JPH0431013B2 - - Google Patents

Info

Publication number
JPH0431013B2
JPH0431013B2 JP62167691A JP16769187A JPH0431013B2 JP H0431013 B2 JPH0431013 B2 JP H0431013B2 JP 62167691 A JP62167691 A JP 62167691A JP 16769187 A JP16769187 A JP 16769187A JP H0431013 B2 JPH0431013 B2 JP H0431013B2
Authority
JP
Japan
Prior art keywords
cbn
boron nitride
wbn
volume
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62167691A
Other languages
Japanese (ja)
Other versions
JPS6411939A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62167691A priority Critical patent/JPS6411939A/en
Publication of JPS6411939A publication Critical patent/JPS6411939A/en
Publication of JPH0431013B2 publication Critical patent/JPH0431013B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は立方晶型窒化硼素(以下cBNと称す
る)とウルツ鉱型窒化硼素(以下WBNと称す
る)の両者と、耐熱性セラミツク組成物を主体と
した結合材とからなり、焼入鋼材や難削材の切削
加工に好適な工具用焼結体に関する。 (従来の技術) 高圧相窒化硼素には六方晶型窒化硼素(以下
hBNと称する)にアルカリ金属等の触媒を用い
て、静的超高圧下で合成して得られるcBNと、
hBNに爆薬の爆発力により数100kbの超高圧を負
荷して直接転移を生起させる衝撃合成法により得
られるwBNとがある。cBNおよびwBNはダイ
ヤモンドに次ぐ硬さを有する硬質物質として近年
脚光を浴びており、合成粉末および焼結体工具が
市販されている。 ダイヤモンドは最も硬くまた熱伝導率も最高の
物質であり、工具材料として極めて優れている
が、欠点は鉄系金属と高温で化学反応しやすく鉄
系材料の切削には有効でないことである。現在鉄
系材料の高能率切削に使用されている工具材料と
しては、TiCまたはTiN基サーメツト、Al2O3
たはAl2O3−TiC基セラミツク、cBNまたはcBN
−wBN基焼結体工具が用いられている。しかし
高Ni系の耐熱材料のような難削材やHRC45を超
える高硬度材に対する高速安定切削の要求に対し
ては、cBNまたはcBN−wBN基焼結体工具以外
に実用性能を出せるものが見あたらない。こうし
た状況から高圧相窒化硼素基焼結体工具が注目さ
れてきており、更に工具寿命の良いものの出現に
対する期待が強まつている。従来からcBNまた
はwBN基焼結体については多くの提案がなされ、
また焼結体工具も市販されている。例えば特開昭
48−17503号公報にはcBN−鉄属金属系焼結体、
特公昭57−49621号公報にはcBN−セラミツク系
焼結体が記載されている。また特公昭50−5680号
公報、特公昭50−39444号公報にはwBN単独ある
いはwBNとcBNとの混合焼結体が記載されてい
る。更に特公昭58−23459号公報、特公昭58−
32225号公報、特公昭58−56018号公報、特公昭59
−4501号公報にはcBNとwBNの両者を含有し、
結合相としてセラミツクまたは金属を用いた焼結
体が開示されている。一方特開昭59−64737号公
報にはcBNとwBNの両者を含有し、結合相とし
てはセラミツクスまたは金属を用いると同時に、
cBNの平均粒子径がwBNの平均粒子径の5倍以
上である焼結体が提案されている。 尚市販の焼結体工具にはcBN−金属系、cBN
−セラミツク系、cBN−wBN−セラミツク−金
属系などがある。 (発明が解決しようとする問題点) 然るにcBNは粒子形状が鋭い角や稜を有する
ので切削性は高いが、単結晶であるためにへき開
性を伴ない欠け易く、被削材面粗度も悪い。また
wBNは数10nmの微結晶からできたブロツキーな
多結晶粒子(0.1μm〜数10μm)であり、粒子表
面は細かい微構造を有しているため、切削性は低
いが、へき開性がなく靱性は他界。また被削材面
粗度も良い。 従つて前述の過去における特許出願内容および
市販焼結体においてはcBN単独系には靱性に問
題があり、wBN単独系には切削性に問題がある。
またcBN−wBN混合系については特開昭59−
64737号公報に開示されたものを除いて含有比率
だけを議論しており、粒度については何ら触れて
いない。従つて特性上極めて悪い場合も含むこと
になり適切でない。特開昭59−64737号公報に記
載されたものもcBNの平均粒子系がwBNのそれ
よりも5倍以上と規定しているだけであり、焼結
体の強化条件としては不充分である。 また結合相においても従来の焼結体は炭化物、
窒化物などのセラミツクやCo,Niなどの金属を
主体としたものであり高温での化学安定性に欠け
る点があつた。 (問題点を解決するための手段) cBNおよびwBNは前述のごとくダイヤモンド
に次ぐ高硬度を有しており極めて優秀な工具材料
である。しかしそれぞれ長短を有している。即ち
cBNについては切削性、高温での耐酸化性は高
いが、へき開性があり靱性が低い。wBNについ
ては靱性は高いが、切削性、耐熱性(700℃以上
でhBNに転換)が低い。鉄系高硬度材を高速切
削する場合には刃先は極めて高温となるため
cBN焼結体にとつて高温での化学的安定性は重
要な因子である。そのうえ断続切削の場合には強
度と靱性の双方が要求される。こうした切削環境
においては前述のように、従来提案されている
cBN焼結体またはcBNとwBNの混合焼結体から
つくられた工具では不充分であり、また市販の金
属Coを結合材としたものやTiC,TiNなどの周
期律表第a,a族遷移金属の炭化物、窒化物
を結合材としたものでは耐摩耗性、靱性共に不足
である。 現在市販されている金属AlまたはCoを結合材
とし、cBNが80〜90VOl%以上のcBN高含有タ
イプ焼結体は、硬さがH.m.V.4000と高いにもか
かわらず、切削時に刃先が高温となることによ
り、結合相金属が軟化するため一般的に高硬度焼
入鋼材に対しては靱性はあるが耐摩耗性が悪い。
これに対してTiC,TiNなどの炭化物、窒化物を
主体としたセラミツクを結合材とするものは焼入
鋼材に対して耐摩耗性、靱性共に金属を結合材と
したものに比べて良好な性能を示す。 そこでわれわれとしては焼入鋼材に対する切削
寿命が大幅に向上した焼結体を実現するために前
述のセラミツクを結合材とした焼結体を改良する
方向で検討した。周期律表第a,a族遷移金
属の炭化物、窒化物を結合材とする焼結体の焼入
鋼材に対する耐摩耗性、靱性は第1図に示すよう
にcBN含有量が増えるにつれて硬さが上昇する
と共に耐摩耗性、靱性が向上するが、高圧相窒化
硼素の体積%が50〜70%でピークとなりそれ以上
になると低下傾向となる。 基本的には高圧相窒化硼素の割合が増大して硬
さが上昇すれば耐摩耗性および破壊強度が向上す
るので耐チツピング性も向上するわけである。し
かし第4図の顕微鏡組織の模式図からわかるよう
に、cBN粒子の分離度がC領域になると悪くな
り、cBN粒子相互の接着部の面積が増大する。
この接着部は焼結性が悪いために工具として使用
時に脱落しやすい。このため接着部が多いほど即
ちC領域でcBN%が高いほど耐摩耗性、耐チツ
ピング性が悪くなる。以上の内容が、従来のセラ
ミツクを結合材とする焼結体においてcBNの最
適VOl.%を50〜70%とした理由である。しかし
cBN粒子相互の分離度さえよければ更に切削寿
命の向上が期待できる。 そこでわれわれは従来の最適cBN%のもの
(B領域)に微粒の多結晶質ウルツ鉱型BNを適
量添加することにり切削寿命の改善を試みた。そ
の結果添加するwBNの量と粒度および耐熱性の
高い結合材の組合わせを選定することにより切削
耐久性が大幅に向上する事実を見出した。これは
第4図のB1に示されるようなBN粒子の分布にな
つているものと思われる。即ちcBN粒子は相互
に接着しない範囲で最大限に含有された状態(50
〜70VOl.%)となつており且つcBN粒子間の結
合相には微粒のwBNが分離度が悪化しない範囲
で分散した状態なつている。このため切削寿命に
対する最適BN%を高含有側で選択することがで
き、従つて硬さを高くできることになり耐摩耗
性、耐チツピング性の絶対値の向上が計れる。更
に結合相中に分散した微粒wBNは分散強化因
子となりまた表面に微構造を有する強靱な粒子
であるのでクラツク伝播を阻止する作用をなし破
壊靱性向上因子となる。次に、結合相硬質成分の
効果について述べる。 cBNは前述のごとく工具材料としてはダイヤ
モンドに次ぐ高硬度を有しており、また高温での
耐酸化性、耐摩耗性も高く、鉄系に対する高速切
削用硬質成分としては最も優れたものである。こ
うした高温でのcBNの優れた特性を可及的に持
続させるためには、焼結体の結合相硬質成分もま
た同様な特性を有するものでなければならない。
高硬度材や難削材を高速切削する場合、刃先は極
めて高温(〜1000℃)となるためcBN焼結体工
具にとつて高温での化学的安定性は最も重要な因
子である。然るに結合相強化成分として添加する
wBNはcBNに比べて耐熱性がやや劣るといわれ
ている。則ち逆変態開始温度をみると、cBNは
1400℃以上であるのに対してwBNは700℃以上で
ある。この添加wBNの耐熱性を補強する意味に
おいても結合相硬質成分の耐熱性を増大する必要
がある。 そこでわれわれは炭化物系、窒化物、炭窒化物
系あるいは酸化物系といつた従来の一元系ないし
は二元系の結合相成分だけではなく、炭窒酸化物
固溶体を主成分とし、前記した従来の結合相成分
を含む混合系を用いることを考案した。この場合
に従来のセラミツクの結合材の中では比較的良好
な特性を示すが、尚高温安定性が不充分なTi
(CxNy)に着目した。Ti(CxNy)に酸化物の特
性を付与すれば、高温化学安定性の向上が期待で
きる。しかし単に酸化物を混合物として加えたの
では、粒界の影響や酸化物単体としての脆さから
靱性が悪くなるので、酸素を固溶した固溶体化合
物をつくることを企図した。この方法として
TiC,TiNと結晶構造が同一(Nacl型立方晶)
で全率固溶体を形成するTiOに注目した。TiOは
第5図のΔGf・−T(℃)線図で明らかなように
TiC,TiNよりも安定でAl2O3に匹敵する熱力学
的安定性を有する。そこでTiC,TiN,TiOを混
合して高温で反応させ三元固溶体を作製し所定の
組成のTi(CxNyOz)をつくり、これを結合材の
主成分とすることを考えた。従来TiC−Tin−
TiO系については、研究報告は少なくわずかに
(R.Kieffer)らの報告(Monataherte fur
Chemie,Band 103,1130〜1137,1972)があ
り、これによれば三化合物は各々任意の割合で相
互に固溶し、生成する固溶体の格子常数は第6図
に示す等格子常数線図のようになるとある。切削
工具用焼結体に関して、粉末治金業界において
は、一般的に酸素を焼結体に投入することは焼結
性を悪化させ、焼結体を劣化させるという思想が
常識であるが、われわれの実験結果によれば、第
7図に示したようにTi(CxNyOz)におけるOの
モル分率Zの値が0.01〜0.2の範囲においては耐
摩耗性、靱性を維持して更に耐クレータ性が極め
て向上するという驚くべき事実が見出された。 適用分野によつては前記Ti(CxNyOz)(0.01≦
z≦0.2)を主成分(結合相中の体積で50〜99%)
とし、TiC,WC,TaC,NbC,TiN,TaNの中
の1種または2種以上の混合物を加えた成分系を
用いることも可能である。 即ち耐衝撃性を特に要求される場合には、前記
Ti(CxNyOz)と炭化物(WC,TaC)、窒化物
(TiN,TaN)、窒素化物(TiN(CN),Ta(CN)
の中の1種または2種以上との混合系が有効であ
り、また耐摩耗性を特に要求される場合には前記
Ti(CxNyOz)と炭化物(TiC)との混合系が有
効であり更に耐溶着性が特に要求される場合には
前記Ti(CxNyOz)と窒化物(TiN,TaN)、炭
窒化物(Ti(CN))、窒酸化物(Ti(NO))の中の
1種または2種との混合系が有効である。 次に焼結性を高める意味でAl,Fe,Co,Niの
中の1種または2種以上の金属を添加してもよく
またこれらの金属とcBNまたはwBNもしくは前
記結合相セラミツク成分から生じると考えられる
炭素、窒素、酸素及び化学量論上過剰な金属成分
とが反応して生成する中間化合物またはそれらの
相互固溶体化学物を焼結体中に含むものであつて
もよい。 以上のように微粒wBNによる分散強化の効果
と耐熱性の高い結合相硬質成分による効果の相剰
作用により、本発明焼結体が従来のcBN焼結体
よりも大幅に耐摩耗性、耐チツピング性が向上し
ているものと考えられる。 次に限定条件を設定した理由について述べる。
高圧相窒化硼素と結合相硬質成分との配合比は適
用条件によつて広範に変えることができ、高圧相
窒化硼素を体積比で30〜80%まで選定できる。焼
結体工具としての最低限の強度を維持するために
高圧相窒化硼素の量は体積比で30%は必要であ
り、また80%以上になると靱性低下が著しいこと
が実験の結果明らかになつた。次に前記高圧相窒
化硼素はcBNとwBNとからなり、それらの粒度
と体積比は耐摩耗性と耐チツピング性のどちらを
重視するかによつて種々変えることができ、高圧
相窒化硼素に占める割合で、cBNは平均粒子径
5〜15μmで60〜95、wBNは平均粒子径5μm以下
で5〜40%の範囲で選定できる。工具として必要
な切削性を保持するために、高圧相窒化硼素に占
める割合でcBNは60%以上、wBNは40%以下で
なければならない。また従来のcBN焼結体に比
べて耐摩耗性及び耐チツピング性を良好ならしめ
るためには前記割合でcBNは95%以下、wBNは
5%以上とする必要がある。 次に平均粒子径についてであるが、cBN5μm
以下だと切れ味が悪くなりまた15μm以上だと単
結晶としてのへき開性が生じるので靱性が低下す
る。wBNは5μmを越えると切削性の低下が著し
い。従つてcBNは5〜15μm、wBNは0〜5μmと
する必要がある。 結合相硬質成分であるTi(CxNyOz)の酸素含
有量を示すZについては、これは余り少ないと耐
クレータ性の向上という効果は表われず、また多
すぎると焼結性を悪くする。0.01≦Z≦0.2であ
れば、最も好ましくは0.01≦Z≦0.05であれば酸
素含有の効果を損なうことなく高強度の焼結体が
得られる。またx+yについては少なすぎると耐
摩耗性が悪化する。従つてすくなくともmol.%
で50%以上は必要である。またxについては、少
なすぎると耐摩耗性が低下し、多すぎると靱性が
悪化する。このため0.1≦x≦0.4とした。yにつ
いては、0.6未満だと靱性向上効果がなく、0.9を
越えると脱窒による脆化や耐クレータ性の悪化に
つながる。従つて0.6≦y≦0.9とした。また結合
相中に占めるTi(CxNyOz)の割合が少なすぎる
