450786 A JP7450786 A JP 7450786A JP H0431587 B2 JPH0431587 B2 JP H0431587B2
Authority
JP
Japan
Prior art keywords
monomer
acid
polymer
general formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61074507A
Other languages
Japanese (ja)
Other versions
JPS62231267A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61074507A priority Critical patent/JPS62231267A/en
Priority to US07/033,002 priority patent/US4873166A/en
Publication of JPS62231267A publication Critical patent/JPS62231267A/en
Publication of JPH0431587B2 publication Critical patent/JPH0431587B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/13Developers with toner particles in liquid developer mixtures characterised by polymer components

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Developers In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は電子写真や静電記録等の静電潜像現像
用の液体現像剤に関するものであり、保存性、安
定性、定着性に優れ特に高画質を達成し得る液体
現像剤に関するものである。 (従来技術) 静電潜像体現像剤としては既に数多くのものが
知られている。例えばカーボンブラツクやシアニ
ンブルー、ニグロシン、オイル染料等の着色剤顔
料または染料を高絶縁性媒体中にロジン、アルキ
ツド樹脂、アクリル樹脂、合成ゴム等の樹脂と共
に、ボールミル、アトライター、ホモジナイザー
等で機械的に分散し、更に金属セツケンやアミ
ン、高級脂肪酸等を加えて該分散物の分散粒子に
電荷を安定に付与させる方法が最も一般的であつ
た。しかしながら、該方法で得られた液体現像剤
は現像剤としての分散粒子の粒径分布が大きい為
に、沈殿物が多く発生したり、荷電安定性や製造
安定性に劣り、安定した画像を得にくいという欠
点を有していた。 特公昭53−54029号、同57−12985号などに述べ
られている様に前駆体ポリマーに高分子反応によ
り重合可能なビニル基をあらかじめ導入してお
き、これの存在下にモノマーを重合せしめグラフ
ト共重合体を生成させ、これを染料で着色する事
により液体現像剤を得る方法がある。該方法は優
れた方法といえるが、ビニル基の導入のコントロ
ール及び再現性に問題があり、しばしばゲルの生
成を伴なつたり、分散粒子が安定に形成し難い場
合があり、1μ以上の粗大粒子や0.1μ以下の微小な
粒子が生成する事があり実用上好ましくない。 更に特開昭59−83174号、同59−177572号、同
59−212850号、同59−212851号、同60−164757
号、同60−179751号、同60−185962号、同60−
185963号等には、高絶縁性媒体に可溶な重合体存
在下で該溶媒に可溶であるが重合体を形成すると
不溶となるモノマーを重合し、得られた樹脂分散
物を液体現像剤として用いる事が述べられてい
る。該方法は工業的製造安定性、分散安定性等に
優れたものである。しかしながら該方法で得られ
る樹脂を用いた液体現像剤を静電記録材上にクロ
ーン力で画像形成させた場合、分散粒子自身の持
つクローン力による静電的相互反撥や分散安定化
ポリマーの濃度が上昇して反撥し合う体積排除効
果などが生ずる。この為に静電記録材の有効な表
面電位が低下してくると画像周辺ににじみ状のゴ
ーストが発生し易いという欠点を有していた。ま
た該方法で得られる樹脂を用いた液体現像剤を実
際に補充しながら連続使用すると溶媒可溶性の樹
脂が蓄積し、用いた可溶性樹脂の種類にもよる
が、分散粒子の荷電量に影響を与えるという欠点
も有していた。 (発明の目的) 本発明の目的は前記に挙げた従来の欠点を改良
した液体現像剤を提供するものであり、特に画像
周辺分散粒子ににじみ状のゴーストがない鮮明な
画像を与え、かつ長期に亘る連続使用にも画像劣
化の少ない液体現像剤を提供する事である。 本発明の他の目的は感光体として酸化亜鉛や有
機半導体を用いたオフセツト平版印刷版の現像剤
として優れた印刷品質を与える液体現像剤を提供
する事である。 (発明の構成) 本発明は高絶縁性炭化水素媒体中に、少なくと
も分散した樹脂粒子を含む静電写真用液体現像剤
において、該樹脂が、下記の重合体Sの存在下で
下記モノマーA及びモノマーBを重合して得られ
る樹脂であることを特徴とする静電写真用液体現
像剤。 重合体S:該媒体に不溶であり、かつカルボキ
シル基を有する重合体。 モノマーA:該媒体には可溶で重合により不溶
化するモノマー。 モノマーB:該媒体に可溶で重合しても可溶な
重合体を形成するモノマー。 本発明に用いる高絶縁性炭化水素媒体とはノル
マルパラフイン系炭化水素、イソパラフイン系炭
化水素、脂環族炭化水素、ハロゲン化脂肪族炭化
水素等が挙げれるが、安全性、揮発性等の面から
実用上好ましくはイソパラフイン系炭化水素溶媒
であるシエルゾル71(シエル石油製)、アイソ
パーO、アイソパーH、アイソパーK,アイソパ
ーL、アイソパーG、(アイソパーはエクソン社
の商品名)やアイピーソルベント(出光石油化学
製)等が使用出来る。 本発明の液体現像剤に用いる樹脂の構成及び樹
脂分散物(以下エマルジヨンとよぶ)の形成機構
について説明する。本発明に用いる前記溶媒に不
溶でカルボキル基を有する重合体Sをシエルポリ
マーとよぶ事にする。又該溶媒に可溶で重合する
と不溶化するモノマーAの重合体をP1ポリマー
とし、該溶媒に可溶で重合体を形成しても可溶な
モノマーBの重合体をP2ポリマーとする。本発
明に用いるエマルジヨンの重合開始前の最も一般
的な態様は、前記溶媒、シエルポリマー、モノマ
ーA及びモノマーBである。(得られたエマルジ
ヨン粒子のTm、Tg等の物性をコントロールを
する為にいづれの材料も場合によつて2種以上用
いても良い)また重合時の発熱をコントロールす
る為に用いるモノマーを分割して後添加しても良
い。 エマルジヨン粒子の形成機構は大別して2通り
ある。その第1は前記重合開始前の状態が均一系
のケースである。この場合本来のシエルポリマー
は該溶媒に不溶であるにもかかわらず、均一系と
なる事実は、モノマーA又はモノマーBに溶解し
てしまう為である。 本系を加熱して、重合開始剤を添加する事によ
つてラジカルが発生し重合がスタートする。モノ
マーAから生成するP1ポリマー成分は該溶媒に
不溶であるので、該溶媒に可溶なP2ポリマー成
分を保護コロイドとして粒子を形成し白濁化しエ
マルジヨンを生成する。 粒子径はP2ポリマー成分量すなわち仕込みモ
ノマーB量によつて比較的自由に変える事ができ
る。仕込みモノマーA/モノマーB比は勿論生成
するポリマーの該溶媒に対する溶解性や凝集性に
依存するが、重量比で98/2〜20/80の範囲で比
較的な安定なエマルジヨンが得られるが95/5〜
50/50程度が好適である。 重合が進行するとシエルポリマーは可溶化され
るべきモノマーがポリマーとして消費されてしま
う為に系内に均一に溶解できなくなる。従つて不
溶化してくることになるが、実際にはP1ポリマ
ーが形成するエマルジヨン粒子表面に沈着してく
る。この現象は後述の実施例から明らかにされ
る。エマルジヨンの沈降安定性や粒径はシエルポ
リマーの種類、量にも依存し、シエルポリマーが
多過ぎる場合沈殿が生じ易い。但しこの場合モノ
マーBの量を増量させておけば分散安定性は改良
される。シエルポリマーの量は前述の通り、モノ
マーA、モノマーBの種類、量及びシエルポリマ
ーの種類にもよるが、モノマーAの1%〜50%
(重量比)、好ましくは3〜25%が好適である。 従つて形成されたエマルジヨン粒子は内部に主
にP1ポリマーからなるコア層、その外側に沈積
したシエルポリマーからなるシエル層、更に最外
部に粒子を該溶媒中に安定化させている主にP2
ポリマーからなる分散層の3層構造を形成してい
ると考えられる。勿論、粒子形成機構から判る様
に各層間に明確な界面などは存在せず、各成分が
3層化状態に、より局在化していると推測され
る。特にシエル層の存在は後述の例からも推測さ
れる。 エマルジヨン粒子の第2の形成機構は、前記重
合開始前の状態が不均一系のケースである。この
場合このまま重合を開始させても良いが、好まし
くは比較的低沸点の補助溶剤を添加して系内を均
一系にした方が良い。第1の形成機構と同様に重
合を開始させるとP2ポリマー成分を保護するコ
ロイドとしてP1ポリマー成分主体の白濁化した
エマルジヨンを生成する。重合終了後に補助溶剤
を留去すればシエルポリマーはエマルジヨン粒子
の表面に沈着する。補助溶剤を余りに多く必要と
する場合には均一なエマルジヨンが生成されない
事がある。補助溶媒としては、例えばテトラヒド
ロフラン、エチルアルコール、イソプロピルアル
コール、メチルエチルケトン、酢酸エチル等が挙
げられる。 本発明に用いるシエルポリマーはカルボキシル
基を有し、高絶縁性炭化水素媒体には不溶で重合
すると該溶媒に不溶化するモノマーには可溶な性
質を有さねばならないので、使用するモノマーに
よつて当然変つてくる。又、最も望ましい最終的
なエマルジヨンの態様はシエルポリマーを得られ
たエマルジヨン粒子の表面に局在化させる事であ
る。見方を変えれば粒子表面をカルボキシル基を
有するポリマーで改質する事である。 この様な性質を発揮させるポリマーは例えば一
般式〔〕及び例えば一般式〔〕で示されるモ
ノマーの共重合体から得る事ができる。 一般式〔〕 CHZ1=CZ2−COOH (Z1、Z2はH又はメチル基、−CH2COOH、−
COOH基を表わす。) 一般式〔〕 (R1とR2はH、アルキル基、−COOR4、−CH2
COOR5を表わし、R3、R4、R5は置換基を有して
も良い脂肪族基を表わす。) 一般式〔〕で示されるモノマーはアクリル
酸、メタアクリル酸、クロトン酸、イタコン酸、
マレイン酸、フマール酸等の不飽和カルボン酸等
が挙げられる。更にカルボキシル基を有するモノ
マーは「合成高分子」(朝倉書店刊)、「高分子デ
ータハンドブツク」(培風館刊)等に挙げられて
いる。シエルポリマーとしてはカルボキシル基を
有している事が一般式〔〕に限られるものでは
ない。 一般式〔〕で表わされるモノマーはアクリル
酸、メタアクリル酸、クロトン酸、マレイン酸、
イタコン酸等の不飽和カルボン酸のエステル化物
であり、脂肪族基のエステルであれば例えばメチ
ル、エチル、プロピル、ブチル、アミル、ヘキシ
ル、エチルヘキシル、ドデシル、トリデシル、ヘ
キサデシル、ドコサニル、ヘキサデセニル、オレ
イル、等が挙げられる。これらはハロゲン原子、
アミノ基、アルコキシ基等で置換されても良く、
又、窒素、酸素、イオウ等の原子で結合が結ばれ
ていても良い。 またシエルポリマーの物性を調整する為に第3
成分として共重合可能なモノマーを共重合しても
良い。更にシエルポリマーとして複数のポリマー
酸を用いてもかまわない。 シエルポリマーの重合は公知の重合方法で得る
事ができるが、シエルポリマーを原材料としてエ
マルジヨンを合成する為に、エマルジヨン合成時
に用いる溶媒と同一か又は良く混合する溶媒中で
溶液重合によつて得る事が好ましい。更にシエル
ポリマーの物性として該溶媒に高温で溶解してし
まう性質を有する余り望ましくない。なぜならば
液体現像剤の特性が温度に依存してしまい特に温
度が上昇した時にシエルポリマーが粒子から脱着
してトナー粒子の物性を変えてしまう恐れがあ
る。 本発明に用いるシエルポリマーの共重合体例を
挙げるが勿論これに限られるわけではない。( )
内は重量比である。 (イ) n−ヘキシルメタアクリレート−メタアクリ
ル酸(94/6) (ロ) ラウリルアクリレート−アクリル酸(93/
7) (ハ) ステアリルメタアクリレート−メタアクリル
酸(88−12) (ニ) ステアリルメタアクリレート−酢酸ビニル−
クロトン酸(90/8/2) (ホ) シクロヘキシルメタアクリレート−メタアク
リル酸(95/5) (ヘ) ラウリルアクリレート−酢酸ビニル−無水マ
レイン酸(92/6/2) (ト) ラウリルアクリレート−ブチルメタアクリレ
ート−メタアクリル酸(45/50/5) 本発明に用いる、該溶媒に可溶で重合すると不
溶化するポリマーを与えるモノマーAとしては例
えば酢酸、プロピオン酸、酢酸等のビニルエステ
ル類やアリルエステル類、イタコン酸、マレイン
酸、クロトン酸等のアルキルエステル類(但し長
鎖アルキルのポリマーは可溶化してしまうので炭
素数4まで)等、更にはアクリル酸やメタアクリ
ル酸の置換基を有しても良い低級アルキルエステ
ルやアミド類。スチレン、メチルスチレン、ビニ
ルトルエン等スチレン誘導体、N−ビニルピロリ
ドン、N−ビニルオキサゾリドン等の複素環を有
