JP2960190B2 - Steam turbine bypass spray system in combined cycle power plant - Google Patents

Steam turbine bypass spray system in combined cycle power plant

Info

Publication number
JP2960190B2
JP2960190B2 JP7669691A JP7669691A JP2960190B2 JP 2960190 B2 JP2960190 B2 JP 2960190B2 JP 7669691 A JP7669691 A JP 7669691A JP 7669691 A JP7669691 A JP 7669691A JP 2960190 B2 JP2960190 B2 JP 2960190B2
Authority
JP
Japan
Prior art keywords
bypass
spray
steam turbine
steam
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7669691A
Other languages
Japanese (ja)
Other versions
JPH04311607A (en
Inventor
昭一郎 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7669691A priority Critical patent/JP2960190B2/en
Publication of JPH04311607A publication Critical patent/JPH04311607A/en
Application granted granted Critical
Publication of JP2960190B2 publication Critical patent/JP2960190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

[発明の目的] [Object of the invention]

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービンと蒸気タ
ービンを複合した発電設備の改良に係わり、特に複数の
ユニット構成のガスタービン・蒸気タービン複合サイク
ル発電設備における蒸気タービンバイパスのスプレー系
統に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a power generation system combining a gas turbine and a steam turbine, and more particularly to a spray system for a steam turbine bypass in a gas turbine / steam turbine combined cycle power generation system having a plurality of units.

【0002】[0002]

【従来の技術】近年、ガスタービンと蒸気タービンを併
用した複合サイクル発電設備が多用されるようになって
きた。
2. Description of the Related Art In recent years, combined cycle power generation equipment using both a gas turbine and a steam turbine has been frequently used.

【0003】図2は従来の複合サイクル発電設備の概略
構成を示すもので、空気圧縮機1及びガスタービン2に
はガスタービン発電機3が直結されており、また蒸気タ
ービン4には蒸気タービン発電機5が直結されている。
高圧主蒸気配管及び低圧主蒸気配管から分岐するバイパ
ス管の途中には、高圧主蒸気タービンバイパス弁6と低
圧主蒸気タービンバイパス弁7が介挿されており、それ
らの下流側は高圧バイパス減温器8及び低圧バイパス減
温器9を介して復水器12に連結されている。復水器1
2に貯えられた復水は復水ポンプ13によって加圧さ
れ、排熱回収蒸気発生器14に導入される。また、高圧
バイパス減温器8と低圧バイパス減温器9には、復水ポ
ンプ13からの復水が、高圧バイパス・スプレー配管1
0と低圧バイパス・スプレー配管11を介して、冷却水
として供給される。
FIG. 2 shows a schematic configuration of a conventional combined cycle power generation facility, in which a gas turbine generator 3 is directly connected to an air compressor 1 and a gas turbine 2, and a steam turbine power generator is connected to a steam turbine 4. Machine 5 is directly connected.
A high-pressure main steam turbine bypass valve 6 and a low-pressure main steam turbine bypass valve 7 are interposed in the middle of a bypass pipe branching from the high-pressure main steam pipe and the low-pressure main steam pipe. It is connected to a condenser 12 through a condenser 8 and a low-pressure bypass desuperheater 9. Condenser 1
The condensate stored in 2 is pressurized by a condensate pump 13 and introduced into an exhaust heat recovery steam generator 14. Condensate from the condensate pump 13 is supplied to the high-pressure bypass desuperheater 8 and the low-pressure bypass desuperheater 9.
0 and supplied as cooling water via a low pressure bypass / spray pipe 11.

【0004】上述の構成の複合サイクル発電設備におい
て、ガスタービン2で発生した高温のガスは排熱回収蒸
気発生器14へ導かれ、復水ポンプ13及び高圧給水ポ
ンプ16によって送り込まれた給水を加熱する。排熱回
収蒸気発生器14において加熱された給水は蒸気を含む
二相流になり、低圧ドラム15と高圧ドラム17で蒸気
相と液相に分離される。分離された蒸気は蒸気タービン
4に導入されて仕事をし、仕事を終えた後、復水器1で
凝縮し、再び給水として復水ポンプ13によって排熱回
収蒸気発生器14へと送られる。
[0004] In the combined cycle power generation system having the above-described configuration, the high-temperature gas generated in the gas turbine 2 is guided to the exhaust heat recovery steam generator 14, and heats the feedwater sent by the condensate pump 13 and the high-pressure feedwater pump 16. I do. The feedwater heated in the exhaust heat recovery steam generator 14 becomes a two-phase flow containing steam, and is separated into a steam phase and a liquid phase by the low-pressure drum 15 and the high-pressure drum 17. The separated steam is introduced into the steam turbine 4 to perform work. After the work is completed, the steam is condensed in the condenser 1 and sent again to the exhaust heat recovery steam generator 14 by the condensate pump 13 as feed water.