と硬さが低下し、強度不足が生じるため体積%で
50%以上含有する必要がある。 高圧相窒化硼素のhBNへの逆変態を防止する
ために、高圧相窒化硼素に対して溶解性を有する
触媒と考えられているAlを添加する必要がある。
また焼結体は工具化する便宜上超硬合金と積層し
て焼結する場合が多いわけであるが、その際熱膨
張率のミスマツチによりクラツクが入りやすい。
これを防止する意味で、熱膨張率の急激な変化を
緩和するためにFe,Co,Niの中の1種または2
種以上を添加する必要がある。Alについては、
その添加量が結合相中に占める割合で1体積%未
満では、触媒効果が不十分であり、また50体積%
を越えると焼結体の硬さ低下が著しく工具用とし
て不適当となる。 次にFe,Co,Niについては、それらの添加量
が結合相中に占める割合で1体積%未満では高圧
相窒化硼素焼結体と積相焼結する超硬基盤相との
熱膨張率のミスマツチに対する緩和作用が不十分
であり、また50体積%を越えるとAlと同様に硬
さ低下が著しく工具用焼結体としては不適当とな
る。 以上の理由により、Al,Fe,Co,Niの中の1
種又は2種以上についての含有量を結合相中に占
める割合で1〜50体積%とした。 結合相強化に及ぼすwBN粒子の粒子径と粒子
間距離の関係については次のように考えられる。
即ち高圧相窒化硼素基焼結体は一種のセラミツク
スと考えることができる。セラミツクスの強度を
改善するには材料中にエネルギー散逸源としての
不均質相を分散または析出させる方法即ち粒子分
散セラミツクスとする方法が有効であるとされて
いる。本発明焼結体はcBNの粗い粒子間の結合
相セラミツクスマトリツクス中にwBN粒子が分
散した一種の粒子分散セラミツクスといえる。粒
子分散セラミツクスの強度特性に影響を及ぼす因
子には(1)分散粒子とマトリツクスの界面の結合状
態(2)分散粒子とマトリツクスの間の性質のミスマ
ツチ(3)分散粒子の大きさ、分散粒子間の距離など
の幾何学的因子がある。(1),(2)を一定とし(3)によ
る靱性向上について検討してみる。 Griffithの破壊基準によれば脆性材料を破壊す
るのに必要な応力σfは次式で与えられる。 ここではCは不安定破壊が生ずる際の臨界クラ
ツクの大きさ、Γは破壊エネルギー、Yは無欠元
定数、E′はヤング率、KIcは臨界応力拡大係数で
破壊靱性と呼ばれる。 KIc=√2′ ……(b) で実際上の便宜から靱性の尺度として用いられ
る。以上よりΓを大きくすればσfを大きくできる
ことがわかる。また本題の粒子分散セラミツクス
における靱性向上機構としてはLange−Evansの
“クラツクの湾曲”理論の適用が妥当と考えられ
る。その理論は脆性マトリツクス中に存在する分
散粒子によつて主クラツクの進展が一時的に阻止
され、クラツク前縁が粒子間で半だ円形に曲げら
れる時に線張力効果が生じて破壊エネルギーが増
加し強度も上昇するというものである。(第8図) Langeは分散粒子相を含む脆性材料の破壊エネ
ルギーは次のように表わされるとした。 Γ=Γm+τ/d ……(c) ここでτはクラツク前縁の線張力、dは粒子間
距離であり、Γmはマトリツクスの破壊エネルギ
ーである。 EvansはこのLangeの理論を発展させ第8図に
示したような2次元モデルを用いて靱性増加の寄
与を粒径と粒子間距離の比(2ro/d)の関数と
して見積もることが可能であるとした。但し分散
粒子の靱性がマトリツクスのそれに比べて大き
く、粒子はクラツクに取り囲まれる前に破壊した
りマトリツクスから離脱したりせずに有効にクラ
ツクの進行を阻止するという仮定をおくものであ
る。即ちクラツクは強靱な粒子によつて一時的に
ピン止めされるというものである。しかしクラツ
ク前縁が充分に湾曲する前に粒子が破壊したり、
マトリツクス−粒子界面の破壊が生じる場合には
靱性上昇は“強い粒子”の存在を仮定した場合ほ
どには大きくはならない。即ち線張力効果が靱性
上昇に寄与する程度は分散粒子が“強い粒子”と
して作用するか“弱い粒子として作用するかによ
つて大きく異なるわけである。本発明焼結体にお
ける分散粒子としてのwBNの場合はまさにこの
“強い粒子”に相当する。即ちwBNは硬さ、ヤン
グ率がダイヤモンドに次いで高く且つその粒子は
10ηmの微結晶の集合体からなる多結晶粒子であ
るため、へき開性がなく、物質中で最も高強度で
高靱性の粒子と考えられる。尚且つ表面に微構造
を有するので破壊エネルギーの散逸源ないしクラ
ツクに対する鈍化作用という意味で好適なもので
ある。 以上のような構想に基いてwBN粒子分散によ
るcBN焼結体の強靱化を企図したわけである。
この目的からしてwBNの粒子径はcBNの粒子径
よりも小さくなければならない。 切削性を維持するためにはcBNの粒子径は
5μm以上でなければならない。またへき開性の増
大により耐チツピング性が悪化するのを防ぐため
にはcBNの粒子径は15μm以下でなければならな
い。以上よりwBNの粒子径は0〜5μmに設定す
る必要がある。 次に種々の量、粒度のwBNを添加したcBN焼
結体を作成し耐チツピング性を調べたところ下記
に示すような驚くべき知見を得た。wBN粒子の
半径をro、平均粒子間距離をdとすると前記
2ro/dと耐チツピング性は第9図のような対応
関係を有しており0.2≦2ro≦d≦2において好ま
しくは2ro/d=1において良好な耐チツピング
性を示すことがわかる。ここで2ro/d<0.2にお
いては分散強化作用が著しく低下するために切削
耐久性の向上が望めない。また2ro/d>2にお
いてはwBN粒子間の分離度が悪くなり耐チツピ
ング性の低下をもたらす。従つて0.2≦2ro/d≦
2が適用範囲となる。また高圧相窒化硼素の含有
量によつて工具としての寿命は大きく変化する
が、これについては30〜80体積%が適切であるこ
とは前述の通りである。 次にwBNの含有量によつても耐チツピング性
は変化する。高圧相窒化硼素中に占める割合で
wBNが5体積%以下では分散粒子としての効果
がなくまた40体積%以上ではcBN含有量が少な
くなるために切削性が著しく低下する。従つて
wBN含有量については前記割合で5〜40体積%
が好適な範囲である。(第10図)これに対応し
てcBNは前記割合において60〜95体積%が適切
な含有量である。 実施例 1 平均粒子3〜8μmのcBN粉末と平均粒度0〜
3μmのwBN粉末とを合わせて70体積%と種々の
結合材組成からなる第一表に示すような混合粉末
を作成した。
(Industrial Application Field) The present invention uses both cubic boron nitride (hereinafter referred to as cBN) and wurtzite type boron nitride (hereinafter referred to as WBN), and a binder mainly composed of a heat-resistant ceramic composition. The present invention relates to a sintered body for tools suitable for cutting hardened steel materials and difficult-to-cut materials. (Conventional technology) High-pressure phase boron nitride is hexagonal boron nitride (hereinafter referred to as
cBN, which is obtained by synthesizing hBN (referred to as hBN) using a catalyst such as an alkali metal under static ultra-high pressure,
There is wBN, which is obtained by the impact synthesis method in which hBN is subjected to ultra-high pressure of several 100 kilobases using the explosive force of an explosive to cause direct dislocation. cBN and wBN have recently been in the spotlight as hard materials with hardness second only to diamond, and synthetic powders and sintered tools are commercially available. Diamond is the hardest substance and has the highest thermal conductivity, making it an excellent tool material, but the drawback is that it easily reacts chemically with ferrous metals at high temperatures, making it ineffective for cutting ferrous materials. Tool materials currently used for high-efficiency cutting of ferrous materials include TiC or TiN-based cermets, Al 2 O 3 or Al 2 O 3 -TiC-based ceramics, and cBN or cBN.
-wBN-based sintered tool is used. However, in response to the demand for high-speed, stable cutting of difficult-to-cut materials such as high Ni-based heat-resistant materials and hard materials exceeding HRC 45 , there are tools that can provide practical performance other than cBN or cBN-wBN-based sintered tools. I can't find it. Under these circumstances, high-pressure phase boron nitride-based sintered tools are attracting attention, and there are growing expectations for the emergence of tools with even better tool life. Many proposals have been made for cBN or wBN-based sintered bodies,
Sintered tools are also commercially available. For example, Tokukai Akira
Publication No. 48-17503 discloses cBN-ferrous metal-based sintered body,
Japanese Patent Publication No. 57-49621 describes a cBN-ceramic sintered body. Furthermore, Japanese Patent Publications No. 50-5680 and Japanese Patent Publication No. 50-39444 describe wBN alone or a mixed sintered body of wBN and cBN. Furthermore, Special Publication No. 58-23459, Special Publication No. 58-23459,
Publication No. 32225, Special Publication No. 58-56018, Special Publication No. 59 Sho.
-4501 publication contains both cBN and wBN,
A sintered body using ceramic or metal as a binder phase is disclosed. On the other hand, JP-A-59-64737 contains both cBN and wBN, uses ceramics or metal as the binder phase, and
A sintered body in which the average particle size of cBN is five times or more that of wBN has been proposed. Commercially available sintered tools include cBN-metal type and cBN.
-ceramic type, cBN-wBN-ceramic-metal type, etc. (Problem to be solved by the invention) However, cBN has a particle shape with sharp corners and edges, so it has high machinability, but because it is a single crystal, it is easily chipped due to cleavage, and the surface roughness of the workpiece material is also poor. bad. Also
wBN is a blocky polycrystalline particle (0.1 μm to several tens of μm) made of microcrystals of several tens of nanometers, and the particle surface has a fine microstructure, so it has low machinability, but it has no cleavage and has low toughness. Another world. The surface roughness of the workpiece material is also good. Therefore, in the content of the above-mentioned past patent applications and commercially available sintered bodies, the cBN-only system has a problem in toughness, and the wBN-only system has a problem in machinability.
Regarding cBN-wBN mixed system, JP-A-59-