するもの等が挙げられる。得られたエマルジヨン
粒子の物性を調整する為に塩基性のモノマーやエ
ーテル結合を有するモノマー等共重合可能な第2
成分を共重合してもかまわない。 本発明に用いる、該溶媒に可溶で重合しても可
溶なポリマーを与えるモノマーBは例えば下記一
般式〔〕で示される。 一般式〔〕 一般式〔〕中、Rは炭素数8以上の脂肪族基
を表わし、Bはエステル基又はアミド基、Q1
Q2は水素原子、アルキル基、−COOR′、−CH2
COOR″を表わす。R′,R″脂肪族基を表わす。 モノマーBの例としてはアクリル酸、メタアク
リル酸、クロトン酸、マイレン酸、イタコン酸の
エステル化物及びアミド化物であり、例えば脂肪
族基の場合デシル、ドデシル、トリデシル、ヘキ
サデシル、ドコサニル、ヘキサデセニル、オレイ
ル等が挙げられる。 これらはハロゲン原子、アミノ基、アルコキシ
基、ヒドロキシ基等で置換されていても良く、又
窒素、酸素、イオウ等の原子で結合が結ばれてい
ても良い。 モノマーA及びBの必要特性は、前記シエルポ
リマーを溶解させる事が好ましいが必ずしも各々
のモノマーがシエルポリマーを溶解する必要はな
く、該溶媒、シエルポリマー、モノマーA及びB
が混合された時に実質的に均一系であれば問題な
い。また溶解性が悪く不均一系となる場合には比
較的低沸点の補助溶媒を用いて重合が完了した後
に留去すれば良い。 本発明で得られたエマルジヨンを静電写真用液
体現像剤とするには、分散樹脂粒子を着色し、荷
電を与えれば良い。分散粒子の着色剤としては一
般に液体現像用着色剤として知られているものが
任意に使用できる。例えばオイルブラツク、オイ
ルレツド等の油溶性染料、ビスマルクブラウン、
クリソイジン等の塩基性アゾ染料、ウールブラツ
ク、アミドブラツクグリーン、ブルーブラツク
HF等の酸性アゾ染料、コンゴーレンド等の直接
染料スーダンバイオレツト、アシツドブルー等の
アントラキノン系染料、オーラミン、マラカイト
グリーン、クリスタルバイオレツト、ビクトリア
ブルー等のカルボニウム染料、ローダミンBの如
くローダミン染料、サフラニン、ニグロシン、メ
チレンブルー等のキノンイミソ染料等の染料が挙
げられる。顔料としては、カーボンブラツク、フ
タロシアニンブルー、フタロシアニングリーン、
ウオツシングレツド、ベンジジンイエロー等が挙
げられる。又表面処理を施した顔料、例えばニグ
ロシンで染色したカーボンブラツク、グラフトカ
ーボン、ローダミンHで染色した酸化硅素微粉
末、マイクロリスブルー等を用いる事ができる。 分散粒子への着色方法は、使用する着色剤を溶
解する溶剤にあらかじめ溶解しておき、この着色
剤溶液をエマルジヨン中に滴下攪拌する方法が最
も簡便である。とくにオイル染料をトルエン、キ
シレン等の芳香族溶媒に溶解し滴下攪拌すると、
うまく着色できる。使用した溶媒はトナー溶媒と
混合するので品質上悪影響がない限り除去する必
要はない。また特開昭57−48738にみられる様な
溶媒系を用いて、後で溶媒除去をしても良い。 更に他の着色方法として、得られたエマルジヨ
ンと着色剤をコロイドミル、ボールミル、振動ミ
ル等の分散機に加え機械的振動を与える事によつ
て着色しても良い。 本発明の液体現像剤は電荷制御剤、着色剤等を
選択すれば正電荷を有するトナー又は負電荷を有
するトナーを自由に製造する事が可能である。 本発明の液体現像剤に用いれらる電荷制御剤と
しては、例えばオレイン酸銅、ナフテン酸コバル
ト、ナフテン酸亜鉛、ナフテン酸マンガン、オク
チル酸コバルト、レシチン、ジオクチルスルホコ
ハク酸ナトリウム、ステベライトレジンのアルミ
ニウム塩等が挙げられる。 また、特公昭49−26549号、同49−26595号、特
開昭60−173558号、同60−175060号、同60−
179750号、同60−182447号、同60−218662号、特
願昭60−78062号等に挙げられた電荷制御剤も用
いる事ができる。 本発明で得られた液体現像剤は特公昭37−
17162号、同38−6961号、同41−2426号、同46−
39405号、特開昭50−19509号、同50−19510号、
同54−145538号、同54−89801号、同54−134632
号、同54−19803号、同55−105244号、同57−
161863号、同58−76843号、同58−76844号、同58
−122897号等に記載される様な平版印刷版に対し
ても用いる事もできる。これらの平版印刷版に用
いた場合には、アルカリ溶出液に対してレジスト
性を有さねばならない。本発明によつて得られた
液体現像剤の場合は、ベンジルアルコール等の浸
透剤を用いない無機アルカリ溶出液で溶出する場
合に特に良好な印刷版を与える。 実施例1 (本発明のエマルジヨンの合成) 既知の溶液重合法でn−ヘキシルメタアクリレー
ト−メタアクリル酸共重合体(本発明の例示シエ
ルポリマー(イ))の40%キシレン溶液を得た。 この溶液35gを1のヘキサン中に加えると、
共重合体の沈殿物がスラリー状として得られた。
ヘキサンで数回洗浄デカンテーシヨンしたスラリ
ーを、N2ガス導入管、温度計、攪拌機、冷却管
を備えた1の4ツ口フラスコ中に加え、450g
のIPソルベント(出光石油化学社製)を加えた。
この段階では、良く攪拌しても該共重合体はIP
ソルベントに全く溶解せずに沈殿したままであ
る。 次に136gの酢酸ビニル(モノマーAに相当)、
30gのラウリルメタアクリレート(モノマーBに
相当)を加えて良く攪拌すると均一な透明溶液と
なつた。80℃でN2ガス置換した後に、重合開始
剤としてアゾビスイソブチロニトリル(AIBN)
を1g加えると、重合が開始し、約50分間後に白
濁し始め内温は115℃まで上昇した。内温が80℃
に低下してからも更に2時間加熱を加えた。残存
している酢酸ビニルモノマーを除去する為に内部
を減圧にし留去させ、約2gの留出物を得た。得
られた白色のエマルジヨンには全く沈殿物ではな
く、又モノマー臭もほどんど感じられなかつた。
電子顕微鏡で粒径を測定したところ0.28μの粒径
で粒度分布はほとんどなかつた。 実施例 2〜9 実施例1と同様な方法によつて、以下の表に示
される組成でエマルジヨンを合成した。シエルポ
リマーは略称Sで表わし、量は固型分で示した。
モノマーA、モノマーBは、各々A,B、と略し
て示した。なお実施例3及び4については補助溶
媒としてメチルエチルケトン20gを使用した。
(Field of Industrial Application) The present invention relates to a liquid developer for developing electrostatic latent images in electrophotography, electrostatic recording, etc., which has excellent storage stability, stability, and fixing properties, and can achieve particularly high image quality. It relates to liquid developers. (Prior Art) Many types of electrostatic latent image developer are already known. For example, colorant pigments or dyes such as carbon black, cyanine blue, nigrosine, and oil dyes are placed in a highly insulating medium together with resins such as rosin, alkyd resins, acrylic resins, and synthetic rubbers, and mechanically processed using a ball mill, attritor, homogenizer, etc. The most common method was to disperse particles in the dispersion and further add metal soap, amines, higher fatty acids, etc. to stably impart an electric charge to the dispersed particles of the dispersion. However, since the liquid developer obtained by this method has a large particle size distribution of dispersed particles as a developer, it generates a lot of precipitates, has poor charge stability and manufacturing stability, and cannot produce stable images. It had the disadvantage of being difficult. As described in Japanese Patent Publication Nos. 53-54029 and 57-12985, a vinyl group that can be polymerized by a polymer reaction is introduced into a precursor polymer in advance, and monomers are polymerized in the presence of this group to form a graft. There is a method of obtaining a liquid developer by producing a copolymer and coloring it with a dye. Although this method can be said to be an excellent method, there are problems in the control and reproducibility of the introduction of vinyl groups, and it is often accompanied by gel formation, and it may be difficult to form dispersed particles stably. This is not practical as it may produce small particles of 0.1μ or less. Furthermore, JP-A-59-83174, JP-A No. 59-177572, JP-A No. 59-177572,
No. 59-212850, No. 59-212851, No. 60-164757
No. 60-179751, No. 60-185962, No. 60-
185963, etc., in the presence of a polymer soluble in a highly insulating medium, monomers that are soluble in the solvent but become insoluble when formed into a polymer are polymerized, and the resulting resin dispersion is used in a liquid developer. It is mentioned that it is used as This method is excellent in industrial production stability, dispersion stability, etc. However, when a liquid developer using a resin obtained by this method is used to form an image on an electrostatic recording material using Crohn's force, electrostatic mutual repulsion due to Crohn's force of the dispersed particles themselves and the concentration of the dispersion stabilizing polymer occur. A volume exclusion effect occurs in which the particles rise and repel each other. For this reason, when the effective surface potential of the electrostatic recording material decreases, it has the disadvantage that a blur-like ghost is likely to occur around the image. Furthermore, if a liquid developer using a resin obtained by this method