JPH04308049A - High temperature forging method for intermetallic compound - Google Patents

High temperature forging method for intermetallic compound

Info

Publication number
JPH04308049A
JPH04308049A JP3099780A JP9978091A JPH04308049A JP H04308049 A JPH04308049 A JP H04308049A JP 3099780 A JP3099780 A JP 3099780A JP 9978091 A JP9978091 A JP 9978091A JP H04308049 A JPH04308049 A JP H04308049A
Authority
JP
Japan
Prior art keywords
forging
titanium
intermetallic compound
powder
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3099780A
Other languages
Japanese (ja)
Inventor
Ryohei Kumagai
熊谷 良平
Yasushi Takayama
康 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP3099780A priority Critical patent/JPH04308049A/en
Publication of JPH04308049A publication Critical patent/JPH04308049A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a sound high temp. forging method for a titanium- aluminum intermetallic compound causing no cracking even at a practical forging velocity. CONSTITUTION:The method is a high temp. forging method for an intermetallic compound characterized by performing forging at 850-1200 deg.C at 10<-3>-10<-1>/sec deformation pressurizing velocity by using, as a stock, a material formed by applying hot isostatic pressing to a metal powder prepared by scattering a melt of titanium-aluminum alloy into an inert gas atmosphere to perform rapid solidification in a method for working a titanium-aluminum intermetallic compound. Forging for the titanium-aluminum intermetallic compound as a hard-to- work material is made possible from the standpoint that the ingot prepared by subjecting HIP treatment to a specific powder can be improved in forgeability.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、チタンアルミ金属間化
合物により機械部品を造る際の鍛造方法において、粉末
を原料とし、これに一旦、熱間等方圧加圧(以下HIP
という。)処理した後特定の条件で加圧することにより
、われの発生しない健全な鍛造材の製造方法に関する。
[Industrial Application Field] The present invention relates to a forging method for making mechanical parts from titanium-aluminum intermetallic compounds, in which powder is used as a raw material and the powder is first subjected to hot isostatic pressing (hereinafter referred to as HIP).
That's what it means. ) It relates to a method for manufacturing a sound forged material that does not generate cracks by pressurizing it under specific conditions after processing.

【0002】0002

【従来の技術】代表組成としてアルミを原子比で35〜
55%含むチタン合金はTi3AlやTiAlのような
金属間化合物からなり、 軽量で800℃付近の高温強
度が高く、航空・宇宙機材あるいは自動車エンジン部材
等で高温にさらされる部分の素材として注目されている
。しかし、この材料は極めて脆く、鋳造材からの鍛造成
形が困難のため本格的な実用に至っていない。この課題
に対して実験的には鋳造材を融点近くの高温で押出し加
工を加え、組織をこわして微細化することにより変形能
を改善しようとする試み、あるいはチタン、アルミ以外
の他の元素を少量添加して脆さの改善をはかるための研
究が進められている。しかし、工業的には安定生産の域
にまで至っていない。本発明が取り扱っているチタンア
ルミ金属間化合物は、主としてTi3AlとTiAlの
2相組織より成るものであって、これらの金属間化合物
は極めて脆いものであって、常温はもとより高温におい
ても延性は低く、高温鍛造の際に破壊しやすいものであ
る。従来、その鍛造加工性を改善する技術の開発は、い
づれも鍛造材をもとにして試みられており、鍛造の際、
Ti3AlやTiAlは組織が粗大化しており、これら
が高温でも安定なため鍛造性を悪くしている、この解決
策の一つは如何にして微細組織を得るかであって、従来
、鋳造材を融点に近い温度で押出し加工などの外力によ
り動的再結晶を行わしめることによって微細組織とした
ものを、4×10−4/secのような極めて遅い速度
で加圧鍛造することが試みられている。この場合、外力
による組織改善で均等な組織微細化効果を安定して得る
のはむづかしく、実用的にはまだ課題を残している。
[Prior art] As a typical composition, aluminum has an atomic ratio of 35~
Titanium alloy containing 55% is composed of intermetallic compounds such as Ti3Al and TiAl, and is lightweight and has high high temperature strength around 800℃, and is attracting attention as a material for parts exposed to high temperatures such as aerospace equipment and automobile engine parts. There is. However, this material is extremely brittle and difficult to forge from a cast material, so it has not been put into full-scale practical use. To address this issue, experimental efforts have been made to improve deformability by extruding cast materials at high temperatures close to their melting point to destroy the structure and make it finer, or by adding other elements other than titanium and aluminum. Research is underway to improve brittleness by adding small amounts of it. However, industrial production has not reached the level of stable production. The titanium-aluminum intermetallic compounds handled by the present invention mainly consist of a two-phase structure of Ti3Al and TiAl, and these intermetallic compounds are extremely brittle and have low ductility not only at room temperature but also at high temperatures. , which is easily broken during high-temperature forging. Conventionally, the development of technology to improve forging processability has been attempted based on forged materials, and during forging,
Ti3Al and TiAl have coarse structures, which are stable even at high temperatures, making forgeability poor.One of the solutions to this problem is how to obtain a fine structure, and conventionally, cast materials Attempts have been made to create a fine structure through dynamic recrystallization using external force such as extrusion at a temperature close to the melting point, and then pressure forge it at an extremely slow speed of 4 x 10-4/sec. There is. In this case, it is difficult to stably obtain a uniform microstructure effect by improving the structure using external force, and there are still practical issues to be solved.

