JPH04311607A - Steam turbine bypass spray system in compound cycle power generating facility - Google Patents

Steam turbine bypass spray system in compound cycle power generating facility

Info

Publication number
JPH04311607A
JPH04311607A JP7669691A JP7669691A JPH04311607A JP H04311607 A JPH04311607 A JP H04311607A JP 7669691 A JP7669691 A JP 7669691A JP 7669691 A JP7669691 A JP 7669691A JP H04311607 A JPH04311607 A JP H04311607A
Authority
JP
Japan
Prior art keywords
steam turbine
spray
bypass
cycle power
turbine bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7669691A
Other languages
Japanese (ja)
Other versions
JP2960190B2 (en
Inventor
Shoichiro Fujioka
昭一郎 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7669691A priority Critical patent/JP2960190B2/en
Publication of JPH04311607A publication Critical patent/JPH04311607A/en
Application granted granted Critical
Publication of JP2960190B2 publication Critical patent/JP2960190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To supply spray water from one piping in a case that abnormal condition is generated on the other piping by connecting the steam turbine bypass spray pipings of a plurality of units to a common steam turbine bypass spray header. CONSTITUTION:Discharging side pipings of respective condensate pumps 13 of gas turbine-steam turbine compound cycle power generating units A, B are connected to a steam turbine bypass-back up spray header 21 through check valves 20. The back up spray header 21 is connected to respective high pressure bypass desuperheaters 8 and low pressure bypass desuperheaters 9 by high pressure bypass-back up spray pipings 22, and low pressure bypass-back up spray pipings 23 through back up spray adjusting valves 24, 25. When abnormal condition is generated in the spray piping 10, and 11 of either one of the units A,B, the back up spray adjusting valves 24, 25 on abnormal unit side are operated so as to supply spray water.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、ガスタービンと蒸気タ
ービンを複合した発電設備の改良に係わり、特に複数の
ユニット構成のガスタービン・蒸気タービン複合サイク
ル発電設備における蒸気タービンバイパスのスプレー系
統に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the improvement of power generation equipment that combines a gas turbine and a steam turbine, and more particularly to a spray system for a steam turbine bypass in a gas turbine/steam turbine combined cycle power generation equipment that has a plurality of units.

【0002】0002

【従来の技術】近年、ガスタービンと蒸気タービンを併
用した複合サイクル発電設備が多用されるようになって
きた。
2. Description of the Related Art In recent years, combined cycle power generation equipment that uses both a gas turbine and a steam turbine has come into widespread use.

【0003】図2は従来の複合サイクル発電設備の概略
構成を示すもので、空気圧縮機1及びガスタービン2に
はガスタービン発電機3が直結されており、また蒸気タ
ービン4には蒸気タービン発電機5が直結されている。 高圧主蒸気配管及び低圧主蒸気配管から分岐するバイパ
ス管の途中には、高圧主蒸気タービンバイパス弁6と低
圧主蒸気タービンバイパス弁7が介挿されており、それ
らの下流側は高圧バイパス減温器8及び低圧バイパス減
温器9を介して復水器12に連結されている。復水器1
2に貯えられた復水は復水ポンプ13によって加圧され
、排熱回収蒸気発生器14に導入される。また、高圧バ
イパス減温器8と低圧バイパス減温器9には、復水ポン
プ13からの復水が、高圧バイパス・スプレー配管10
と低圧バイパス・スプレー配管11を介して、冷却水と
して供給される。
FIG. 2 shows a schematic configuration of a conventional combined cycle power generation facility, in which a gas turbine generator 3 is directly connected to an air compressor 1 and a gas turbine 2, and a steam turbine generator 3 is directly connected to a steam turbine 4. Machine 5 is directly connected. A high-pressure main steam turbine bypass valve 6 and a low-pressure main steam turbine bypass valve 7 are inserted in the middle of the bypass pipe that branches from the high-pressure main steam piping and the low-pressure main steam piping, and the downstream side of these is a high-pressure bypass temperature reduction. It is connected to a condenser 12 via a vessel 8 and a low pressure bypass attemperator 9. Condenser 1
The condensate stored in 2 is pressurized by a condensate pump 13 and introduced into an exhaust heat recovery steam generator 14. Further, condensate from the condensate pump 13 is supplied to the high pressure bypass desuperheater 8 and the low pressure bypass desuperheater 9 through the high pressure bypass spray piping 10.
and is supplied as cooling water via the low-pressure bypass spray pipe 11.