is used continuously while being actually replenished, the solvent-soluble resin will accumulate, and depending on the type of soluble resin used, this will affect the amount of charge on the dispersed particles. It also had a drawback. (Objective of the Invention) The object of the present invention is to provide a liquid developer which improves the conventional drawbacks listed above, and in particular provides a clear image without ghosts in the form of smearing on the dispersed particles around the image, and which is durable over a long period of time. It is an object of the present invention to provide a liquid developer that exhibits little image deterioration even when used continuously for many years. Another object of the present invention is to provide a liquid developer that provides excellent printing quality as a developer for offset lithographic printing plates using zinc oxide or organic semiconductors as photoreceptors. (Structure of the Invention) The present invention provides an electrostatic photographic liquid developer containing at least resin particles dispersed in a highly insulating hydrocarbon medium, in which the resin contains the following monomer A and the following polymer S in the presence of the following polymer S. A liquid developer for electrostatic photography, characterized in that it is a resin obtained by polymerizing monomer B. Polymer S: A polymer that is insoluble in the medium and has carboxyl groups. Monomer A: A monomer that is soluble in the medium and becomes insolubilized by polymerization. Monomer B: A monomer that is soluble in the medium and forms a soluble polymer upon polymerization. The highly insulating hydrocarbon medium used in the present invention includes normal paraffinic hydrocarbons, isoparaffinic hydrocarbons, alicyclic hydrocarbons, halogenated aliphatic hydrocarbons, etc. Preferred isoparaffinic hydrocarbon solvents such as Ciel Sol 71 (manufactured by Ciel Sekiyu), Isopar O, Isopar H, Isopar K, Isopar L, Isopar G (Isopar is a trade name of Exxon) and IP Solvent (Idemitsu) petrochemical products) etc. can be used. The structure of the resin used in the liquid developer of the present invention and the formation mechanism of the resin dispersion (hereinafter referred to as emulsion) will be explained. The polymer S that is insoluble in the solvent and has a carboxyl group used in the present invention will be referred to as a shell polymer. Further, a polymer of monomer A that is soluble in the solvent and becomes insolubilized upon polymerization is referred to as a P 1 polymer, and a polymer of monomer B that is soluble in the solvent and soluble even when a polymer is formed is referred to as a P 2 polymer. The most common aspects of the emulsion used in the present invention before the start of polymerization include the solvent, shell polymer, monomer A, and monomer B. (In order to control the physical properties such as Tm and Tg of the obtained emulsion particles, two or more of the materials may be used depending on the case.) Also, the monomers used may be divided to control the heat generation during polymerization. It may be added after. The formation mechanisms of emulsion particles can be broadly classified into two types. The first case is that the state before the start of polymerization is a homogeneous system. In this case, although the original shell polymer is insoluble in the solvent, the fact that it becomes a homogeneous system is because it is dissolved in monomer A or monomer B. By heating the system and adding a polymerization initiator, radicals are generated and polymerization starts. Since the P 1 polymer component produced from monomer A is insoluble in the solvent, the P 2 polymer component soluble in the solvent is used as a protective colloid to form particles and become cloudy to produce an emulsion. The particle size can be changed relatively freely depending on the amount of P 2 polymer component, that is, the amount of monomer B charged. The monomer A/monomer B ratio depends, of course, on the solubility and cohesiveness of the resulting polymer in the solvent, but a relatively stable emulsion can be obtained with a weight ratio in the range of 98/2 to 20/80. /5~
Approximately 50/50 is suitable. As the polymerization progresses, the shell polymer cannot be uniformly dissolved in the system because the monomer to be solubilized is consumed as a polymer. Therefore, it becomes insolubilized, but actually it is deposited on the surface of the emulsion particles formed by the P 1 polymer. This phenomenon will be made clear from the examples described below. The sedimentation stability and particle size of the emulsion depend on the type and amount of shell polymer, and if there is too much shell polymer, precipitation tends to occur. However, in this case, if the amount of monomer B is increased, the dispersion stability will be improved. As mentioned above, the amount of shell polymer is 1% to 50% of monomer A, depending on the type and amount of monomer A and monomer B, and the type of shell polymer.
(weight ratio), preferably 3 to 25%. Therefore, the formed emulsion particles have a core layer consisting mainly of P 1 polymer inside, a shell layer consisting of a shell polymer deposited on the outside, and an outermost layer consisting mainly of P which stabilizes the particles in the solvent. 2