Except for the one disclosed in Publication No. 64737, only the content ratio is discussed, and particle size is not mentioned at all. Therefore, it is not appropriate because it includes cases where the characteristics are extremely poor. The method described in JP-A-59-64737 only stipulates that the average particle size of cBN is 5 times or more that of wBN, which is insufficient as a condition for strengthening a sintered body. Also, in the binder phase, conventional sintered bodies are made of carbide,
It is mainly made of ceramics such as nitrides and metals such as Co and Ni, so it lacks chemical stability at high temperatures. (Means for solving the problem) As mentioned above, cBN and wBN have a hardness second only to diamond and are extremely excellent tool materials. However, each has its advantages and disadvantages. That is,
Although cBN has high machinability and high oxidation resistance at high temperatures, it has cleavability and low toughness. Although wBN has high toughness, it has low machinability and heat resistance (converts to hBN at temperatures above 700°C). When cutting high-hardness steel materials at high speeds, the cutting edge becomes extremely hot.
Chemical stability at high temperatures is an important factor for cBN sintered bodies. Moreover, both strength and toughness are required in the case of interrupted cutting. In such a cutting environment, as mentioned above, conventionally proposed
Tools made from a cBN sintered body or a mixed sintered body of cBN and wBN are insufficient, and tools made from commercially available metal Co as a binder or those made from tools that are transitional to groups a and a of the periodic table, such as TiC and TiN, are insufficient. Materials using metal carbides or nitrides as binders lack both wear resistance and toughness. Currently commercially available cBN-rich sintered bodies that use metallic Al or Co as a binder and have cBN of 80 to 90 VOl% or more have a high hardness of HmV4000, but the cutting edge becomes hot during cutting. As a result, the binder phase metal is softened, and therefore, although high hardness hardened steel generally has toughness, it has poor wear resistance.
On the other hand, ceramics mainly composed of carbides and nitrides such as TiC and TiN are used as a binder, and have better performance against hardened steel in terms of wear resistance and toughness than those made of metals as a binder. shows. Therefore, in order to create a sintered body that has a significantly improved cutting life for hardened steel, we have investigated ways to improve the sintered body using ceramic as a binder. The wear resistance and toughness of sintered bodies made of carbides and nitrides of group A and A transition metals of the periodic table as binders for hardened steel are shown in Figure 1. As the cBN content increases, the hardness decreases. As it increases, wear resistance and toughness improve, but the volume percent of high-pressure phase boron nitride reaches a peak when it is 50 to 70%, and when it exceeds that, it tends to decrease. Basically, if the proportion of high-pressure phase boron nitride increases and the hardness increases, the wear resistance and fracture strength will improve, so the chipping resistance will also improve. However, as can be seen from the schematic diagram of the microscopic structure in FIG. 4, the degree of separation of the cBN particles becomes worse in the C region, and the area of the bonded portions between the cBN particles increases.
This adhesive part has poor sintering properties, so it tends to fall off when used as a tool. For this reason, the more adhesive parts there are, that is, the higher the cBN% in the C region, the worse the wear resistance and chipping resistance become. The above is the reason why the optimum VOl.% of cBN is set at 50 to 70% in a conventional sintered body using ceramic as a binder. but
If the degree of separation between cBN particles is good, further improvement in cutting life can be expected. Therefore, we attempted to improve the cutting life by adding an appropriate amount of fine-grained polycrystalline wurtzite-type BN to the conventional optimum cBN% (region B). As a result, we found that cutting durability can be significantly improved by selecting a combination of the amount of wBN added, particle size, and binder with high heat resistance. This seems to be due to the distribution of BN particles as shown in B1 of Figure 4. In other words, cBN particles are contained to the maximum extent (50
~70 VOl.%), and fine particles of wBN are dispersed in the binder phase between the cBN particles to the extent that the degree of separation is not deteriorated. Therefore, the optimal BN% for cutting life can be selected on the high content side, and therefore the hardness can be increased, and the absolute values of wear resistance and chipping resistance can be improved. Furthermore, the fine particles of wBN dispersed in the binder phase act as a dispersion strengthening factor, and since they are tough particles with a microstructure on their surface, they act to prevent crack propagation and become a factor in improving fracture toughness. Next, the effect of the hard component of the binder phase will be described. As mentioned above, cBN has the second highest hardness as a tool material after diamond, and also has high oxidation and wear resistance at high temperatures, making it the best hard component for high-speed cutting of iron-based materials. . In order to maintain the excellent properties of cBN as long as possible at such high temperatures, the hard component of the binder phase of the sintered body must also have similar properties.
When cutting high-hardness or difficult-to-cut materials at high speed, the cutting edge becomes extremely hot (~1000°C), so chemical stability at high temperatures is the most important factor for cBN sintered tools. However, it is added as a binder phase strengthening component.
It is said that wBN has slightly lower heat resistance than cBN. In other words, when looking at the reverse transformation start temperature, cBN is
It is over 1400℃, while wBN is over 700℃. It is also necessary to increase the heat resistance of the hard component of the binder phase in order to reinforce the heat resistance of the added wBN. Therefore, we have developed not only conventional one-component or binary binder phase components such as carbides, nitrides, carbonitrides, or oxides, but also carbonitride oxide solid solution as the main component. We devised the use of a mixed system containing bonded phase components. In this case, Ti, which exhibits relatively good properties among conventional ceramic binders but has insufficient high temperature stability,
