JPH04308302A - Turbine blade - Google Patents

Turbine blade

Info

Publication number
JPH04308302A
JPH04308302A JP3068562A JP6856291A JPH04308302A JP H04308302 A JPH04308302 A JP H04308302A JP 3068562 A JP3068562 A JP 3068562A JP 6856291 A JP6856291 A JP 6856291A JP H04308302 A JPH04308302 A JP H04308302A
Authority
JP
Japan
Prior art keywords
titanium
metal
blade
turbine blade
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3068562A
Other languages
Japanese (ja)
Inventor
Tomio Kubota
窪 田 富 雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3068562A priority Critical patent/JPH04308302A/en
Publication of JPH04308302A publication Critical patent/JPH04308302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To prevent effectively generation of heat spot by providing a slope where a distribution quantity in a depthwise direction of a high thermal conductive metal component on the high thermal conductive metal layer of a turbine blade surface may be reduced continuously from the turbine blade surface toward the inner part. CONSTITUTION:A layer whose main component is the metal molecule with its thermal conductivity larger than that of titanium and excellent in the cutting property is formed on the surface of a titanium blade 1. Namely the metal layer is formed on the surface layer of titanium or titanium-based alloy material which is the base material of the blade 1 by a coating method where metal components of cuprous alloys, ferrous alloys or the like with high thermal conductivity are dissolved at the raw material stage into titanium metal molecules through spraying process with plasma or the like in a vacuum furnace. The metal of the surface layer is incorporated with the base material component by the metallic bond in such condition as the distribution quantity of the thermal conductive metal from the surface in the depthwise direction may be reduced continuously, and generation of the residual stress is suppressed, enabling prevention of the heat spot.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はターボ機械の羽根に関し
、特にヒートスポットの発生が防止され、しかも加工特
性と機械的特性にすぐれたタービンブレードに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to blades for turbomachines, and more particularly to turbine blades that prevent the generation of heat spots and have excellent processing and mechanical properties.

【0002】0002

【従来の技術および発明が解決しようとする課題】最近
の発電用を初めとするタービン原動機の大容量、高性能
化は、主にタービン最終段付近の低圧段落の長翼化によ
って達成されている。これは大量の蒸気またはガス体を
タービンに流入せしめてより多くの軸出力を得る上で、
最終段より排出される気体のもつエネルギーをいかに小
さく抑えるかが理論上要求されるからであり、このため
排気圧力を可能な限り小さくし、排出気体の内部エネル
ギーを下げるとともに、増加する気体の体積をより大き
な排気面積により排出気体の速度を下げてしかも運動エ
ネルギーをも抑えるには、必然的に最終段ブレードの翼
長の増加が必要となるからである。
[Prior Art and Problems to be Solved by the Invention] Recent improvements in the capacity and performance of turbine motors, including those used for power generation, have been achieved mainly by making the blades of the low-pressure stage near the final stage of the turbine longer. . This allows a large amount of steam or gas to flow into the turbine and obtain more shaft output.
This is because it is theoretically required to keep the energy of the gas discharged from the final stage as low as possible. Therefore, the exhaust pressure should be made as low as possible to lower the internal energy of the discharged gas, and the volume of the gas will increase. This is because in order to reduce the velocity of the exhaust gas and also suppress the kinetic energy by increasing the exhaust area, it is necessary to increase the blade length of the final stage blade.

【0003】この解決手段に伴って、タービンを構成す
る材料としては、若干のアルミニウムとバナジウムを化
合したチタン材を使用して、長翼化の対価として被る遠
心力の増加に対応すべく軽量化を図っている。たとえば
下記表1に示すように、鉄系材料に対して約60%の比
重でありながら、約80%に及ぶ引張強度を有するチタ
ン材を使用することにより、相対的に25%の軽量化を
図ることができる。
[0003] Along with this solution, a titanium material with a small amount of aluminum and vanadium is used as the material for constructing the turbine, and the weight is reduced in order to cope with the increase in centrifugal force that is incurred as a compensation for the lengthening of the blades. We are trying to For example, as shown in Table 1 below, by using titanium material, which has a specific gravity of about 60% compared to iron-based materials but has a tensile strength of about 80%, a relative weight reduction of 25% can be achieved. can be achieved.

【0004】   ところが、最近チタン材によりタービンブレードを
製作する場合における幾つかの問題点が明らかになって
きている。
However, recently, several problems have become apparent when manufacturing turbine blades using titanium material.