It is thought that a three-layer structure of dispersed layers made of polymer is formed. Of course, as can be seen from the particle formation mechanism, there are no clear interfaces between the layers, and it is presumed that each component is more localized in a three-layered state. In particular, the existence of a shell layer can be inferred from the examples described below. The second formation mechanism of emulsion particles is a case where the state before the start of polymerization is heterogeneous. In this case, the polymerization may be started as is, but it is preferable to add an auxiliary solvent having a relatively low boiling point to make the system homogeneous. When polymerization is initiated in the same way as in the first formation mechanism, a cloudy emulsion consisting mainly of the P1 polymer component is produced as a colloid that protects the P2 polymer component. If the co-solvent is distilled off after the polymerization is completed, the shell polymer will be deposited on the surface of the emulsion particles. If too much cosolvent is required, a uniform emulsion may not be produced. Examples of the auxiliary solvent include tetrahydrofuran, ethyl alcohol, isopropyl alcohol, methyl ethyl ketone, and ethyl acetate. The shell polymer used in the present invention has a carboxyl group and must have the property of being insoluble in a highly insulating hydrocarbon medium and soluble in a monomer that becomes insolubilized in the solvent when polymerized, so it depends on the monomer used. Of course it will change. Moreover, the most desirable final emulsion embodiment is that the shell polymer is localized on the surface of the resulting emulsion particles. Another way to look at it is to modify the particle surface with a polymer having carboxyl groups. A polymer exhibiting such properties can be obtained, for example, from a copolymer of monomers represented by the general formula [] and, for example, the general formula []. General formula [] CHZ 1 = CZ 2 -COOH (Z 1 and Z 2 are H or methyl group, -CH 2 COOH, -
Represents a COOH group. ) General formula [] (R 1 and R 2 are H, alkyl group, -COOR 4 , -CH 2
COOR 5 is represented, and R 3 , R 4 and R 5 represent an aliphatic group which may have a substituent. ) The monomers represented by the general formula [] are acrylic acid, methacrylic acid, crotonic acid, itaconic acid,
Examples include unsaturated carboxylic acids such as maleic acid and fumaric acid. Furthermore, monomers having a carboxyl group are listed in "Synthetic Polymers" (published by Asakura Shoten), "Kobunshi Data Handbook" (published by Baifukan), etc. The shell polymer is not limited to the general formula [] having a carboxyl group. The monomers represented by the general formula [] are acrylic acid, methacrylic acid, crotonic acid, maleic acid,
It is an esterified product of unsaturated carboxylic acids such as itaconic acid, and esters of aliphatic groups include methyl, ethyl, propyl, butyl, amyl, hexyl, ethylhexyl, dodecyl, tridecyl, hexadecyl, docosanyl, hexadecenyl, oleyl, etc. can be mentioned. These are halogen atoms,
May be substituted with amino group, alkoxy group, etc.
Further, the bond may be formed by atoms such as nitrogen, oxygen, sulfur, etc. In addition, in order to adjust the physical properties of the shell polymer, a third
A copolymerizable monomer may be copolymerized as a component. Furthermore, a plurality of polymer acids may be used as the shell polymer. Shell polymers can be obtained by known polymerization methods, but in order to synthesize emulsions using shell polymers as raw materials, they can be obtained by solution polymerization in a solvent that is the same as or is well mixed with the solvent used for emulsion synthesis. is preferred. Furthermore, the physical property of the shell polymer is that it dissolves in the solvent at high temperatures, which is undesirable. This is because the properties of the liquid developer depend on temperature, and particularly when the temperature rises, there is a risk that the shell polymer may be desorbed from the particles and change the physical properties of the toner particles. Examples of shell polymer copolymers used in the present invention will be listed below, but of course the present invention is not limited thereto. ( )
The figures in the figure are weight ratios. (a) n-hexyl methacrylate - methacrylic acid (94/6) (b) lauryl acrylate - acrylic acid (93/
7) (c) Stearyl methacrylate - methacrylic acid (88-12) (d) Stearyl methacrylate - vinyl acetate -
Crotonic acid (90/8/2) (e) Cyclohexyl methacrylate-methacrylic acid (95/5) (f) Lauryl acrylate-vinyl acetate-maleic anhydride (92/6/2) (g) Lauryl acrylate-butyl Methacrylate - Methacrylic acid (45/50/5) Examples of the monomer A used in the present invention to provide a polymer that is soluble in the solvent and becomes insolubilized when polymerized include vinyl esters and allyl esters such as acetic acid, propionic acid, and acetic acid. and alkyl esters such as itaconic acid, maleic acid, and crotonic acid (however, long-chain alkyl polymers are solubilized, so up to 4 carbon atoms), and further have substituents such as acrylic acid and methacrylic acid. Lower alkyl esters and amides that may be used. Examples include styrene derivatives such as styrene, methylstyrene and vinyltoluene, and those having a heterocycle such as N-vinylpyrrolidone and N-vinyloxazolidone. In order to adjust the physical properties of the obtained emulsion particles, a copolymerizable secondary monomer such as a basic monomer or a monomer having an ether bond is added.
The components may be copolymerized. Monomer B, which is used in the present invention and provides a polymer that is soluble in the solvent and is soluble upon polymerization, is represented by, for example, the following general formula []. General formula [] In the general formula [], R represents an aliphatic group having 8 or more carbon atoms, B is an ester group or an amide group, Q 1 ,
Q 2 is a hydrogen atom, an alkyl group, -COOR', -CH 2
COOR''. R', R'' represents an aliphatic group. Examples of monomer B include esters and amides of acrylic acid, methacrylic acid, crotonic acid, maleic acid, and itaconic acid; for example, in the case of aliphatic groups, decyl, dodecyl, tridecyl, hexadecyl, docosanyl, hexadecenyl, oleyl, etc. can be mentioned. These may be substituted with a halogen atom, an amino group, an alkoxy group, a hydroxy group, etc., or may be bonded with atoms such as nitrogen, oxygen, sulfur, etc. It is preferable that the monomers A and B dissolve the shell polymer, but it is not necessary that each monomer dissolve the shell polymer.