We focused on (CxNy). Adding oxide properties to Ti(CxNy) can be expected to improve its high-temperature chemical stability. However, simply adding oxides as a mixture would result in poor toughness due to the influence of grain boundaries and the brittleness of the oxide alone, so we planned to create a solid solution compound containing oxygen as a solid solution. As this method
Crystal structure is the same as TiC and TiN (Nacl cubic crystal)
We focused on TiO, which forms a complete solid solution. As is clear from the ΔGf・-T(℃) diagram in Figure 5, TiO is
It is more stable than TiC and TiN and has thermodynamic stability comparable to Al 2 O 3 . Therefore, we considered mixing TiC, TiN, and TiO and reacting them at high temperatures to create a ternary solid solution, creating Ti (CxNyOz) with a specific composition, and using this as the main component of the binder. Conventional TiC−Tin−
Regarding the TiO system, there are few research reports (R. Kieffer) et al.
Chemie, Band 103, 1130-1137, 1972), according to which the three compounds form a solid solution with each other in arbitrary proportions, and the lattice constant of the resulting solid solution is as shown in the isolattice constant diagram shown in Figure 6. It is said that it becomes like this. Regarding sintered bodies for cutting tools, it is common knowledge in the powder metallurgy industry that adding oxygen to the sintered body worsens the sinterability and deteriorates the sintered body. According to the experimental results shown in Figure 7, when the mole fraction Z of O in Ti(CxNyOz) is in the range of 0.01 to 0.2, wear resistance and toughness are maintained and crater resistance is improved. The surprising fact was discovered that it improved significantly. Depending on the field of application, the above Ti(CxNyOz) (0.01≦
z≦0.2) as the main component (50-99% by volume in the binder phase)
It is also possible to use a component system in which one or a mixture of two or more of TiC, WC, TaC, NbC, TiN, and TaN is added. That is, when impact resistance is particularly required, the above-mentioned
Ti (CxNyOz), carbides (WC, TaC), nitrides (TiN, TaN), nitrides (TiN (CN), Ta (CN))
A mixed system with one or more of the above is effective, and when wear resistance is particularly required, the above-mentioned
A mixed system of Ti (CxNyOz) and carbide (TiC) is effective, and when welding resistance is particularly required, the above-mentioned Ti (CxNyOz) and nitride (TiN, TaN), carbonitride (Ti(CN) )), a mixed system with one or two of nitride oxides (Ti(NO)) is effective. Next, in order to improve sinterability, one or more metals selected from Al, Fe, Co, and Ni may be added. The sintered body may contain an intermediate compound formed by the reaction of possible carbon, nitrogen, oxygen, and a stoichiometrically excess metal component, or a mutual solid solution chemical thereof. As described above, due to the mutual effect of the dispersion strengthening effect of fine grained wBN and the effect of the hard component of the binder phase with high heat resistance, the sintered body of the present invention has significantly higher wear resistance and chipping resistance than the conventional cBN sintered body. It is thought that the performance has improved. Next, we will discuss the reasons for setting the limiting conditions.
The blending ratio of the high-pressure phase boron nitride and the binder phase hard component can be varied widely depending on the application conditions, and the high-pressure phase boron nitride can be selected from 30 to 80% by volume. Experiments have revealed that the amount of high-pressure phase boron nitride needs to be 30% by volume in order to maintain the minimum strength as a sintered tool, and that when it exceeds 80%, the toughness decreases significantly. Ta. Next, the high-pressure phase boron nitride is composed of cBN and wBN, and their particle size and volume ratio can be varied depending on whether wear resistance or chipping resistance is important. In terms of percentage, cBN can be selected in the range of 60 to 95% with an average particle size of 5 to 15 μm, and wBN can be selected in the range of 5 to 40% with an average particle size of 5 μm or less. In order to maintain the machinability required for a tool, cBN must account for 60% or more of the high-pressure phase boron nitride, and wBN must account for 40% or less. In addition, in order to achieve better wear resistance and chipping resistance than conventional cBN sintered bodies, the above ratios of cBN need to be 95% or less and wBN need to be 5% or more. Next, regarding the average particle size, cBN5μm
If it is less than 15 μm, it will not cut well, and if it is more than 15 μm, it will cleave as a single crystal, resulting in a decrease in toughness. When wBN exceeds 5 μm, the machinability deteriorates significantly. Therefore, cBN needs to be 5 to 15 μm, and wBN needs to be 0 to 5 μm. Regarding Z, which indicates the oxygen content of Ti (CxNyOz), which is a hard component of the binder phase, if it is too small, the effect of improving crater resistance will not be exhibited, and if it is too large, the sinterability will be deteriorated. If 0.01≦Z≦0.2, most preferably 0.01≦Z≦0.05, a high-strength sintered body can be obtained without impairing the effect of oxygen inclusion. Moreover, if x+y is too small, wear resistance will deteriorate. Therefore, at least mol.%
50% or more is required. Regarding x, when it is too small, wear resistance decreases, and when it is too large, toughness deteriorates. Therefore, it was set as 0.1≦x≦0.4. Regarding y, if it is less than 0.6, there will be no toughness improvement effect, and if it exceeds 0.9, it will lead to embrittlement due to denitrification and deterioration of crater resistance. Therefore, it was set as 0.6≦y≦0.9. In addition, if the proportion of Ti (CxNyOz) in the binder phase is too small, the hardness will decrease and the strength will be insufficient.
Must contain 50% or more. In order to prevent the reverse transformation of high-pressure phase boron nitride to hBN, it is necessary to add Al, which is considered to be a catalyst that is soluble in high-pressure phase boron nitride.
In addition, sintered bodies are often laminated with cemented carbide and sintered for convenience in making tools, but in this case cracks are likely to occur due to mismatch in thermal expansion coefficient.
In order to prevent this, one or two types of Fe, Co, and Ni are used to alleviate rapid changes in the coefficient of thermal expansion.
It is necessary to add more than seeds. Regarding Al,
If the amount added is less than 1% by volume in the binder phase, the catalytic effect will be insufficient;