【0005】高圧主蒸気タービンバイパス弁6と低圧主
蒸気タービンバイパス弁7は、蒸気タービン4の起動時
あるいは停止時に開いて各弁の前圧を調整しつつ余剰蒸
気を復水器12へ放出する。この時、各バイパス蒸気は
高圧バイパス減温器8及び低圧バイパス減温器9におい
て、高圧バイパス・スプレー配管10及び低圧バイパス
・スプレー配管11を介して供給される復水により減温
される。また、高圧バイパス減温器8及び低圧バイパス
減温器9に供給される復水の量は調節弁18,19によ
って調節される。[発明の構成]
The high-pressure main steam turbine bypass valve 6 and the low-pressure main steam turbine bypass valve 7 are opened when the steam turbine 4 is started or stopped to release excess steam to the condenser 12 while adjusting the pre-pressure of each valve. . At this time, each bypass steam is cooled by the condensate supplied through the high-pressure bypass spray pipe 10 and the low-pressure bypass spray pipe 11 in the high-pressure bypass cooler 8 and the low-pressure bypass cooler 9. The amount of condensed water supplied to the high-pressure bypass desuperheater 8 and the low-pressure bypass desuperheater 9 is adjusted by control valves 18 and 19. [Configuration of the Invention]

【0006】[0006]

【発明が解決しようとする課題】以上説明した従来の複
合サイクル発電設備において、高圧バイパス・スプレー
配管10または低圧バイパス・スプレー配管11に、調
整弁のスティックや復水ポンプの吐出圧低下等の異常が
発生した場合、別軸型の複合サイクル発電設備には、蒸
気タービンのバイパス運用によりガスタービン単独の運
転が可能であるという運用上のフレキシビリティーがあ
るにもかかわらず、蒸気タービンバイパス蒸気の減温水
が確保できないためバイパス運用に移行できず、ガスタ
ービン2や排熱回収蒸気発生器14に異常がなくても、
プラント全体を停止せざるを得なかった。
In the conventional combined cycle power plant described above, the high pressure bypass / spray pipe 10 or the low pressure bypass / spray pipe 11 has abnormalities such as a stick of a regulating valve or a drop in discharge pressure of a condensate pump. In the event of a storm, the separate-shaft combined cycle power plant has the operational flexibility of being able to operate the gas turbine alone by bypassing the steam turbine, but the steam turbine bypass steam Even if the gas turbine 2 and the exhaust heat recovery steam generator 14 have no abnormality,
The entire plant had to be shut down.

【0007】この場合、プラントの再起動はスプレー配
管の復旧を待って行うことになるため、プラント再起動
には長時間を必要とし、その間は給電運用計画から除外
され、フレキシブルな運用が可能という複合サイクル発
電設備の特徴を損なう要因となっていた。
[0007] In this case, since the restart of the plant is performed after the recovery of the spray pipe, the restart of the plant requires a long time, during which time it is excluded from the power supply operation plan, and flexible operation is possible. This was a factor that impaired the characteristics of combined cycle power generation equipment.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の蒸気タービンバイパス・スプレー系統は、
複数のユニット構成のガスタービン.蒸気タービン複合
サイクル発電設備において、各ユニットに対して共通の
蒸気タービンバイパス・スプレーヘッダーと、各ユニッ
トにおいて主蒸気管から分岐しバイパス減温器を介して
復水器に接続されたバイパス・スプレー配管と、前記蒸
気タービンバイパス・スプレーヘッダーと前記各バイパ
ス減温器とをバックアップ・スプレー弁を介して接続す
るバックアップ・スプレー配管と、いずれかのユニット
の前記バイパス・スプレー配管の系統に異常が発生して
前記バイパス減温器のスプレー水に不足を来したときに
前記バックアップスプレー弁を作動させて前記スプレー
水をバックアップさせる制御機構とを具備したことを特
徴とする。
In order to achieve the above object, a steam turbine bypass spray system according to the present invention comprises:
Gas turbine with multiple units. In a steam turbine combined cycle power plant, a common
Steam turbine bypass / spray header and each unit
Branch from the main steam pipe at the
Bypass spray piping connected to the condenser and the steam
Gas turbine bypass / spray header and each of the aforementioned bypasses
Connected to the heater through a backup spray valve
Backup / spray piping and any unit
An error has occurred in the bypass / spray piping system
When there is a shortage of spray water in the bypass desuperheater
Activate the backup spray valve to activate the spray
And a control mechanism for backing up water .