There is no problem if the mixture is substantially homogeneous. If the solubility is poor and a heterogeneous system is formed, an auxiliary solvent with a relatively low boiling point may be used and distilled off after the polymerization is completed. In order to use the emulsion obtained in the present invention as a liquid developer for electrostatic photography, the dispersed resin particles may be colored and charged. As the colorant for the dispersed particles, any colorant generally known as a colorant for liquid development can be used. For example, oil-soluble dyes such as oil black and oil red, Bismarck brown,
Basic azo dyes such as chrysoidine, wool black, amido black green, blue black
Acidic azo dyes such as HF, direct dyes such as congolend, anthraquinone dyes such as sudan violet and acid blue, carbonium dyes such as auramine, malachite green, crystal violet, and Victoria blue, rhodamine dyes such as rhodamine B, safranin, and nigrosine. and quinone imiso dyes such as methylene blue. Pigments include carbon black, phthalocyanine blue, phthalocyanine green,
Examples include washing red and benzidine yellow. Also, surface-treated pigments such as carbon black dyed with nigrosine, grafted carbon, silicon oxide fine powder dyed with rhodamine H, microlith blue, etc. can be used. The simplest method for coloring the dispersed particles is to previously dissolve the colorant to be used in a solvent, and then dropwise dropwise stir the colorant solution into the emulsion. In particular, when an oil dye is dissolved in an aromatic solvent such as toluene or xylene and stirred dropwise,
Can be colored well. Since the used solvent is mixed with the toner solvent, there is no need to remove it unless there is an adverse effect on quality. Further, the solvent may be removed later by using a solvent system as disclosed in JP-A-57-48738. Furthermore, as another coloring method, coloring may be carried out by adding the obtained emulsion and coloring agent to a dispersing machine such as a colloid mill, a ball mill, or a vibration mill and applying mechanical vibration. For the liquid developer of the present invention, by selecting a charge control agent, a colorant, etc., it is possible to freely produce a toner having a positive charge or a toner having a negative charge. Examples of the charge control agent used in the liquid developer of the present invention include copper oleate, cobalt naphthenate, zinc naphthenate, manganese naphthenate, cobalt octylate, lecithin, sodium dioctyl sulfosuccinate, and aluminum salt of steverite resin. etc. Also, Japanese Patent Publications No. 49-26549, No. 49-26595, No. 173558-1980, No. 60-175060, No. 60-
Charge control agents mentioned in Japanese Patent Application No. 179750, No. 60-182447, No. 60-218662, Japanese Patent Application No. 78062/1980, etc. can also be used. The liquid developer obtained by the present invention is
No. 17162, No. 38-6961, No. 41-2426, No. 46-
39405, Japanese Patent Publication No. 50-19509, Japanese Patent Publication No. 50-19510,
No. 54-145538, No. 54-89801, No. 54-134632
No. 54-19803, No. 55-105244, No. 57-
No. 161863, No. 58-76843, No. 58-76844, No. 58
It can also be used for lithographic printing plates such as those described in -122897. When used in these lithographic printing plates, it must have resistivity to alkaline eluents. The liquid developer obtained according to the invention gives particularly good printing plates when eluted with an inorganic alkaline eluent without using a penetrant such as benzyl alcohol. Example 1 (Synthesis of emulsion of the present invention) A 40% xylene solution of n-hexyl methacrylate-methacrylic acid copolymer (exemplary shell polymer (a) of the present invention) was obtained by a known solution polymerization method. When 35g of this solution is added to 1 hexane,
A copolymer precipitate was obtained in the form of a slurry.
The slurry, which had been washed and decanted several times with hexane, was added to a 4-necked flask equipped with a N2 gas inlet tube, a thermometer, a stirrer, and a cooling tube, and 450 g
IP solvent (manufactured by Idemitsu Petrochemical Co., Ltd.) was added.
At this stage, even if well stirred, the copolymer is
It remains precipitated without being completely dissolved in the solvent. Next, 136 g of vinyl acetate (corresponding to monomer A),
After adding 30 g of lauryl methacrylate (corresponding to monomer B) and stirring well, a uniform transparent solution was obtained. After purging with N2 gas at 80℃, azobisisobutyronitrile (AIBN) was added as a polymerization initiator.
When 1 g of was added, polymerization started, and after about 50 minutes, the mixture began to become cloudy and the internal temperature rose to 115°C. Internal temperature is 80℃
Heating was continued for an additional 2 hours even after the temperature had dropped to . In order to remove the remaining vinyl acetate monomer, the inside of the reactor was distilled under reduced pressure to obtain about 2 g of distillate. The resulting white emulsion contained no precipitates and had almost no monomer odor.
When the particle size was measured using an electron microscope, the particle size was 0.28μ, with almost no particle size distribution. Examples 2 to 9 Emulsions were synthesized using the same method as in Example 1 with the compositions shown in the table below. Shell polymers are designated by the abbreviation S and amounts are expressed in terms of solid content.
Monomer A and monomer B are abbreviated as A and B, respectively. In Examples 3 and 4, 20 g of methyl ethyl ketone was used as an auxiliary solvent.