If it exceeds this, the hardness of the sintered body decreases significantly and becomes unsuitable for use as a tool. Next, regarding Fe, Co, and Ni, if the amount of Fe, Co, and Ni added is less than 1% by volume in the binder phase, the coefficient of thermal expansion between the high-pressure boron nitride sintered body and the cemented carbide base phase to be multiphase sintered will decrease. The mitigation effect against mismatch is insufficient, and if it exceeds 50% by volume, the hardness decreases significantly like Al, making it unsuitable for use as a sintered body for tools. For the above reasons, one of Al, Fe, Co, and Ni
The content of the species or two or more species in the binder phase was 1 to 50% by volume. The relationship between the particle size of wBN particles and the interparticle distance on the strengthening of the binder phase can be considered as follows.
In other words, the high-pressure phase boron nitride-based sintered body can be considered a type of ceramic. In order to improve the strength of ceramics, it is believed that a method of dispersing or precipitating a heterogeneous phase as an energy dissipation source in the material, ie, a method of creating particle-dispersed ceramics, is effective. The sintered body of the present invention can be said to be a type of particle-dispersed ceramic in which wBN particles are dispersed in a binder phase ceramic matrix between coarse cBN particles. Factors that affect the strength properties of particle-dispersed ceramics include (1) the bonding state of the interface between the dispersed particles and the matrix, (2) the mismatch in the properties between the dispersed particles and the matrix, and (3) the size of the dispersed particles and the distance between the dispersed particles. There are geometric factors such as the distance between Let us consider the improvement in toughness due to (3) while keeping (1) and (2) constant. According to Griffith's failure criterion, the stress σf required to break a brittle material is given by the following equation. Here, C is the size of the critical crack when unstable fracture occurs, Γ is the fracture energy, Y is the integrity constant, E' is Young's modulus, and KIc is the critical stress intensity coefficient, which is called fracture toughness. KIc=√2′...(b) It is used as a measure of toughness for practical convenience. From the above, it can be seen that σf can be increased by increasing Γ. In addition, it is considered appropriate to apply Lange-Evans' ``crack curvature'' theory as the toughness improvement mechanism in the subject particle-dispersed ceramics. The theory is that the propagation of the main crack is temporarily inhibited by the dispersed particles present in the brittle matrix, and when the leading edge of the crack is bent into a semi-ellipse between the particles, a linear tension effect occurs and the fracture energy increases. The strength will also increase. (Fig. 8) Lange stated that the fracture energy of a brittle material containing a dispersed particle phase is expressed as follows. Γ=Γm+τ/d...(c) Here, τ is the linear tension at the leading edge of the crack, d is the interparticle distance, and Γm is the fracture energy of the matrix. Evans developed Lange's theory and used a two-dimensional model as shown in Figure 8 to estimate the contribution to toughness increase as a function of the ratio of grain size to interparticle distance (2ro/d). And so. However, this is based on the assumption that the toughness of the dispersed particles is greater than that of the matrix, and that the particles effectively prevent the progression of cracks without breaking or separating from the matrix before being surrounded by cracks. That is, the crack is temporarily pinned down by the tough particles. However, the particle may break before the leading edge of the crack is sufficiently curved, or
If matrix-particle interface failure occurs, the increase in toughness will not be as great as if the presence of "strong particles" were assumed. In other words, the extent to which the linear tension effect contributes to an increase in toughness differs greatly depending on whether the dispersed particles act as "strong particles" or "weak particles." In this case, wBN corresponds to this "strong particle". In other words, wBN has the second highest hardness and Young's modulus after diamond, and the particle is
Since it is a polycrystalline particle consisting of an aggregate of 10 ηm microcrystals, it has no cleavage and is considered to be the strongest and toughest particle among substances. Furthermore, since it has a microstructure on its surface, it is suitable as a source of dissipation of fracture energy or as a blunting effect on cracks. Based on the above concept, we planned to strengthen the cBN sintered body by dispersing wBN particles.
For this purpose, the particle size of wBN must be smaller than that of cBN. In order to maintain machinability, the particle size of cBN must be
Must be 5μm or more. Furthermore, in order to prevent deterioration of chipping resistance due to increased cleavability, the particle size of cBN must be 15 μm or less. From the above, it is necessary to set the particle size of wBN to 0 to 5 μm. Next, cBN sintered bodies with various amounts and particle sizes of wBN added were prepared and their chipping resistance was investigated, and the following surprising findings were obtained. If the radius of wBN particles is ro and the average distance between particles is d, then the above
It can be seen that 2ro/d and chipping resistance have a corresponding relationship as shown in FIG. 9, and good chipping resistance is shown when 0.2≦2ro≦d≦2, and preferably when 2ro/d=1. Here, when 2ro/d<0.2, the dispersion strengthening effect is significantly reduced, and no improvement in cutting durability can be expected. Furthermore, when 2ro/d>2, the degree of separation between wBN particles deteriorates, resulting in a decrease in chipping resistance. Therefore, 0.2≦2ro/d≦
2 is the applicable scope. Further, the life of the tool varies greatly depending on the content of high-pressure phase boron nitride, but as described above, 30 to 80% by volume is appropriate for this. Next, the chipping resistance also changes depending on the wBN content. Percentage in high pressure phase boron nitride
If wBN is less than 5% by volume, it will not be effective as a dispersed particle, and if it is more than 40% by volume, the cBN content will decrease, resulting in a marked decrease in machinability. Accordingly
Regarding wBN content, the above ratio is 5 to 40% by volume.
is a suitable range. (Fig. 10) Correspondingly, the appropriate content of cBN is 60 to 95% by volume in the above ratio. Example 1 cBN powder with an average particle size of 3 to 8 μm and an average particle size of 0 to 8 μm
Mixed powders as shown in Table 1 were prepared, including 70% by volume of wBN powder of 3 μm and various binder compositions as shown in Table 1.