【0004】上述の構成の複合サイクル発電設備におい
て、ガスタービン2で発生した高温のガスは排熱回収蒸
気発生器14へ導かれ、復水ポンプ13及び高圧給水ポ
ンプ16によって送り込まれた給水を加熱する。排熱回
収蒸気発生器14において加熱された給水は蒸気を含む
二相流になり、低圧ドラム15と高圧ドラム17で蒸気
相と液相に分離される。分離された蒸気は蒸気タービン
4に導入されて仕事をし、仕事を終えた後、復水器1で
凝縮し、再び給水として復水ポンプ13によって排熱回
収蒸気発生器14へと送られる。
[0004] In the combined cycle power generation equipment configured as described above, the high-temperature gas generated by the gas turbine 2 is led to the exhaust heat recovery steam generator 14, which heats the feed water fed by the condensate pump 13 and the high-pressure feed water pump 16. do. The feed water heated in the waste heat recovery steam generator 14 becomes a two-phase flow containing steam, which is separated into a vapor phase and a liquid phase by a low pressure drum 15 and a high pressure drum 17. The separated steam is introduced into the steam turbine 4 to perform work, and after completing the work, it is condensed in the condenser 1 and sent again as feed water to the waste heat recovery steam generator 14 by the condensate pump 13.

【0005】高圧主蒸気タービンバイパス弁6と低圧主
蒸気タービンバイパス弁7は、蒸気タービン4の起動時
あるいは停止時に開いて各弁の前圧を調整しつつ余剰蒸
気を復水器12へ放出する。この時、各バイパス蒸気は
高圧バイパス減温器8及び低圧バイパス減温器9におい
て、高圧バイパス・スプレー配管10及び低圧バイパス
・スプレー配管11を介して供給される復水により減温
される。また、高圧バイパス減温器8及び低圧バイパス
減温器9に供給される復水の量は調節弁18,19によ
って調節される。[発明の構成]
The high-pressure main steam turbine bypass valve 6 and the low-pressure main steam turbine bypass valve 7 open when the steam turbine 4 is started or stopped, and release excess steam to the condenser 12 while adjusting the front pressure of each valve. . At this time, the temperature of each bypass steam is reduced in the high-pressure bypass attemperator 8 and the low-pressure bypass attemperator 9 by condensate water supplied via the high-pressure bypass spray pipe 10 and the low-pressure bypass spray pipe 11. Further, the amount of condensate supplied to the high pressure bypass attemperator 8 and the low pressure bypass attemperator 9 is adjusted by control valves 18 and 19. [Structure of the invention]

【0006】[0006]

【発明が解決しようとする課題】以上説明した従来の複
合サイクル発電設備において、高圧バイパス・スプレー
配管10または低圧バイパス・スプレー配管11に、調
整弁のスティックや復水ポンプの吐出圧低下等の異常が
発生した場合、別軸型の複合サイクル発電設備には、蒸
気タービンのバイパス運用によりガスタービン単独の運
転が可能であるという運用上のフレキシビリティーがあ
るにもかかわらず、蒸気タービンバイパス蒸気の減温水
が確保できないためバイパス運用に移行できず、ガスタ
ービン2や排熱回収蒸気発生器14に異常がなくても、
プラント全体を停止せざるを得なかった。
[Problems to be Solved by the Invention] In the conventional combined cycle power generation equipment described above, abnormalities such as sticking of the regulating valve or drop in discharge pressure of the condensate pump occur in the high-pressure bypass spray pipe 10 or the low-pressure bypass spray pipe 11. When a separate shaft type combined cycle power generation facility has the operational flexibility of being able to operate the gas turbine alone by bypassing the steam turbine, if a steam turbine bypass steam It is not possible to shift to bypass operation because deheated water cannot be secured, and even if there is no abnormality in the gas turbine 2 or the exhaust heat recovery steam generator 14,
The entire plant had to be shut down.

【0007】この場合、プラントの再起動はスプレー配
管の復旧を待って行うことになるため、プラント再起動
には長時間を必要とし、その間は給電運用計画から除外
され、フレキシブルな運用が可能という複合サイクル発
電設備の特徴を損なう要因となっていた。
[0007] In this case, the plant must be restarted after the spray piping is restored, so it takes a long time to restart the plant, and during that time it is excluded from the power supply operation plan, allowing for flexible operation. This was a factor that impaired the characteristics of combined cycle power generation equipment.