【表】【table】

【表】 本実施例で得られたエマルジヨンは沈殿物がほ
とんどなくかつ数カ月自然保存しても沈殿物は増
加せず安定なものであつた。エマルジヨンの粒径
は電子顕微鏡撮影から測定した結果エマルジヨン
の種類によつて差はあるが0.15〜0.3μ程度であつ
た。しかし各々のエマルジヨンはほとんど単分散
の粒度分布を示し、かつ粗大粒子や微少粒子がみ
られず、極めて良く粒径が揃つていた。なお室温
で粒子が融着して観察できないものはレプリカ法
で測定した。 比較例1 (比較エマルジヨンの合成) 既知の溶液重合法でステアリルメタアクリレー
ト−メタアクリル酸共重合体(重量比98/2)の
40%ヘキサン溶液を得た。このポリマー溶液70g
を450gIPソルベントとともに実施例1と同様に
4ツ口フラスコに加えると均一な透明溶液となつ
た。(本ポリマーはシエルポリマーではなく、従
来技術に用いられた可溶性ポリマーに相当する) 以下実施例1と全く同様にモノマーを加えて重
合を行なつたところ内温は105℃まで上昇した。
残存モノマーを留去後の白色エマルジヨンには全
く沈殿物もなく、モノマー臭もほとんどなかつ
た。粒径は0.2μで粒度分布はなかつた。 実施例10 (正帯電性液体現像剤の製造例) 実施例−1で得られた250gのエマルジヨン中
に40gのキシレン溶解した5gのオイルブラツク
HBB(オリエント化学社製)を超音波をかけなが
ら滴下しエマルジヨン粒子を着色した。次いで電
荷制御剤として1%のステベライトレジンのアル
ミニウム塩のキシレン溶液10gを加えコンク(濃
縮)トナーを得た。 このコンクトナーとアイソパーGでトータルを
10に希釈し正帯電性の液体現像剤(P−1トナ
ー)を得た。 実施例11 (負帯電性液体現像剤の製造例) エマルジヨン粒子の着色までは実施例−10と全
く同様に行ない、負帯電性の電荷制御剤としてジ
オクチルスルホサクシネートのナトリウム塩を
0.35g加えコンクトナーを得た。 得られたコンクトナーをアイソパーGでトータ
ルを10に希釈し、負帯電性の液体現像剤(N−
1トナー)を得た。 実施例12 実施例2〜9で得られたエマルジヨンを正帯電
性液体現像剤とする為に実施例−10と同様な方法
で製造したところ、粒子帯電能は各々多少異なる
ものの良好な正帯電性液体現像剤が得られた。
(P−2〜P−9トナー) 実施例13 実施例2〜9で得られたエマルジヨンを負帯電
性現像剤とする為に実施例−11と同様な方法で製
造したところ、粒子帯電能は各々多少異なるもの
の良好な負帯電性液体現像剤が得られた。(N−
2〜N−9トナー) 実施例14 (比較用液体現像剤の製造) 比較例−1で合成したエマルジヨンを用いて、
正帯電性用として実施例−10と全く同様な方法
で、負帯電性用として実施例−11と全く同様な方
法で液体現像剤を得た。(比較P−1トナー、比
較N−1トナー) 実施例15 (可溶性樹脂成分の測定) (A) 実施例−10で得られたコンクトナー30gをア
イピーソルベントで300mlに希釈しセミコンク
トナーを得た。電極板として2枚のアルミニウ
ム板をこのセミコンクトナー中に入れ直流
3000Vの電圧を印加した。帯電しているエマ
ルジヨン粒子は電極に付着し液の濁度が徐々
に低下した。新しいアルミニウム板で3〜5回
繰り返すとエマルジヨン粒子は完全に電極上へ
徐去され濁りのない淡赤色の残液が得られた。
本残液をエバポレートし正確に固型分を測定す
るとわずかに0.03gであつた。 (B) 一方比較例−1で合成したエマルジヨンを用
いた場合に全く同様な操作を行なうと、濁りの
ない淡赤色の残液が得られた。しかしこの残液
をエバポレートして固型分を測定すると0.89g
であつた。 従つて可溶性樹脂性存在下に重合を行なつて
得たエマルジヨンは、可溶性樹脂成分が該溶媒
中に溶解して存在している確率が高いといえ
る。しかしながら本発明のエマルジヨンは可溶
性部がほとんどみられず、シエルポリマーは粒
子に吸着しているとみるのが妥当であろう。 (C) 実施例−12で得られたコンクトナーについて
も同様の実験を行なつたが固型分は0.02〜0.8g
の範囲で(B)の場合と比較して明らかに少なかつ
た。 実施例16 実施例−10で得られたP−1トナー、実施例12
で得られたP−2〜P−9トナーを液体現像剤と
し、EP−12(三菱製紙(株)製ダイレクト製版機)を
用いて、電子写真ダイレクト印刷版LOM−B
を製版したところいづれもエツヂのしつかりした
画像が得られ、本印刷版を用いた印刷物も美しい
仕上がりであつた。比較として実施例−14で得ら
れた比較トナーP−1の場合画像部の周囲に、に
じみ状のゴーストが発生した。また画像も崩れ気
味であつた。本刷版を使用した印刷物は生じた画
像故障のパターンが印刷物に現れてしまい不可で
あつた。 実施例17 親水化処理が施されたアルミニウム版に、酸価
の高いアクリル樹脂中に分散したε−型銅フタロ
シアニン顔料を塗布乾燥し印刷用原版とした。
(バインター/顔料比=75/25)該原版を暗所で
コロナ帯電にて正帯電させた後に画像露光を行な
つた。実施例−13で得られたN−2トナーで現像
した後に熱定着した。冷却後にDP−4(富士写真
フイルム(株)PS版用現像液)を水で10倍に希釈し
た液の中に10秒間浸透した後に水洗した。トナー
画像部だけが美しい画像として残り、非画像部は
完全に溶出されが印刷版が出来た。 一方実施例−14で得られた比較N−1トナーで
現像した場合には画像部の周囲に、にじみ状のゴ
ーストが発生し、DP−4で非画像部を溶出した
後もそのパターンは残つてしまつた。またN−3
〜N−9トナーで実施した場合も良好な印刷版が
得られ、印刷物もシヤープな画像であつたが、比
較N−1トナーだけは画像部周辺のゴーストの為
に、美しい仕上がりとはならなかつた。 更にN−2トナー及び比較N−1トナーの各1
を用いてB−4版の原版で連続処理を行なうと
20版目で比較N−1トナーの場合ゴーストの発生
が激しく使用不可となつてしまつたが、N−2ト
ナーは70版処理しても全く異常はなかつた。 以上の実施例より本発明のエマルジヨンを用い
た液体現像剤を用いた場合、良好な刷版及び美し
い仕上がりの印刷物が得られる事が判る。
[Table] The emulsion obtained in this example contained almost no precipitates and remained stable without increasing the amount of precipitates even after being stored naturally for several months. The particle size of the emulsion was determined by electron microscopy and was about 0.15 to 0.3 μm, although it varied depending on the type of emulsion. However, each emulsion showed an almost monodisperse particle size distribution, and no coarse particles or fine particles were observed, and the particle sizes were extremely uniform. In addition, particles that could not be observed due to fusion at room temperature were measured using the replica method. Comparative Example 1 (Synthesis of comparative emulsion) Stearyl methacrylate-methacrylic acid copolymer (weight ratio 98/2) was prepared by a known solution polymerization method.
A 40% hexane solution was obtained. 70g of this polymer solution
When added to a 4-necked flask together with 450g of IP solvent in the same manner as in Example 1, a homogeneous and transparent solution was obtained. (This polymer is not a shell polymer, but corresponds to a soluble polymer used in the prior art.) Monomers were added and polymerization was carried out in exactly the same manner as in Example 1, and the internal temperature rose to 105°C.
After distilling off the remaining monomers, the white emulsion had no precipitates and almost no monomer odor. The particle size was 0.2μ and there was no particle size distribution. Example 10 (Production example of positively charged liquid developer) 5 g of oil black dissolved in 40 g of xylene in 250 g of the emulsion obtained in Example-1
HBB (manufactured by Orient Chemical Co., Ltd.) was added dropwise while applying ultrasound to color the emulsion particles. Next, 10 g of a xylene solution of 1% aluminum salt of steverite resin was added as a charge control agent to obtain a concentrated toner. Total with this Conctner and Isopar G
A positively chargeable liquid developer (P-1 toner) was obtained by diluting the solution to 10%. Example 11 (Production example of a negatively chargeable liquid developer) The procedure up to the coloring of the emulsion particles was carried out in exactly the same manner as in Example 10, except that sodium salt of dioctyl sulfosuccinate was used as a negatively chargeable charge control agent.
0.35g was added to obtain a compactor. The obtained compactor was diluted to a total of 10% with Isopar G, and a negatively charged liquid developer (N-