【0005】第1に、タービンブレードは音速に近い高
速で流れる流体中にあって回転による旋回流れにも合致
した形状をとらねばならないため、図1に示すごとくブ
レードの根元から先端にかけて大きく捻れた羽根形状に
成形されており、このため現在の高精度な鍛造技術をも
ってしても最終的には機械加工によって仕上げる必要が
ある。本図は、エロージョンシールド4を有するブレー
ド本体1の植込み部2がホイールに固定され、各ブレー
ドは、スリーブ5を介して互いに連結されている様子を
示している。このようなタービンブレードを加工する場
合においては、研削深さが大きいと研削面に摩擦熱によ
る温度上昇が発生し、通常ブレードに使用されるマルテ
ンサイト系ステンレス材に比べて、熱伝導率が30%し
かないチタン材は、局所的に温度が上昇し熱応力によっ
て降伏点近くの加工応力が残留してしまう。これはヒー
トスポットと呼ばれ、塑性流動層の一種である。
First, turbine blades must have a shape that matches the swirling flow caused by rotation in fluid flowing at high speeds close to the speed of sound, so as shown in Figure 1, the blades are heavily twisted from the root to the tip. It is formed into a feather shape, so even with today's high-precision forging technology, it ultimately needs to be finished by machining. This figure shows that the implanted part 2 of the blade body 1 with the erosion shield 4 is fixed to a wheel, and the blades are connected to each other via a sleeve 5. When processing such turbine blades, if the grinding depth is large, a temperature rise due to frictional heat will occur on the grinding surface, and the thermal conductivity will be 30 %, the temperature rises locally and processing stress near the yield point remains due to thermal stress. This is called a heat spot and is a type of plastic fluidized bed.

【0006】これは、高い遠心応力と流れからの振動応
力を受けるタービンブレードにとって非常に不都合なこ
とであり、技術的には疲労強度の低下をきたし、早期破
壊に至る恐れがある。このためこの残留応力を規定値以
内に抑えるためには、加工速度を極端に下げて製作効率
を犠牲にしなければならないという問題がある。図2は
、このようなヒートスポットによる疲労強度の低下を健
全材と比較した試験結果を示す。図中、Aは健全材、B
はヒートスポット深さ0.3mmの場合、さらにCはヒ
ートスポット深さ0.7mmの場合の試験例であり、ヒ
ートスポットの存在によって疲労強度が低下することが
わかる。
[0006] This is very inconvenient for turbine blades which are subjected to high centrifugal stresses and vibrational stresses from the flow, and technically leads to a decrease in fatigue strength and may lead to premature failure. Therefore, in order to suppress this residual stress within a specified value, there is a problem in that the processing speed must be extremely lowered and manufacturing efficiency must be sacrificed. FIG. 2 shows test results comparing the decrease in fatigue strength due to such heat spots with that of a sound material. In the diagram, A is sound material, B
C is a test example in which the heat spot depth is 0.3 mm, and C is a test example in which the heat spot depth is 0.7 mm, and it can be seen that the fatigue strength is reduced by the presence of the heat spot.

【0007】第2に、上記の熱影響部を検査するに当た
りAMS6272に規定されたブルーエッチアノダイズ
法による表面目視検査を行う場合、熟練した検査員と多
大の検査時間を必要とするという問題がある。
[0007] Second, when inspecting the heat-affected zone described above, there is a problem in that when performing a visual inspection of the surface using the blue etch anodizing method specified in AMS6272, it requires a skilled inspector and a large amount of inspection time. .

【0008】第3に、検査によって熱影響部が発見され
た場合は、当該部の再研削を行い熱影響部を除去する必
要があるが、この研削によってブレードの必要断面積を
損なう恐れがあることから、設計的に事前に再研削によ
って除去され得る肉厚を付加するため、かえって全体の
重量が増加してしまいブレード各断面における遠心応力
の増大と、ブレードを支持する植え込み部やホイールの
応力が増加するという不都合が生じる。図3に代表的な
ヒートスポットの発生する位置とその除去のための再研
削深さの実測値を示す。
Thirdly, if a heat-affected zone is discovered through inspection, it is necessary to re-grind the area to remove the heat-affected zone, but this grinding may damage the required cross-sectional area of the blade. Therefore, since the design adds wall thickness that can be removed by re-grinding in advance, the overall weight increases, increasing centrifugal stress in each cross section of the blade, and stress in the implant and wheel that supports the blade. This causes the inconvenience of an increase in . Figure 3 shows the positions where typical heat spots occur and the actual measured values of the re-grinding depth to remove them.