【0008】[0008]

【課題を解決するための手段】本発明の蒸気タービンバ
イパス・スプレー系統は、複数のユニット構成のガスタ
ービン・蒸気タービン複合サイクル発電設備において、
各ユニットの蒸気タービンバイパス・スプレー配管を共
通の蒸気タービンバイパス・スプレーヘッダーに接続し
、各ユニットの蒸気タービンバイパス減温器へのスプレ
ー水を相互にバックアップすることを可能にしたことを
特徴とする。
[Means for Solving the Problems] The steam turbine bypass/spray system of the present invention can be used in a gas turbine/steam turbine combined cycle power generation facility having a plurality of units.
The steam turbine bypass spray piping of each unit is connected to a common steam turbine bypass spray header, making it possible to mutually back up the spray water to the steam turbine bypass desuperheater of each unit. .

【0009】[0009]

【作用】このように構成した本発明装置においては、自
ユニットの蒸気タービンバイパス・スプレー配管に異常
がある場合でも、他系統からバックアップスプレー水が
供給されるため、健全な蒸気タービンバイパス運用が可
能となり、プラントを停止することなく継続した起動操
作が行えることになる。その結果、蒸気タービンの起動
時間の短縮を図ることができ、また、ガスタービンの単
独運転も可能となる。
[Operation] In the device of the present invention configured as described above, even if there is an abnormality in the steam turbine bypass/spray piping of the own unit, backup spray water is supplied from another system, so healthy steam turbine bypass operation is possible. This means that continuous startup operations can be performed without stopping the plant. As a result, the startup time of the steam turbine can be shortened, and the gas turbine can also be operated independently.

【0010】0010

【実施例】次に、図1を参照しながら本発明の実施例を
説明する。なお、図1において、図2におけると同一部
分には同一符号を付し、それらの説明は省略する。
Embodiment Next, an embodiment of the present invention will be described with reference to FIG. In FIG. 1, the same parts as in FIG. 2 are denoted by the same reference numerals, and their description will be omitted.

【0011】図1は本発明による複合サイクル発電設備
の概略系統を示すもので、同一構成の2つのガスタービ
ン・蒸気タービン複合サイクル発電ユニットA,Bが並
列的に設置されており、両ユニットの復水ポンプ13の
吐出側配管には、それぞれ逆止弁20を介して、蒸気タ
ービンバイパス・バックアップスプレーヘッダー21が
接続されている。この蒸気タービンバイパス・バックア
ップスプレーヘッダー21と、各高圧バイパス減温器8
及び低圧バイパス減温器9との間を連結する高圧バイパ
ス・バックアップスプレー配管22、低圧バイパス・バ
ックアップスプレー配管23との間には、それぞれバッ
クアップスプレー調節弁24,25が介挿されている。
FIG. 1 shows a schematic system of a combined cycle power generation facility according to the present invention, in which two gas turbine/steam turbine combined cycle power generation units A and B of the same configuration are installed in parallel. Steam turbine bypass backup spray headers 21 are connected to the discharge side piping of the condensate pump 13 via check valves 20, respectively. This steam turbine bypass/backup spray header 21 and each high pressure bypass desuperheater 8
Backup spray control valves 24 and 25 are inserted between the high pressure bypass backup spray piping 22 and the low pressure bypass backup spray piping 23, which connect the low pressure bypass attemperator 9 and the high pressure bypass backup spray piping 23, respectively.

【0012】上記構成の本発明装置において、A,B両
ユニットのガスタービン2にて発生した高温のガスは、
排熱回収蒸気発生器14へ導かれ、復水ポンプ13及び
高圧給水ポンプ16によって加圧・供給される給水を加
熱する。排熱回収蒸気発生器14において加熱された給
水は蒸気を含む二相流となり、低圧ドラム15と高圧ド
ラム17において蒸気相と液相とに分離される。分離さ
れた蒸気は、蒸気タービン4に送られ、そこで仕事をし
た後、復水器12で凝縮し、再び給水として復水ポンプ
13によって排熱回収蒸気発生器14へと送られる。
In the apparatus of the present invention having the above configuration, the high temperature gas generated in the gas turbines 2 of both units A and B is
Feed water that is guided to the exhaust heat recovery steam generator 14 and pressurized and supplied by the condensate pump 13 and the high-pressure water feed pump 16 is heated. The feed water heated in the waste heat recovery steam generator 14 becomes a two-phase flow containing steam, and is separated into a vapor phase and a liquid phase in the low pressure drum 15 and the high pressure drum 17. The separated steam is sent to the steam turbine 4, where it performs work, and then condensed in the condenser 12, and sent again as feed water to the waste heat recovery steam generator 14 by the condensate pump 13.