【0003】0003

【発明が解決しようとする課題】チタンアルミ金属間化
合物が、軽量で高温強度の高い特長を注目されながらも
実用に供し得なかった理由の大きな部分に加工性が低く
、破壊、あるいはわれを発生することがあげられる。 そこで、粉末冶金の中で最終製品に近い形のカプセルに
よるHIP加工の方法があるが、形状によってはカプセ
ル加工やその後の処理に多大の工程を要し、実用に踏み
きれなかった。本発明はチタンアルミ金属間化合物にお
いて、実用的な鍛造速度でもわれの発生しない健全な高
温鍛造方法を提供することにある。
[Problem to be solved by the invention] A major reason why titanium-aluminum intermetallic compounds have not been put to practical use, even though they are lightweight and have high strength at high temperatures, is that they have low workability, which causes breakage or cracking. There are things to do. Therefore, in powder metallurgy, there is a method of HIP processing using capsules in a shape similar to the final product, but depending on the shape, a large number of steps are required for capsule processing and subsequent processing, so it has not been put into practical use. The object of the present invention is to provide a sound high-temperature forging method for titanium-aluminum intermetallic compounds that does not cause cracking at a practical forging speed.

【0004】0004

【課題を解決するための手段】本発明は、金属の融液か
ら不活性ガス中で飛散させて急冷凝固した金属粉末を用
いており、粉末の中の組織は鋳造材とは比べものになら
ないほど微細なものであって、このような粉末を再結晶
粗大化を起こさない温度範囲でHIP処理したインゴッ
トを素材として鍛造に供するものである。これによって
その鍛造加圧速度は実用的な範囲に速くすることができ
、且つ鍛造温度も下がり、安定生産を達成し得るもので
あり、その要点はチタンアルミ系合金融液から不活性ガ
ス雰囲気中で急冷凝固させて造った金属粉末を用い、こ
れをHIP処理したものを素材として850〜1,20
0℃の間の温度で10−3〜10−1/secの加圧速
度で鍛造成形加工することにある。
[Means for Solving the Problems] The present invention uses metal powder that is dispersed in an inert gas from a metal melt and rapidly solidified, and the structure of the powder is incomparable to that of cast materials. The ingot is fine and is subjected to HIP treatment in a temperature range that does not cause recrystallization and coarsening of such powder, and is used as a raw material for forging. As a result, the forging pressurization speed can be increased to a practical range, the forging temperature can also be lowered, and stable production can be achieved. Using metal powder made by rapid solidification in
The purpose is to perform forging and forming at a temperature between 0° C. and a pressurizing rate of 10 −3 to 10 −1 /sec.