【0009】[0009]

【課題を解決するための手段】本発明は上述した問題点
に鑑みてなされたものであり、ヒートスポットの発生が
効果的に防止され、しかも加工特性と機械的特性にすぐ
れたタービンブレードを提供することを目的とする。
[Means for Solving the Problems] The present invention has been made in view of the above-mentioned problems, and provides a turbine blade that effectively prevents the generation of heat spots and has excellent processing characteristics and mechanical characteristics. The purpose is to

【0010】本発明によるタービンブレードは、チタン
を主要成分とする金属からなるタービンブレードであっ
て、タービンブレードの表面に高熱伝導金属層を設ける
とともに、前記高熱伝導金属層における該高熱伝導金属
成分の深さ方向における分布量がタービンブレード表面
から内部に向かって連続的に減少していくような勾配を
有するようにしてなることを特徴としている。
The turbine blade according to the present invention is a turbine blade made of a metal containing titanium as a main component, wherein a high heat conductive metal layer is provided on the surface of the turbine blade, and the high heat conductive metal component in the high heat conductive metal layer is It is characterized in that the distribution amount in the depth direction has a gradient that continuously decreases from the surface of the turbine blade toward the inside.

【0011】本発明はチタン製ブレードの表面に熱伝導
率がチタン材よりも大きく、また快削性にすぐれた金属
分子を主成分とする層を形成して上記のブレードの加工
時に発生するヒートスポットに伴う不都合を解消せしめ
るとともに、チタン材とかかる異金属間の融合を十分に
して、回転中の遠心力及び振動応力等の外力に対抗し得
る良好な特性を発現させたものである。
[0011] The present invention forms a layer mainly composed of metal molecules, which has higher thermal conductivity than titanium material and has excellent machinability, on the surface of a titanium blade, thereby reducing the heat generated during machining of the blade. In addition to eliminating the inconvenience caused by spots, the titanium material and such dissimilar metals are sufficiently fused to exhibit good characteristics capable of resisting external forces such as centrifugal force and vibration stress during rotation.

【0012】図4に本発明によるタービンブレードの表
面層の金属組織の模式図を示す。このような構造は、ブ
レードの母材であるチタンまたはチタン基合金材の表層
に、熱伝導率の高い銅系合金や鉄系合金などの金属成分
を素材段階で真空炉中において、プラズマ等による溶射
処理によってチタン金属分子内に溶融させる被覆方法に
よって形成することができる。
FIG. 4 shows a schematic diagram of the metal structure of the surface layer of a turbine blade according to the present invention. This type of structure is made by adding metal components such as copper alloys and iron alloys with high thermal conductivity to the surface layer of the base material of the blade, such as titanium or titanium-based alloy material, in a vacuum furnace using plasma, etc. It can be formed by a coating method in which titanium is melted into metal molecules by thermal spraying.

【0013】図5に金属成分の分布状態を示すが、本発
明のブレードにおいては機械的性質の異なる異種金属が
、表面から特定の深さにまでその分布量が連続的に減少
していく状態で金属間結合よって母材成分と合体してお
り(これを傾斜機能という)、特に表面は熱伝達率の高
い金属がほぼ純粋状態で配置されているので機械加工に
おける局所的な摩擦熱の発生を表面方向に拡散して温度
上昇を抑制し、熱応力を耐力以下の低いレベルにとどめ
ることができ、これにより残留応力を飛躍的に改善する
ことができる。このような傾斜機能層の厚さは、特に限
定されるものではなく、ブレードの大きさに応じて適宜
選択され得るが、たとえば図1に示すようなブレードの
場合、約1mm程度の厚さで足りる。
FIG. 5 shows the state of distribution of metal components, and in the blade of the present invention, dissimilar metals with different mechanical properties are in a state in which the amount of distribution continuously decreases from the surface to a specific depth. The metal components are combined with the base metal components through metal-to-metal bonding (this is called a graded function), and since metals with high heat transfer coefficients are arranged in an almost pure state, especially on the surface, local frictional heat is generated during machining. By diffusing in the surface direction, temperature rise can be suppressed and thermal stress can be kept at a low level below proof stress, thereby dramatically improving residual stress. The thickness of such a functionally graded layer is not particularly limited and can be appropriately selected depending on the size of the blade, but for example, in the case of a blade as shown in FIG. Enough.