【0009】[0009]

【作用】このように構成した本発明装置においては、自
ユニットの蒸気タービンバイパス・スプレー配管に異常
がある場合でも、他系統からバックアップスプレー水が
供給されるため、健全な蒸気タービンバイパス運用が可
能となり、プラントを停止することなく継続した起動操
作が行えることになる。その結果、蒸気タービンの起動
時間の短縮を図ることができ、また、ガスタービンの単
独運転も可能となる。
In the apparatus of the present invention configured as described above, even if there is an abnormality in the steam turbine bypass / spray pipe of the own unit, backup spray water is supplied from another system, so that a sound steam turbine bypass operation can be performed. Thus, a continuous start-up operation can be performed without stopping the plant. As a result, the startup time of the steam turbine can be reduced, and the gas turbine can be operated alone.

【0010】[0010]

【実施例】次に、図1を参照しながら本発明の実施例を
説明する。なお、図1において、図2におけると同一部
分には同一符号を付し、それらの説明は省略する。
Next, an embodiment of the present invention will be described with reference to FIG. In FIG. 1, the same portions as those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted.

【0011】図1は本発明による複合サイクル発電設備
の概略系統を示すもので、同一構成の2つのガスタービ
ン・蒸気タービン複合サイクル発電ユニットA,Bが並
列的に設置されており、両ユニットの復水ポンプ13の
吐出側配管には、それぞれ逆止弁20を介して、蒸気タ
ービンバイパス・バックアップスプレーヘッダー21が
接続されている。この蒸気タービンバイパス・バックア
ップスプレーヘッダー21と、各高圧バイパス減温器8
及び低圧バイパス減温器9との間を連結する高圧バイパ
ス・バックアップスプレー配管22、低圧バイパス・バ
ックアップスプレー配管23との間には、それぞれバッ
クアップスプレー調節弁24,25が介挿されている。
FIG. 1 shows a schematic system of a combined cycle power generation system according to the present invention, in which two gas turbine / steam turbine combined cycle power generation units A and B having the same configuration are installed in parallel. A steam turbine bypass / backup spray header 21 is connected to a discharge-side pipe of the condensate pump 13 via a check valve 20, respectively. This steam turbine bypass / backup spray header 21 and each high-pressure bypass desuperheater 8
Backup spray control valves 24 and 25 are interposed between the high pressure bypass / backup spray pipe 22 and the low pressure bypass / backup spray pipe 23 connecting the low pressure bypass / warmer 9 and the low pressure bypass / warmer 9, respectively.

【0012】上記構成の本発明装置において、A,B両
ユニットのガスタービン2にて発生した高温のガスは、
排熱回収蒸気発生器14へ導かれ、復水ポンプ13及び
高圧給水ポンプ16によって加圧・供給される給水を加
熱する。排熱回収蒸気発生器14において加熱された給
水は蒸気を含む二相流となり、低圧ドラム15と高圧ド
ラム17において蒸気相と液相とに分離される。分離さ
れた蒸気は、蒸気タービン4に送られ、そこで仕事をし
た後、復水器12で凝縮し、再び給水として復水ポンプ
13によって排熱回収蒸気発生器14へと送られる。
In the apparatus of the present invention having the above-described structure, the high-temperature gas generated in the gas turbine 2 of both the A and B units is
The feed water guided to the exhaust heat recovery steam generator 14 and heated and supplied by the condensing pump 13 and the high-pressure feed pump 16 is heated. The feedwater heated in the exhaust heat recovery steam generator 14 becomes a two-phase flow containing steam, and is separated into a steam phase and a liquid phase in the low-pressure drum 15 and the high-pressure drum 17. The separated steam is sent to the steam turbine 4, where work is performed, then condensed in the condenser 12, and sent again to the exhaust heat recovery steam generator 14 by the condensate pump 13 as feed water.

【0013】高圧主蒸気タービンバイパス弁6と低圧主
蒸気タービンバイパス弁7は蒸気タービン4の起動時或
いは停止時に開いて各弁の前圧を調整しつつ余剰蒸気を
復水器12へ放出する。
The high-pressure main steam turbine bypass valve 6 and the low-pressure main steam turbine bypass valve 7 are opened when the steam turbine 4 is started or stopped to release the excess steam to the condenser 12 while adjusting the pre-pressure of each valve.