【0005】[0005]

【作用】本発明に用いる金属粉末はチタニウムとアルミ
ニウムを構成の主要元素としているので非酸化性雰囲気
の中で造らねばならない。また、HIP処理を行うため
にはカプセル中の粉末充填密度の均一性からいって、粉
末はできるだけ球形に近いものが望ましい。さらに本発
明の主要な構成要素となる融液からの急冷凝固による微
細組織を有する粉末が必要である。このような粉末の製
造方法としては、素材を高速で回転させながらアーク等
の熱源で溶融し、融滴を飛散させて飛行中に凝固させる
方法、若しくは素原料を溶解炉で一旦溶解した融液をノ
ズル等を介して別の高速回転体へ注ぎこみ、その遠心力
を利用して飛散させて作る方法およびノズル等からの融
液の落下部へ高圧の不活性ガスを吹きつけて融液を飛散
させてつくる方法がある。これらの例はそれぞれ、回転
電極法若しくはスピニングカップ法または、回転ディス
ク法および高圧ガスアトマイズ法と呼ばれるものが実用
できる。これらの方法によって造られた金属粉末は、飛
散した融滴が不活性ガス雰囲気中での表面張力により球
形に近い状態で凝固し、後のHIP処理に好都合である
と共に急冷凝固しているため粉末の中の組織は極めて微
細となり、従来の鋳造によるものとは比べものにならな
い程、組織の微細化が達成される。
[Operation] Since the metal powder used in the present invention has titanium and aluminum as its main elements, it must be produced in a non-oxidizing atmosphere. Furthermore, in order to perform the HIP treatment, it is desirable that the powder be as close to spherical as possible in terms of uniformity of powder packing density in the capsule. Furthermore, a powder having a fine structure obtained by rapid solidification from a melt, which is a main component of the present invention, is required. Methods for manufacturing such powders include melting the material with a heat source such as an arc while rotating it at high speed, scattering molten droplets and solidifying it during flight, or melting the raw material in a melting furnace. A method of pouring the melt into another high-speed rotating body through a nozzle, etc. and scattering it using the centrifugal force, and a method of blowing high-pressure inert gas onto the part where the melt falls from the nozzle, etc. There is a way to make it by scattering it. For these examples, the rotating electrode method, the spinning cup method, the rotating disk method, and the high-pressure gas atomization method can be used. The metal powder produced by these methods solidifies the scattered molten droplets into a nearly spherical shape due to surface tension in an inert gas atmosphere, which is convenient for the subsequent HIP treatment and is rapidly solidified. The structure inside becomes extremely fine, achieving a finer structure that is incomparable to conventional casting.