【表】 この混合粉末を外径17mm、厚さ1.5mmに型押し
成型し、Mo製の容器に入れた。この容器を真空
炉中で10-4torr以下の真空下で1100℃に60min保
持して脱ガスした。これをNacl製スリーブに装
入し、更にこれを黒鉛製のヒーター及びNacl製
の圧力媒体に組み込んだ。この圧力媒体をベルト
型超高圧焼結装置を用いて第2表で示した条件で
焼結した。得られた焼結体は外径15.8mm、厚さ
1.1mmであつた。
[Table] This mixed powder was pressed and molded to have an outer diameter of 17 mm and a thickness of 1.5 mm, and was placed in a Mo container. This container was degassed by holding it at 1100° C. for 60 minutes under a vacuum of 10 −4 torr or less in a vacuum furnace. This was placed in a sleeve made of Nacl, and this was further incorporated into a heater made of graphite and a pressure medium made of Nacl. This pressure medium was sintered using a belt-type ultra-high pressure sintering device under the conditions shown in Table 2. The obtained sintered body has an outer diameter of 15.8 mm and a thickness
It was 1.1mm.

【表】 これをダイヤモンド砥石で研削し、X線回析法
により同定したところ、配合成分以外にAは
TiB2,TC3Al、BはTaB、CはAlCo、DはNib
が同定された。また硬さ、2r/dを測定したとこ
ろ第二表のようになつた。更にこれを超硬台金に
ろう付しSNG432の形状のチツプとして切削テス
トに供したところ第2表のような工具寿命となり
市販の焼結体工具よりも優位であつた。 尚切削テストはSKD11(HRC62〜63)に対す
るフライス切削テスト(第11図)と浸炭焼入鋼
(SCM415,HRC62〜63)に対する連続切削テス
ト(第2図、第3図)と断続切削テスト(第3
図)の3とおりについて行つた。 実施例 2 Ti(C0.2N0.75O0.005),TiN,TiC,TiCN,
WC,Al,Fe,Coの中から選択した成分を第3
表に示すような種々の割合に配合、混合し、1200
℃で1時間の加熱処理を行ない半焼結体を作成し
た。これをボールミルで48時間粉砕し結合材とし
た。種々の粒度のcBN粉末及びwBN粉末と上記
結合材とを各種割合に混合し、この混合粉末から
実施例1と同様の方法により焼結体チツプを作成
し、切削テストを行なつたとっころ第4表のよう
な結果となり市販の焼結体工具よりも優位であつ
た。
[Table] When this was ground with a diamond grindstone and identified by X-ray diffraction, it was found that A was
TiB 2 , TC 3 Al, B is TaB, C is AlCo, D is Nib
was identified. In addition, the hardness, 2r/d, was measured and the results were as shown in Table 2. Furthermore, when this was brazed to a carbide base metal and subjected to a cutting test as a chip in the shape of SNG432, the tool life was as shown in Table 2, which was superior to commercially available sintered tools. The cutting tests include a milling test (Fig. 11) for SKD11 (HRC62-63), a continuous cutting test (Figs. 2 and 3) for carburized and hardened steel (SCM415, HRC62-63), and an interrupted cutting test (Fig. 3). 3
We followed the three methods shown in Figure). Example 2 Ti (C 0.2 N 0.75 O 0.005 ), TiN, TiC, TiCN,
The third component is selected from WC, Al, Fe, and Co.
Blend and mix in various proportions as shown in the table, 1200
A semi-sintered body was prepared by heat treatment at ℃ for 1 hour. This was ground in a ball mill for 48 hours and used as a binding material. CBN powder and wBN powder of various particle sizes and the above-mentioned binder were mixed in various proportions, and sintered chips were made from this mixed powder in the same manner as in Example 1, and a cutting test was conducted. The results shown in Table 4 were obtained, and the tool was superior to commercially available sintered tools.