【0013】高圧主蒸気タービンバイパス弁6と低圧主
蒸気タービンバイパス弁7は蒸気タービン4の起動時或
いは停止時に開いて各弁の前圧を調整しつつ余剰蒸気を
復水器12へ放出する。
The high-pressure main steam turbine bypass valve 6 and the low-pressure main steam turbine bypass valve 7 open when the steam turbine 4 is started or stopped, and discharge surplus steam to the condenser 12 while adjusting the front pressure of each valve.

【0014】ここで、高圧バイパス・スプレー配管10
または低圧バイパス・スプレー配管11のいずれかの系
統に異常(調節弁18,19のスティックや復水ポンプ
13の吐出圧低下など)が発生した場合には、異常ユニ
ット側のバックアップスプレー調節弁24,25が作動
し、高圧バイパス減温器8及び低圧バイパス減温器9へ
の蒸気タービンバイパス・スプレー水は蒸気タービンバ
イパス・バッアップスプレーヘッダー18から供給され
、蒸気タービンバイパス蒸気の減温を行う。
[0014] Here, the high pressure bypass spray piping 10
Or, if an abnormality occurs in any system of the low-pressure bypass spray piping 11 (such as sticking of the control valves 18 and 19 or a decrease in the discharge pressure of the condensate pump 13), the backup spray control valve 24 on the side of the abnormality unit, 25 is activated, steam turbine bypass spray water to the high pressure bypass attemperator 8 and the low pressure bypass attemperator 9 is supplied from the steam turbine bypass backup spray header 18 to reduce the temperature of the steam turbine bypass steam.

【0015】上述のように、本発明においては、A,B
両ユニットの高圧バイパス・スプレー配管10および低
圧バイパス・スプレー配管11の間に、蒸気タービンバ
イパス・バックアップスプレーヘッダー21を設けたこ
とにより、蒸気タービンバイパス・スプレー系統に、調
節弁18,19のスティックや復水ポンプ13の吐出圧
低下等の異常が発生した場合でも、蒸気タービンのバイ
パス運用が可能であり、ガスタービン単独運転が可能で
ある。また、蒸気タービンの起動及び再起動時の蒸気条
件確立に要する時間の短縮が可能となり、プラントの稼
働率の向上を図ることができる。
As mentioned above, in the present invention, A, B
By providing the steam turbine bypass backup spray header 21 between the high-pressure bypass spray piping 10 and the low-pressure bypass spray piping 11 of both units, the steam turbine bypass spray system is equipped with the sticks of the control valves 18 and 19. Even if an abnormality such as a drop in the discharge pressure of the condensate pump 13 occurs, bypass operation of the steam turbine is possible, and independent operation of the gas turbine is possible. Further, it is possible to shorten the time required to establish steam conditions at the time of starting and restarting the steam turbine, and it is possible to improve the operating rate of the plant.

【0016】[0016]

【発明の効果】本発明によると、自ユニットの蒸気ター
ビンバイパス・スプレー系統に異常が生じた場合にも、
蒸気タービンバックアップ・スプレーヘッダーを経由し
て、他ユニットからスプレー水を供給できるため、負荷
要求に対して遅延なくガスタービンを起動することが可
能になり、複合サイクル発電設備の特徴である高効率運
用の条件を早期に確立させることが出来ると共に、起動
・停止といったフレキシブルな運用に対する信頼性を一
段と向上させることが可能となる。
[Effects of the Invention] According to the present invention, even if an abnormality occurs in the steam turbine bypass/spray system of the own unit,
Spray water can be supplied from other units via the steam turbine backup spray header, making it possible to start the gas turbine without delay in response to load requests, resulting in high efficiency operation, which is a characteristic of combined cycle power generation equipment. It is possible to establish the conditions for this at an early stage, and it is also possible to further improve the reliability of flexible operations such as starting and stopping.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明における複合サイクル発電設備の概略系
統図である。
FIG. 1 is a schematic system diagram of a combined cycle power generation facility according to the present invention.

【図2】従来技術における複合サイクル発電設備の概略
系統図である。
FIG. 2 is a schematic system diagram of a combined cycle power generation facility in the prior art.