【0006】金属粉末のHIP処理は処理中に粉末と合
金を造り、または反応して、処理温度より低融点となり
破壊することのない材質のカプセルを用いることが必要
で、実用的に純チタンのカプセルを用いることで充分で
ある。HIP処理の条件は本発明の場合、温度は850
〜1,200℃、圧力1,500〜2,000気圧のも
とに2〜5時間保持で充分であり、850℃未満では粉
末の粒子間における拡散接合に極度の長時間を要して実
用的でない。また、1,200℃を超えるとせっかく微
細組織で造られた粉末組織がこの過程で再結晶により粗
大化し、本発明が目的とする比較的短時間の鍛造性の向
上効果を損なうものである。HIPの圧力はできるだけ
高くしたいところであるが実用的には2,000気圧が
限度である。それ以上は装置上または、圧力媒体である
ガスの粘性急増への対策が必要である。また、1,50
0気圧未満ではHIP材への緻密化が得られにくく粉末
粒子間に微細な空隙を残し易く、これを無くそうとする
と1,200℃以上の温度が必要となる。HIP材の高
温加圧鍛造は、850〜1,200℃の間において、1
0−3〜10−1/secの加圧速度で行うことができ
る。 実用的にはできるだけ室温に近い温度と速い加圧速度が
望ましいが、850℃未満ではいたずらに低速度の加圧
速度で鍛造しないとわれを生ずるので実用的でない。ま
た、1,200℃を超えた温度では、HIP時の場合と
同時に組織が再結晶粗大化をおこし、鍛造性を損なうも
のである。
[0006] HIP processing of metal powder requires the use of a capsule made of a material that forms an alloy or reacts with the powder during the processing and has a melting point lower than the processing temperature so that it will not break. It is sufficient to use capsules. In the case of the present invention, the conditions for HIP treatment are a temperature of 850℃.
Holding for 2 to 5 hours at ~1,200°C and a pressure of 1,500 to 2,000 atmospheres is sufficient; at temperatures below 850°C, diffusion bonding between powder particles takes an extremely long time, making it impractical. Not on point. Furthermore, if the temperature exceeds 1,200°C, the fine powder structure that has been created will become coarse due to recrystallization during this process, impairing the effect of improving forgeability in a relatively short period of time, which is the objective of the present invention. Although it is desirable to make the HIP pressure as high as possible, the practical limit is 2,000 atmospheres. If the temperature exceeds that level, countermeasures must be taken on the equipment or against a sudden increase in the viscosity of the gas, which is the pressure medium. Also, 1,50
If the pressure is less than 0 atm, it is difficult to obtain densification into the HIP material, which tends to leave fine voids between the powder particles, and if this is to be eliminated, a temperature of 1,200° C. or higher is required. High-temperature pressure forging of HIP material is carried out at a temperature of 1
It can be carried out at a pressurization rate of 0-3 to 10-1/sec. Practically speaking, it is desirable to have a temperature as close to room temperature as possible and a high pressurizing speed, but if the temperature is less than 850°C, cracks will occur unless the forging is performed at an unnecessarily low pressurizing speed, which is not practical. Furthermore, at temperatures exceeding 1,200°C, the structure undergoes recrystallization and coarsening at the same time as during HIP, impairing forgeability.

【0007】鍛造の加圧速度は、鍛造品の生産性を大き
く左右するものであってできるだけ速い速度で可能なこ
とが望ましい。従来、10−4/secで試みられてき
たが、本発明では10−3〜10−1/secに速くす
ることができる。加圧速度が10−3/secより遅い
と実用物件では、その加工時間がいたずらに長くなり経
済的でない。しかし、10−1/secより速い速度の
加圧では複雑形状の型押し鍛造ではわれを生ずることが
あり、実用性から言って10−1/secを限度とする
ものである。 本発明は、チタンアルミ金属間化合物の不活性ガス中に
おける急冷凝固粉末をカプセル中に充填し、脱気した後
HIP処理を行い、カプセルを取り除くことで得られた
HIP材を素材として鍛造に供するものである。しかし
て、その鍛造条件は850〜1,200℃の間の10−
3〜10−1/secの加圧速度で造し、われや破壊を
伴わない健全な鍛造材を得るものである。本来、金属粉
末のHIP処理技術は再結晶が進まない温度以下で処理
されるのがのぞましく、それによって金属粉末が有する
微細組織がHIP処理後にも生かされる。金属粉末の中
の組織の微細化は融液からの急冷凝固によって得られる
ものであって、鍛造材からの粉砕粉によるものでは鋳造
によって粗粒組織が生じており本発明の中での鍛造条件
においては、われや破壊を生ずるものである。
[0007] The pressurizing speed of forging greatly affects the productivity of forged products, and it is desirable that the speed be as fast as possible. Conventionally, attempts have been made to set the speed at 10-4/sec, but the present invention can increase the speed to 10-3 to 10-1/sec. If the pressurization speed is lower than 10-3/sec, the processing time will be unnecessarily long and uneconomical in practical applications. However, pressing at a speed faster than 10-1/sec may cause cracks in die forging of complex shapes, and for practical purposes, the speed is limited to 10-1/sec. The present invention involves filling a capsule with rapidly solidified powder of a titanium-aluminum intermetallic compound in an inert gas, deaerating it, performing a HIP treatment, and removing the capsule. The obtained HIP material is then used as a material for forging. It is something. However, the forging conditions are 10-
It is produced at a pressing speed of 3 to 10-1/sec to obtain a sound forged material without cracks or fractures. Originally, it is desirable for the HIP processing technique for metal powder to be performed at a temperature below which recrystallization does not proceed, so that the fine structure of the metal powder can be utilized even after the HIP processing. The refinement of the structure in metal powder is obtained by rapid solidification from a melt, and in the case of pulverized powder from a forging material, a coarse grain structure is generated by casting, and the forging conditions in the present invention are In this case, it is something that causes destruction.