【0014】ここで、高圧バイパス・スプレー配管10
または低圧バイパス・スプレー配管11のいずれかの系
統に異常(調節弁18,19のスティックや復水ポンプ
13の吐出圧低下など)が発生した場合には、異常ユニ
ット側のバックアップスプレー調節弁24,25が作動
し、高圧バイパス減温器8及び低圧バイパス減温器9へ
の蒸気タービンバイパス・スプレー水は蒸気タービンバ
イパス・バッアップスプレーヘッダー18から供給さ
れ、蒸気タービンバイパス蒸気の減温を行う。
Here, the high-pressure bypass spray pipe 10
Alternatively, if an abnormality (such as a stick of the control valves 18 and 19 or a decrease in the discharge pressure of the condensate pump 13) occurs in any system of the low-pressure bypass / spray pipe 11, the backup spray control valve 24, The steam turbine bypass / spray water to the high-pressure bypass desuperheater 8 and the low-pressure bypass desuperheater 9 is supplied from the steam turbine bypass / backup spray header 18 to reduce the temperature of the steam turbine bypass steam.

【0015】上述のように、本発明においては、A,B
両ユニットの高圧バイパス・スプレー配管10および低
圧バイパス・スプレー配管11の間に、蒸気タービンバ
イパス・バックアップスプレーヘッダー21を設けたこ
とにより、蒸気タービンバイパス・スプレー系統に、調
節弁18,19のスティックや復水ポンプ13の吐出圧
低下等の異常が発生した場合でも、蒸気タービンのバイ
パス運用が可能であり、ガスタービン単独運転が可能で
ある。また、蒸気タービンの起動及び再起動時の蒸気条
件確立に要する時間の短縮が可能となり、プラントの稼
働率の向上を図ることができる。
As described above, in the present invention, A, B
By providing the steam turbine bypass / backup spray header 21 between the high pressure bypass / spray pipe 10 and the low pressure bypass / spray pipe 11 of both units, the steam turbine bypass / spray system can be provided with the sticks of the control valves 18 and 19 and the like. Even when an abnormality such as a drop in the discharge pressure of the condensate pump 13 occurs, the bypass operation of the steam turbine is possible, and the gas turbine can be operated alone. In addition, the time required for establishing the steam conditions at the time of starting and restarting the steam turbine can be reduced, and the operation rate of the plant can be improved.

【0016】[0016]

【発明の効果】本発明によると、自ユニットの蒸気ター
ビンバイパス・スプレー系統に異常が生じた場合にも、
蒸気タービンバックアップ・スプレーヘッダーを経由し
て、他ユニットからスプレー水を供給できるため、負荷
要求に対して遅延なくガスタービンを起動することが可
能になり、複合サイクル発電設備の特徴である高効率運
用の条件を早期に確立させることが出来ると共に、起動
・停止といったフレキシブルな運用に対する信頼性を一
段と向上させることが可能となる。
According to the present invention, even if an abnormality occurs in the steam turbine bypass / spray system of its own unit,
Spray water can be supplied from another unit via the steam turbine backup / spray header, so that the gas turbine can be started without delay in response to load demands, and high efficiency operation, which is a feature of combined cycle power generation equipment Can be established at an early stage, and the reliability of flexible operation such as starting and stopping can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における複合サイクル発電設備の概略系
統図である。
FIG. 1 is a schematic system diagram of a combined cycle power generation facility according to the present invention.

【図2】従来技術における複合サイクル発電設備の概略
系統図である。
FIG. 2 is a schematic system diagram of a combined cycle power generation facility according to the related art.

【符号の説明】[Explanation of symbols]

1………空気圧縮器 2………ガスタービン 3………ガスタービン発電機 4………蒸気タービン 5………蒸気タービン発電機 6………高圧主蒸気タービンバイパス弁 7………低圧主蒸気タービンバイパス弁 8………高圧バイパス減温器 9………低圧バイパス減温器 10………高圧バイパス・スプレー配管 11………低圧バイパス・スプレー配管 12………復水器 13………復水ポンプ 14………排熱回収蒸気発生器 15………低圧ドラム 16………高圧給水ポンプ 17………高圧ドラム 18,19…調節弁 20………逆止弁 21………蒸気タービンバイパス・スプレーヘッダー 22………高圧バイパス・バックアップスプレー配管 23………低圧バイパス・バックアップスプレー配管 24,25…バックアップスプレー調節弁 1 ... Air compressor 2 ... Gas turbine 3 ... Gas turbine generator 4 ... Steam turbine 5 ... Steam turbine generator 6 ... High-pressure main steam turbine bypass valve 7 ... Low pressure Main steam turbine bypass valve 8 High pressure bypass cooler 9 Low pressure bypass cooler 10 High pressure bypass spray pipe 11 Low pressure bypass spray pipe 12 Condenser 13 … Condenser pump 14… Exhaust heat recovery steam generator 15… Low pressure drum 16… High pressure water supply pump 17… High pressure drum 18, 19… Control valve 20… Check valve 21… ... Steam turbine bypass / spray header 22 ... High pressure bypass / backup spray piping 23 ... Low pressure bypass / backup spray piping 24,25 ... Backup spray control valve