【0014】また、上記のような傾斜機能を有する構造
を形成するためには、上記のような溶射法以外に、焼結
法、自己燃焼焼結法等があるが、先に図3で示したごと
くブレードのヒートスポットは最大でも1mm以下であ
るため、最も大型素材の処理に適した溶射法によって、
充分な厚さの傾斜機能を得ることができる。また、かか
る溶射は、図1に示すホイール3およびスリーブ5を除
くブレード部分に行うことができる。
[0014] In addition to the thermal spraying method described above, there are sintering methods, self-combustion sintering methods, etc. to form a structure having a gradient function as described above. Since the heat spot of the tagotoku blade is less than 1 mm at most, the thermal spraying method is suitable for processing the largest materials.
A slope function of sufficient thickness can be obtained. Moreover, such thermal spraying can be performed on the blade portion other than the wheel 3 and sleeve 5 shown in FIG.

【0015】図6に本発明によるタービンブレードを製
造するプロセスの一例を示す。
FIG. 6 shows an example of a process for manufacturing a turbine blade according to the present invention.

【0016】一般に、チタン合金は、JIS  H21
51に示されるように、四塩化チタンからマグネシウム
で還元し真空精製するか、またはナトリウムで還元し浸
出するかして得られるスポンジチタンを原料とする。そ
の後アルミニウム、バナジウム等の添加成分と共に調質
した電極を用いて、消耗電極式アーク炉またはプラズマ
ビーム炉により、真空または不活性ガス中で溶融した鋳
塊を熱間圧延または冷間圧延してブレードの母材となる
鍛造素材を製造する。
[0016] Generally, titanium alloys comply with JIS H21
As shown in No. 51, the raw material is titanium sponge obtained by reducing titanium tetrachloride with magnesium and vacuum purifying it, or reducing it with sodium and leaching it. After that, the molten ingot is hot-rolled or cold-rolled in a vacuum or inert gas in a consumable electrode arc furnace or plasma beam furnace using an electrode tempered with additives such as aluminum and vanadium to form a blade. Manufactures forged materials that serve as the base material.

【0017】本発明の上記のような構造を形成する手段
としては、この鍛造素材の前記所定範囲を適切な厚さで
若干薄く製作し、しかる後再度高熱伝導性材料によって
製作された電極と、それとは別に母材と同質のチタン合
金より製作された電極の二つを用意し、両電極へ供給す
る電力を最初は、チタン合金電極に100%、最後は高
伝導性材電極に100%というように順次供給割合を変
化させることにより所定の厚さの傾斜機能層を得ること
ができる。
The means for forming the above-mentioned structure of the present invention includes making the predetermined range of the forged material slightly thinner with an appropriate thickness, and then making the electrode again from a highly thermally conductive material; Separately, two electrodes made from a titanium alloy of the same quality as the base material are prepared, and the power supplied to both electrodes is initially 100% to the titanium alloy electrode, and finally 100% to the highly conductive material electrode. By sequentially changing the supply ratio, a functionally graded layer with a predetermined thickness can be obtained.

【0018】[0018]

【発明の効果】以上のように構成された金属組織を表面
層に有する本発明によるタービンブレードは、機械加工
を行う範囲の表面に熱伝導率の高い金属層が形成されて
いるため、加工時の摩擦熱による熱をすばやく拡散して
残留応力の発生を著しく抑制して、ブレードの品質に有
害なヒートスポットを防止する上ですぐれた効果を奏す
る。
[Effects of the Invention] The turbine blade according to the present invention, which has the metal structure configured as described above in the surface layer, has a metal layer with high thermal conductivity on the surface in the area to be machined. It quickly diffuses the heat generated by frictional heat and significantly suppresses the generation of residual stress, which is highly effective in preventing heat spots that are harmful to the quality of the blade.

【0019】また、本発明によれば、研削速度を向上す
ることができ、加工時間の短縮、加工工数の削減等、製
造工程上有利であり、経済的な利点も多大である。
Further, according to the present invention, the grinding speed can be increased, which is advantageous in terms of the manufacturing process, such as shortening the machining time and the number of machining steps, and there are also great economic advantages.

【0020】更に、チタン材は350℃以上の高温下で
は著しい腐食の進展が発生する事が知られており、特に
ブレード先端にTi−15Mo−5Zn−3Al−Sn
材等で製造されたエロージョンシールドを電子ビーム溶
接により接合させた後に行う加熱処理時に発生する恐れ
のある腐食問題についても、本発明におけるような表面
層の形成は、すぐれた効果を奏する。
Furthermore, it is known that titanium material undergoes significant corrosion at high temperatures of 350° C. or higher.
Formation of a surface layer as in the present invention also has an excellent effect on corrosion problems that may occur during heat treatment performed after joining erosion shields made of materials by electron beam welding.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明を適用するタービンブレードの一般的な
形状を示す外観図。
FIG. 1 is an external view showing the general shape of a turbine blade to which the present invention is applied.