【符号の説明】[Explanation of symbols]

1………空気圧縮器 2………ガスタービン 3………ガスタービン発電機 4………蒸気タービン 5………蒸気タービン発電機 6………高圧主蒸気タービンバイパス弁7………低圧主
蒸気タービンバイパス弁8………高圧バイパス減温器 9………低圧バイパス減温器 10………高圧バイパス・スプレー配管11………低圧
バイパス・スプレー配管12………復水器 13………復水ポンプ 14………排熱回収蒸気発生器 15………低圧ドラム 16………高圧給水ポンプ 17………高圧ドラム 18,19…調節弁 20………逆止弁
1...Air compressor 2...Gas turbine 3...Gas turbine generator 4...Steam turbine 5...Steam turbine generator 6...High pressure main steam turbine bypass valve 7...Low pressure Main steam turbine bypass valve 8...High pressure bypass desuperheater 9...Low pressure bypass desuperheater 10...High pressure bypass spray piping 11...Low pressure bypass spray piping 12...Condenser 13... ...Condensate pump 14...Exhaust heat recovery steam generator 15...Low pressure drum 16...High pressure water supply pump 17...High pressure drums 18, 19...Control valve 20...Check valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  複数のユニット構成のガスタービン・
蒸気タービン複合サイクル発電設備において、各ユニッ
トの蒸気タービンバイパス・スプレー配管を共通の蒸気
タービンバイパス・スプレーヘッダーに接続し、各ユニ
ットの蒸気タービンバイパス減温器へのスプレー水を相
互にバックアップすることを可能にしたことを特徴とす
る蒸気タービンバイパス・スプレー系統。
[Claim 1] A gas turbine with a plurality of units.
In a steam turbine combined cycle power generation facility, the steam turbine bypass spray piping of each unit is connected to a common steam turbine bypass spray header, and the spray water to the steam turbine bypass desuperheater of each unit is mutually backed up. A steam turbine bypass spray system that is characterized by the following:
JP7669691A 1991-04-10 1991-04-10 Steam turbine bypass spray system in combined cycle power plant Expired - Lifetime JP2960190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7669691A JP2960190B2 (en) 1991-04-10 1991-04-10 Steam turbine bypass spray system in combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7669691A JP2960190B2 (en) 1991-04-10 1991-04-10 Steam turbine bypass spray system in combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH04311607A true JPH04311607A (en) 1992-11-04
JP2960190B2 JP2960190B2 (en) 1999-10-06

Family

ID=13612654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7669691A Expired - Lifetime JP2960190B2 (en) 1991-04-10 1991-04-10 Steam turbine bypass spray system in combined cycle power plant

Country Status (1)

Country Link
JP (1) JP2960190B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174465A (en) * 2010-02-24 2011-09-08 Alstom Technology Ltd Steam turbine plant
WO2011129395A1 (en) * 2010-04-15 2011-10-20 住友金属鉱山株式会社 Plant for wet smelting of laterite nickel ore and method of operating same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174465A (en) * 2010-02-24 2011-09-08 Alstom Technology Ltd Steam turbine plant
WO2011129395A1 (en) * 2010-04-15 2011-10-20 住友金属鉱山株式会社 Plant for wet smelting of laterite nickel ore and method of operating same

Also Published As

Publication number Publication date
JP2960190B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US7367192B2 (en) Combined cycle plant
JP3481983B2 (en) How to start a steam turbine
JPH094417A (en) Composite cycle-system
JP2010090894A (en) Apparatus for steam attemperation using fuel gas heater water discharge to reduce feedwater pump size
JPH10501315A (en) Method of operating a steam turbine power plant and steam turbine power plant for implementing the method
JPH06221113A (en) Gas-steam turbine composite facility and operating method thereof
JPH10306708A (en) Combined cycle generating plant
JP2001329806A (en) Combined cycle plant
JP2960190B2 (en) Steam turbine bypass spray system in combined cycle power plant
JP2003329201A (en) Exhaust heat recovery boiler, combined power generation method and device
JPH06323162A (en) Steam-cooled gas turbine power plant
KR101604219B1 (en) Method for controlling a thermal power plant using regulator valves
JP2013015043A (en) Combined cycle power plant and method for operating the same
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JP4051322B2 (en) Combined power plant
KR102456168B1 (en) Combined power plant and operating method of the same
JP2642954B2 (en) How to start a reheat combined plant
JP2001317704A (en) Combined plant and method for supplying water in exhaust heat recovery boiler
JPH11148315A (en) Combined cycle power plant
JP2000045712A (en) Combined cycle generating plant
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
KR20220136294A (en) Combined power plant and operating method of the same
JPH0988516A (en) Exhaust heat recovery boiler
JP3300079B2 (en) Water supply system and exhaust heat recovery boiler for combined cycle plant
JPH08121112A (en) Single-shaft combined-cycle power generating equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990713