1 toner) was obtained. Example 12 The emulsions obtained in Examples 2 to 9 were manufactured in the same manner as in Example 10 to make positively chargeable liquid developers. Although the particle chargeability was slightly different, good positive chargeability was obtained. A liquid developer was obtained.
(P-2 to P-9 toners) Example 13 The emulsions obtained in Examples 2 to 9 were produced in the same manner as in Example 11 to use them as negatively chargeable developers. Good negatively chargeable liquid developers were obtained, although they were slightly different from each other. (N-
2 to N-9 toner) Example 14 (Production of comparative liquid developer) Using the emulsion synthesized in Comparative Example-1,
A liquid developer for positive chargeability was obtained in exactly the same manner as in Example 10, and a liquid developer for negative chargeability was obtained in the same manner as in Example 11. (Comparative P-1 toner, Comparative N-1 toner) Example 15 (Measurement of soluble resin component) (A) 30 g of the condensed toner obtained in Example-10 was diluted to 300 ml with IP solvent to obtain a semi-concrete toner. . Two aluminum plates are placed as electrode plates in this semi-conductor and DC current is applied.
A voltage of 3000V was applied. The charged emulsion particles adhered to the electrode, and the turbidity of the liquid gradually decreased. After repeating the process 3 to 5 times using a new aluminum plate, the emulsion particles were completely removed onto the electrode, and a pale red residual liquid without turbidity was obtained.
When this residual liquid was evaporated and the solid content was accurately measured, it was only 0.03 g. (B) On the other hand, when the emulsion synthesized in Comparative Example 1 was used and the same operation was carried out, a pale red residual liquid without turbidity was obtained. However, when this residual liquid was evaporated and the solid content was measured, it was 0.89g.
It was hot. Therefore, it can be said that an emulsion obtained by polymerization in the presence of a soluble resin has a high probability that the soluble resin component exists dissolved in the solvent. However, in the emulsion of the present invention, almost no soluble portion is observed, and it is reasonable to assume that the shell polymer is adsorbed onto the particles. (C) A similar experiment was conducted on the condenser obtained in Example 12, but the solid content was 0.02 to 0.8 g.
It was clearly smaller than in case (B) in the range of . Example 16 P-1 toner obtained in Example-10, Example 12
Using the P-2 to P-9 toners obtained in the above as a liquid developer, an electrophotographic direct printing plate LOM-B was prepared using an EP-12 (direct plate making machine manufactured by Mitsubishi Paper Industries, Ltd.).
When the plates were made, images with sharp edges were obtained in all cases, and the printed matter using this printing plate also had a beautiful finish. For comparison, in the case of comparative toner P-1 obtained in Example-14, a blur-like ghost was generated around the image area. Also, the image seemed to be distorted. Printed matter using this printing plate was not acceptable because the pattern of the resulting image failure appeared on the printed matter. Example 17 An ε-type copper phthalocyanine pigment dispersed in an acrylic resin having a high acid value was coated on an aluminum plate that had been subjected to a hydrophilic treatment and dried to obtain a printing original plate.
(Binter/pigment ratio = 75/25) The original plate was positively charged by corona charging in a dark place, and then imagewise exposed. It was developed with the N-2 toner obtained in Example 13 and then heat-fixed. After cooling, the sample was soaked in a solution prepared by diluting DP-4 (Fuji Photo Film Co., Ltd. PS plate developer) 10 times with water for 10 seconds, and then washed with water. Only the toner image area remained as a beautiful image, and the non-image area was completely eluted, resulting in a printing plate. On the other hand, when developing with Comparative N-1 toner obtained in Example-14, a smudge-like ghost appeared around the image area, and the pattern remained even after the non-image area was eluted with DP-4. It was hot. Also N-3
~When using the N-9 toner, good printing plates were obtained and the printed images were sharp, but only the comparison N-1 toner did not produce a beautiful finish due to ghosts around the image area. Ta. Furthermore, 1 each of N-2 toner and comparative N-1 toner
When performing continuous processing on the B-4 original using
In the case of the comparison N-1 toner, ghosting occurred so much that it became unusable at the 20th edition, but the N-2 toner showed no abnormality at all even after being processed for the 70th edition. From the above examples, it can be seen that when a liquid developer containing the emulsion of the present invention is used, a good printing plate and a printed matter with a beautiful finish can be obtained.