【図2】ヒートスポットによる疲労強度の低下を説明す
るグラフ。
FIG. 2 is a graph illustrating a decrease in fatigue strength due to heat spots.

【図3】一般的なヒートスポットの発生場所とその深さ
を説明する図。
FIG. 3 is a diagram illustrating the location and depth of a general heat spot.

【図4】本発明の一実施例によるブレードの表層の金属
組織の模式図。
FIG. 4 is a schematic diagram of the metallographic structure of the surface layer of a blade according to an embodiment of the present invention.

【図5】金属成分の分布状態を示すグラフ。FIG. 5 is a graph showing the distribution state of metal components.

【図6】本発明によるブレードの製造方法の一実施例を
示す工程図。
FIG. 6 is a process diagram showing an embodiment of the blade manufacturing method according to the present invention.

【符号の説明】[Explanation of symbols]

1  ブレード 2  植込み部 3  ホイール 4  エロージョンシールド 5  スリーブ 1 Blade 2 Implant part 3 Wheel 4 Erosion shield 5 Sleeve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】チタンを主要成分とする金属からなるター
ビンブレードであって、タービンブレードの表面に高熱
伝導性金属層を設けるとともに、前記高熱伝導性金属層
における該高熱伝導性金属成分の深さ方向における分布
量がタービンブレード表面から内部に向かって連続的に
減少していくような勾配を有するようにしてなることを
特徴とする、タービンブレード。
1. A turbine blade made of a metal whose main component is titanium, wherein a highly thermally conductive metal layer is provided on the surface of the turbine blade, and a depth of the highly thermally conductive metal component in the highly thermally conductive metal layer is provided. 1. A turbine blade, characterized in that the amount of distribution in the direction has a gradient such that the amount of distribution in the direction continuously decreases from the surface of the turbine blade toward the inside.
JP3068562A 1991-04-01 1991-04-01 Turbine blade Pending JPH04308302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3068562A JPH04308302A (en) 1991-04-01 1991-04-01 Turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3068562A JPH04308302A (en) 1991-04-01 1991-04-01 Turbine blade

Publications (1)

Publication Number Publication Date
JPH04308302A true JPH04308302A (en) 1992-10-30

Family

ID=13377327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3068562A Pending JPH04308302A (en) 1991-04-01 1991-04-01 Turbine blade

Country Status (1)

Country Link
JP (1) JPH04308302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159748A (en) * 2009-01-06 2010-07-22 General Electric Co <Ge> Non-integral turbine blade platform and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159748A (en) * 2009-01-06 2010-07-22 General Electric Co <Ge> Non-integral turbine blade platform and system

Similar Documents

Publication Publication Date Title
US7722330B2 (en) Rotating apparatus disk
US6499946B1 (en) Steam turbine rotor and manufacturing method thereof
EP0837221B1 (en) Ti-Al turbine rotor and method of manufacturing said rotor
US5584663A (en) Environmentally-resistant turbine blade tip
US5161950A (en) Dual alloy turbine disk
EP1775054B1 (en) Weld closure of through-holes in a nickel-base superalloy hollow airfoil
US5451142A (en) Turbine engine blade having a zone of fine grains of a high strength composition at the blade root surface
JP4912533B2 (en) Electron beam welding method using shims
JP2006124830A (en) Erosion and wear resistant protective structure for turbine component
EP0893188A2 (en) Process for joining metallic members together
JP2006291344A (en) Ni-based alloy member, manufacturing method therefor, turbine engine part, welding material and manufacturing method therefor
CN112296602B (en) Manufacturing method of double-alloy double-structure titanium alloy blisk
JP2016500136A (en) Aluminum brazing of hollow titanium fan blades
JP3829388B2 (en) TiAl turbine rotor
EP3309264A1 (en) Hybrid component and method of making
JP6039355B2 (en) Titanium aluminide construction method and product having titanium aluminide surface
CN113084457B (en) Metallographic strengthening manufacturing method of piston
CN107081517A (en) A kind of law temperature joining method of TZM and WRe different alloys
JP5138149B2 (en) Surface oxide welding penetration strengthening method and article
JPH04308302A (en) Turbine blade
JPH10193087A (en) Manufacture of titanium-aluminum-made turbine rotor
JPS62170464A (en) Manufacture of moving vane for turbine
US20190376396A1 (en) Turbine blisk and process of making
JPS62113802A (en) Turbine blade
JPH03271352A (en) Method for bonding ti-alloy turbine blade and ti alloy