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数のユニット構成のガスタービン・蒸
気タービン複合サイクル発電設備において、各ユニット
に対して共通の蒸気タービンバイパス・スプレーヘッダ
ーと、各ユニットにおいて主蒸気管から分岐しバイパス
減温器を介して復水器に接続されたバイパス・スプレー
配管と、前記蒸気タービンバイパス・スプレーヘッダー
と前記各バイパス減温器とをバックアップ・スプレー弁
を介して接続するバックアップ・スプレー配管と、いず
れかのユニットの前記バイパス・スプレー配管の系統に
異常が発生して前記バイパス減温器のスプレー水に不足
を来したときに前記バックアップスプレー弁を作動させ
て前記スプレー水をバックアップさせる制御機構とを具
したことを特徴とする蒸気タービンバイパス・スプレ
ー系統。
In a gas turbine / steam turbine combined cycle power generation facility having a plurality of units, each unit
Steam turbine bypass and spray header
-In each unit, bypass from the main steam pipe
Bypass spray connected to condenser through desuperheater
Piping and steam turbine bypass / spray header
And a backup spray valve between each of the bypass desuperheaters
And backup spray piping connected via
To the bypass / spray piping system of any of these units
An error has occurred and the spray water of the bypass desuperheater is insufficient.
When the backup spray valve is activated
And a control mechanism for backing up the spray water.
A steam turbine bypass spray system that is equipped with:
JP7669691A 1991-04-10 1991-04-10 Steam turbine bypass spray system in combined cycle power plant Expired - Lifetime JP2960190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7669691A JP2960190B2 (en) 1991-04-10 1991-04-10 Steam turbine bypass spray system in combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7669691A JP2960190B2 (en) 1991-04-10 1991-04-10 Steam turbine bypass spray system in combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH04311607A JPH04311607A (en) 1992-11-04
JP2960190B2 true JP2960190B2 (en) 1999-10-06

Family

ID=13612654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7669691A Expired - Lifetime JP2960190B2 (en) 1991-04-10 1991-04-10 Steam turbine bypass spray system in combined cycle power plant

Country Status (1)

Country Link
JP (1) JP2960190B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363577A1 (en) * 2010-02-24 2011-09-07 Alstom Technology Ltd Steam turbine plant
JP4888578B2 (en) * 2010-04-15 2012-02-29 住友金属鉱山株式会社 Nickel oxide ore wet smelting plant and method of operation thereof

Also Published As

Publication number Publication date
JPH04311607A (en) 1992-11-04

Similar Documents

Publication Publication Date Title
US7367192B2 (en) Combined cycle plant
JP3780884B2 (en) Steam turbine power plant
JP3481983B2 (en) How to start a steam turbine
JP3784413B2 (en) Waste heat boiler operation method and waste heat boiler operated by this method
JPH094417A (en) Composite cycle-system
JPH09112292A (en) Combined-cycle-system with steam cooling type gas turbine
JPH04298604A (en) Combined cycle power plant and steam supply method
JPH05163960A (en) Combined cycle power generation plant
USRE36497E (en) Combined cycle with steam cooled gas turbine
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
JPH10501315A (en) Method of operating a steam turbine power plant and steam turbine power plant for implementing the method
JP2960190B2 (en) Steam turbine bypass spray system in combined cycle power plant
JP4004800B2 (en) Combined cycle power generation system
JPS6122725B2 (en)
JPH06323162A (en) Steam-cooled gas turbine power plant
JP2003329201A (en) Exhaust heat recovery boiler, combined power generation method and device
JP2001280103A (en) Turbine equipment
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JP4090584B2 (en) Combined cycle power plant
JPH11148315A (en) Combined cycle power plant
JP2642954B2 (en) How to start a reheat combined plant
JP3068972B2 (en) Combined cycle power plant
JP3300079B2 (en) Water supply system and exhaust heat recovery boiler for combined cycle plant
JPH0233845B2 (en) JOKITAABIN PURANTONONTENHOHO
JPH0842802A (en) Device for controlling generating quantity of intermediate/low pressure steam in exhaust gas boiler

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990713