Claims (1)

【特許請求の範囲】 1 高絶縁性炭化水素媒体中に、少なくとも分散
した樹脂粒子を含む静電写真用液体現像剤におい
て、該樹脂が、下記の重合体Sの存在下で、下記
のモノマーA及びモノマーBを重合して得られる
樹脂であり、かつモノマーA/モノマーBの比が
重量比で98/2〜20/80及び重合体Sがモノマー
Aの1〜50重量%であることを特徴とする静電写
真用液体現像剤。 重合体S:下記一般式〔〕及び下記一般式
〔〕で示されるモノマーを共重合して得
られる上記媒体に不溶の重合体。 一般式〔〕 CHZ1=CZ2−COOH (Z1、Z2はH、メチル基、−CH2COOH、−
COOH基を表わす。) 一般式〔〕 (R1とR2はH、アルキル基、−COOR4、−CH2
COOR5を表わし、R3、R4、R5は置換基を有して
も良い脂肪族基を表わす。) モノマーA:酢酸、プロピオン酸又は酪酸のビニ
ルエステル類、酢酸、プロピオン酸又は酪
酸のアリルエステル類、イタコン酸、マレ
イン酸又はクロトン酸の炭素数4以下のア
ルキルエステル類、アクリル酸又はメタア
クリル酸の(置換基を有していてもよい)
低級アルキルエステル類、アクリル酸又は
メタアクリル酸の(置換基を有してもよ
い)アミド類、スチレン誘導体及び複素環
類から選ばれる上記媒体に可溶で重合によ
り不溶化するモノマー。モノマーB:下記
一般式〔〕で示される上記媒体に可溶で
重合しても可溶な重合体を形成するモノマ
ー。 一般式〔〕 (Rは炭素数8以上の脂肪族基を表わし、Bは
エステル基又はアミド基、Q1,Q2は水素原子、
アルキル基、−COOR′、−CH2COOR″を表わす。
R′,R″脂肪族基を表わす。
[Scope of Claims] 1. An electrostatographic liquid developer comprising at least resin particles dispersed in a highly insulating hydrocarbon medium, in which the resin comprises the following monomer A in the presence of the following polymer S. and a resin obtained by polymerizing monomer B, and characterized in that the ratio of monomer A/monomer B is 98/2 to 20/80 by weight, and the polymer S is 1 to 50% by weight of monomer A. A liquid developer for electrostatic photography. Polymer S: A polymer insoluble in the above medium obtained by copolymerizing monomers represented by the following general formula [] and the following general formula []. General formula [] CHZ 1 = CZ 2 -COOH (Z 1 and Z 2 are H, methyl group, -CH 2 COOH, -
Represents a COOH group. ) General formula [] (R 1 and R 2 are H, alkyl group, -COOR 4 , -CH 2
COOR 5 is represented, and R 3 , R 4 and R 5 represent an aliphatic group which may have a substituent. ) Monomer A: vinyl esters of acetic acid, propionic acid or butyric acid, allyl esters of acetic acid, propionic acid or butyric acid, alkyl esters of itaconic acid, maleic acid or crotonic acid having 4 or less carbon atoms, acrylic acid or methacrylic acid (may have substituents)
A monomer selected from lower alkyl esters, amides of acrylic acid or methacrylic acid (which may have a substituent), styrene derivatives, and heterocycles and is soluble in the above medium and becomes insolubilized by polymerization. Monomer B: A monomer represented by the following general formula [] that forms a polymer that is soluble in the above medium and is soluble even when polymerized. General formula [] (R represents an aliphatic group having 8 or more carbon atoms, B is an ester group or an amide group, Q 1 and Q 2 are hydrogen atoms,
Represents an alkyl group, -COOR', -CH 2 COOR''.
R′, R″ represents an aliphatic group.
JP61074507A 1986-03-31 1986-03-31 Liquid developer for electrostatic photography Granted JPS62231267A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61074507A JPS62231267A (en) 1986-03-31 1986-03-31 Liquid developer for electrostatic photography
US07/033,002 US4873166A (en) 1986-03-31 1987-03-31 Liquid developer for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61074507A JPS62231267A (en) 1986-03-31 1986-03-31 Liquid developer for electrostatic photography

Publications (2)

Publication Number Publication Date
JPS62231267A JPS62231267A (en) 1987-10-09
JPH0431587B2 true JPH0431587B2 (en) 1992-05-26

Family

ID=13549304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61074507A Granted JPS62231267A (en) 1986-03-31 1986-03-31 Liquid developer for electrostatic photography

Country Status (1)

Country Link
JP (1) JPS62231267A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2639534B2 (en) * 1986-09-24 1997-08-13 アクゾ・ナームローゼ・フェンノートシャップ Aqueous coating composition
DE4118434C2 (en) * 1990-06-06 1996-01-04 Mitsubishi Paper Mills Ltd A method of electrophotographic reversible wet development

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164757A (en) * 1984-02-07 1985-08-27 Fuji Photo Film Co Ltd Liquid developer for electrophotography
JPS60179751A (en) * 1984-02-28 1985-09-13 Fuji Photo Film Co Ltd Liquid developer for electrostatic photography
JPS60225858A (en) * 1984-04-24 1985-11-11 Mitsubishi Paper Mills Ltd Electrophotographic liquid developer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164757A (en) * 1984-02-07 1985-08-27 Fuji Photo Film Co Ltd Liquid developer for electrophotography
JPS60179751A (en) * 1984-02-28 1985-09-13 Fuji Photo Film Co Ltd Liquid developer for electrostatic photography
JPS60225858A (en) * 1984-04-24 1985-11-11 Mitsubishi Paper Mills Ltd Electrophotographic liquid developer

Also Published As

Publication number Publication date
JPS62231267A (en) 1987-10-09

Similar Documents

Publication Publication Date Title
US4081391A (en) Liquid developer for use in electrophotography
US4241159A (en) Electrophotographic liquid developer comprising acrylic or methacrylic acid ester of hydrogenated abietyl alcohol polymer
JPS6359141B2 (en)
US4873166A (en) Liquid developer for electrophotography
JPH0431587B2 (en)
JPH0431586B2 (en)
JPH0431589B2 (en)
JP2640288B2 (en) Non-aqueous dispersant and liquid developer for electrostatography
JPS6015063B2 (en) Mixed liquid toner for electrophotography
US4457995A (en) Liquid developer containing diphatic alcohol for electrostatic photography and development process using the same
JPH0629993B2 (en) Liquid developer for electrophotography
JPH06157618A (en) Production of nonaqueous resin dispersion, and liquid developer for electrostatic photography
JPH0434151B2 (en)
JP2684378B2 (en) Liquid developer for electrostatic image
US4965163A (en) Liquid developer for electrostatic image
JPH09160389A (en) Electrophotographic wet developing method
JP2614070B2 (en) Lithographic printing plate
JPH0431588B2 (en)
JP2855022B2 (en) Liquid developer for electrostatography and method for producing printing plate using the same
JPH0756396A (en) Electrostatic liquid developer
JP2916561B2 (en) Liquid developer for electrostatic photography
JP2587277B2 (en) Liquid developer for printing plate
JP2003005455A (en) Liquid developer for electrostatic photography
JPH08262809A (en) Wet cyan developer for transfer
JPS61116365A (en) Wet developer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term