【表】【table】

【表】【table】

【表】 実施例 3 第5表に示すような配合割合で各種粉末を混合
し、実施例2と同様の方法により、焼結体チツプ
を作成し、切削テストを行つたところ、第6表の
ような結果となり、市販の焼結体工具よりも優位
となつた。
[Table] Example 3 Various powders were mixed in the proportions shown in Table 5, sintered chips were prepared in the same manner as in Example 2, and a cutting test was conducted. These results were superior to commercially available sintered tools.

【表】【table】

【表】 実施例 4 第7表に示すような配合割合で各種粉末を混合
し、実施例2と同様の方法により、焼結体チツプ
を作成し、切削テストを行つたところ、第8表の
ような結果となり、市販品の焼結体工具よりも優
位なものが得られた。
[Table] Example 4 Various powders were mixed in the proportions shown in Table 7, sintered chips were prepared in the same manner as in Example 2, and a cutting test was conducted. As a result, the tool was superior to commercially available sintered tools.

【表】【table】

【表】 (発明の効果) 前記したように本発明の工具用焼結体は(1)第1
の硬質相であるcBNと第2の硬質相である微粒
wBNの混合系を用い且つそれらの粒度分布を最
適化することにより、耐チツピング製を損なわず
に耐摩耗性の向上を計つた。(2)結合相として酸素
を含有した炭窒化物(Ti(CxNyOz)η)を用い
ることにより耐熱性の向上を計つた。以上の2点
を主たる特長としており、従来の工具用焼結体に
比べて高温下での靱性、耐摩耗性に優れている。
即ち切削時に刃先が極めて高温となると同時に、
きびしい断続を伴なう切削用途例えば金型材料
(SKD11など)を焼入後フライス切削する場合あ
るいは複雑形状の浸炭焼入部品を断続切削する場
合において格段に優れた性能を発揮するものであ
り、更に結合金属として、4a,5a,6a族の炭化
物、窒化物例えばWCを用いた場合には耐衝撃製
が向上し、またTiNを添加した場合は耐溶着性
が向上する。 従つて靱性と耐摩耗性の双方が高度に要求され
る浸炭歯車の仕上加工用工具として好適な焼結体
となる。
[Table] (Effects of the invention) As mentioned above, the sintered body for tools of the present invention has (1) the first
cBN, which is the hard phase, and fine particles, which is the second hard phase.
By using a mixed system of wBN and optimizing their particle size distribution, we aimed to improve wear resistance without impairing chipping resistance. (2) Heat resistance was improved by using oxygen-containing carbonitride (Ti(CxNyOz)η) as a binder phase. With the above two main features, it has superior toughness and wear resistance at high temperatures compared to conventional sintered bodies for tools.
In other words, the cutting edge becomes extremely hot during cutting, and at the same time,
It exhibits extremely superior performance in cutting applications that involve severe interruptions, such as when milling mold materials (such as SKD11) after quenching, or when cutting carburized and hardened parts with complex shapes intermittently. Further, when a carbide or nitride of group 4a, 5a, or 6a, such as WC, is used as the bonding metal, impact resistance is improved, and when TiN is added, welding resistance is improved. Therefore, the sintered body is suitable as a finishing tool for carburized gears, which require both high toughness and wear resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は周期律表第a,a族遷移金属の炭
化物、窒化物等を結合材とするcBN焼結体にお
けるcBN含有量と耐摩耗性、耐チツピング性の
関係を示す図、第2図は焼入鋼材に対する耐摩耗
性テストのための旋削方法を示す概略図、第3図
は断続切削テスト方法を示す概略図、第4図は
cBN含有量と耐摩耗性との関係において、wBN
を添加した場合の耐摩耗性の変化の説明図、第5
図はTiC,Fe2O3,TiO,Al2O3,ΔGf・−T線
図、第6図はR.Kiefferらの報告によるTi
(CxNyOz)の等格子常数線図、第7図はTi
(CxNyOz)のzを変化させた場合のクレータ深
さと逃げ面摩耗量の比較図、第8図はLange−
Evansの“クラツクの湾曲”理論を示す模式図、
第9図はwBN粒子の半径と平均粒子間距離の比
と耐チツピング性の関係図、第10図は高圧相窒
化硼素中に占めるwBNの割合と耐チツピング性
の関係図、第11図イはSKD11(HRC62〜63)
に対するフライス切削テストの概略図、ロは摩耗
判決基準の説明図である。
Figure 1 is a diagram showing the relationship between cBN content and wear resistance and chipping resistance in a cBN sintered body using carbides, nitrides, etc. of transition metals of groups a and a of the periodic table as a binder, and figure 2 is a schematic diagram showing the turning method for wear resistance testing on hardened steel materials, Figure 3 is a schematic diagram showing the interrupted cutting test method, and Figure 4 is
In the relationship between cBN content and wear resistance, wBN
Explanatory diagram of changes in wear resistance when adding
The figure shows the TiC, Fe 2 O 3 , TiO, Al 2 O 3 , ΔGf・-T diagram, and Figure 6 shows the Ti
(CxNyOz) isolattice constant diagram, Figure 7 is Ti
Figure 8 is a comparison diagram of crater depth and flank wear amount when changing z of (CxNyOz).
Schematic diagram illustrating Evans's “Crack curvature” theory,
Figure 9 is a diagram showing the relationship between the radius of wBN particles and the average interparticle distance and chipping resistance, Figure 10 is a diagram showing the relationship between the ratio of wBN in the high-pressure phase boron nitride and chipping resistance, and Figure 11 A is SKD11 (HRC62~63)
A schematic diagram of the milling cutting test for 1.B is an explanatory diagram of the wear judgment criteria.

Claims (1)

【特許請求の範囲】[Claims] 1 構成成分が、主硬質相として高圧相窒化硼素
を30〜80体積%、残部は結合相として、Ti(CxNy
Oz)(但し0.1≦x≦0.4,0.6≦y≦0.9,0.01≦z
≦0.2,x+y+z=1でx,y,yは原子容量
比率またはモル分率を示す)とTiC,WC,
TaC,NbC,TiN,TaNの中の1種または2種
以上およびAl,Fe,Co,Niの中の1種または2
種以上の金属もしくはこれらの金属と高圧相窒化
硼素または前記結合相成分との反応生成物、並び
に不可避不純物からなる焼結体であつて、前記高
圧相窒化硼素は高圧相窒化硼素中に占める体積割
合で、平均粒子径15μm以下の立方晶窒化硼素60
〜90体積%と平均粒子径5μm以下のウルツ鉱型窒
化硼素10〜40体積%とからなるものであるり、ま
た前記結合相成分におけるTi(CXNYOZ)は結合
相中に占める割合で50〜99体積%であり、更に結
合相中に分散するウルツ鉱型窒化硼素多結晶粒子
について、平均粒子間隔に対する平均粒子径の比
が0.2以上2以下であることを特徴とするウルツ
鉱型窒化硼素含有高硬度工具用焼結体。
1 The constituent components are 30 to 80% by volume of high-pressure phase boron nitride as the main hard phase, and the remainder is Ti(C x N y
O z ) (0.1≦x≦0.4, 0.6≦y≦0.9, 0.01≦z
≦0.2, x+y+z=1 and x, y, y indicate atomic capacity ratio or molar fraction) and TiC, WC,
One or more of TaC, NbC, TiN, TaN and one or more of Al, Fe, Co, Ni
A sintered body comprising at least one metal or a reaction product of these metals and high-pressure phase boron nitride or the binder phase component, and inevitable impurities, wherein the high-pressure phase boron nitride has a volume occupied in the high-pressure phase boron nitride. Percentage of cubic boron nitride with an average particle size of 15 μm or less 60
~90% by volume and 10 to 40% by volume of wurtzite boron nitride with an average particle diameter of 5 μm or less, and Ti (C X N Y O Z ) in the binder phase component is 50 to 99% by volume of wurtzite, and further characterized in that the ratio of the average particle diameter to the average particle spacing of the wurtzite boron nitride polycrystalline particles dispersed in the binder phase is 0.2 or more and 2 or less. Sintered body for high hardness tools containing boron nitride.
JP62167691A 1987-07-07 1987-07-07 High hard sintered body for tool containing wurtzite type boron nitride Granted JPS6411939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62167691A JPS6411939A (en) 1987-07-07 1987-07-07 High hard sintered body for tool containing wurtzite type boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62167691A JPS6411939A (en) 1987-07-07 1987-07-07 High hard sintered body for tool containing wurtzite type boron nitride

Publications (2)

Publication Number Publication Date
JPS6411939A JPS6411939A (en) 1989-01-17
JPH0431013B2 true JPH0431013B2 (en) 1992-05-25

Family

ID=15854445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62167691A Granted JPS6411939A (en) 1987-07-07 1987-07-07 High hard sintered body for tool containing wurtzite type boron nitride

Country Status (1)

Country Link
JP (1) JPS6411939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150110663A1 (en) * 2012-05-31 2015-04-23 Sandvik Intellectual Property Ab Method of making a cbn material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169533A (en) * 1985-01-21 1985-09-03 Toshiba Tungaloy Co Ltd Production of high-hardness sintered body
JPS61179847A (en) * 1986-02-17 1986-08-12 Toshiba Tungaloy Co Ltd High hardness sintered body for cutting
JPS6372843A (en) * 1987-08-28 1988-04-02 Nippon Oil & Fats Co Ltd Manufacture of sintered compact containing high density phase boron nitride for cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169533A (en) * 1985-01-21 1985-09-03 Toshiba Tungaloy Co Ltd Production of high-hardness sintered body
JPS61179847A (en) * 1986-02-17 1986-08-12 Toshiba Tungaloy Co Ltd High hardness sintered body for cutting
JPS6372843A (en) * 1987-08-28 1988-04-02 Nippon Oil & Fats Co Ltd Manufacture of sintered compact containing high density phase boron nitride for cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150110663A1 (en) * 2012-05-31 2015-04-23 Sandvik Intellectual Property Ab Method of making a cbn material
US10252947B2 (en) 2012-05-31 2019-04-09 Hyperion Materials & Technologies (Sweden) Ab Method of making a cBN material

Also Published As

Publication number Publication date
JPS6411939A (en) 1989-01-17

Similar Documents

Publication Publication Date Title
EP2108632B1 (en) Sintered composite material
JP5974048B2 (en) Method for producing cubic boron nitride molded body
JPH03500638A (en) Alumina-coated silicon carbide whisker/alumina composition
JPH02163339A (en) Sintered body for high accuracy working tool
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
US20070134494A1 (en) Cubic boron nitride sintered body and method for making the same
JP2000044348A (en) High-hardness sintered compact for cutting working of cast iron
JP2002167639A (en) Cermet based sintered material for tool and its production method
JP4560604B2 (en) Cubic boron nitride based sintered material and method for producing the same
JPH0292868A (en) High-strength sintered material of boron nitride-base of cubic system
JPH0431013B2 (en)
JPS61141672A (en) Manufacture of cubic boron nitride base sintered body for cutting tool
JPS644989B2 (en)
JPH10245287A (en) Hard layer-coated high pressure phase boron nitride sinter compact for cutting tool
JP2004223666A (en) Cutting tool for rough machining
JPS6335591B2 (en)
JP2005212048A (en) Ceramics and cutting tool using the same
JPH10226575A (en) High-pressure form of boron nitride sintered compact for cutting tool
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body
JPS627259B2 (en)
JPH01115873A (en) Sintered form containing boron nitride of cubic system
JPH03131573A (en) Sintered boron nitrode base having high-density phase and composite sintered material produced by using the same
JPS6330983B2 (en)
JPS6261105B2 (en)
JP2001348290A (en) Coated composite sintered compact