【0008】本発明が用いる融液からの急冷凝固粉末は
、TiAlよりもAl量の少ないTi3Alが多量共存
し、急冷されたためにこの部分にAlの過飽和があって
HIP処理および本発明が示す加圧鍛造条件の中では加
圧過程でTiAlの微細組織が生じ、加圧変形能を助長
する。このような効果は粉末製造時の雰囲気にアルゴン
を用いるよりも冷却速度を速められるヘリウムを用いる
方が更に効果がある。HIP処理時の緻密化において、
球形粉末は効果があり、空隙の残らないHIP材が得ら
れやすいものである。このような粉末は融液を飛散させ
、表面張力によって形成され得るものである。HIP処
理の条件は、如何にして空隙の残留を無くし、材料の真
密度に近づけるかであって鋳造粉砕粉においては、本発
明が対象とするチタンアルミ金属間化合物の特性として
、粉末中の粗大組織が変形を妨げ、且つ前記形状効果が
得られないので緻密化が困難である。本発明が、難加工
材であるチタンアルミ金属間化合物の組織微細化にその
目的があるところから、加圧鍛造の温度も再結晶を起こ
さない1,200℃以下で行うものであるが、逆に温度
が低すぎると本発明の微細組織より成るものでも加圧変
形はむつかしくなり、加圧速度は10−3〜10−1/
secにあげて鍛造の生産性を高めようとする本発明の
目的が達成できなくなり、その限度は850℃である。
In the rapidly solidified powder from the melt used in the present invention, a large amount of Ti3Al, which has a lower Al content than TiAl, coexists, and due to the rapid cooling, there is supersaturation of Al in this part, and the HIP treatment and the addition shown in the present invention occur. Under forging conditions, a microstructure of TiAl is generated during the pressurization process, which promotes pressurization deformability. This effect is more effective when using helium, which can speed up the cooling rate, than when using argon in the atmosphere during powder production. In densification during HIP processing,
Spherical powder is effective, and it is easy to obtain a HIP material without leaving any voids. Such powders can be formed by scattering the melt and by surface tension. The conditions for HIP treatment are how to eliminate residual voids and approach the true density of the material. Densification is difficult because the structure prevents deformation and the shape effect described above cannot be obtained. Since the purpose of the present invention is to refine the structure of titanium-aluminum intermetallic compounds, which are difficult-to-process materials, the pressure forging is carried out at a temperature of 1,200°C or lower, which does not cause recrystallization. If the temperature is too low, it will be difficult to deform under pressure even if the material has the microstructure of the present invention, and the pressing speed will be 10-3 to 10-1/
The purpose of the present invention, which is to increase the productivity of forging by increasing the temperature to 850° C., cannot be achieved.

【0009】[0009]

【実施例】次に本発明を比較例とともに詳細に説明する
。表1は本発明において用いた金属粉末の製法、粒径の
範囲および基本化学成分を示すものである。これらの金
属粉末を純チタンの円筒状カプセル中に充填し、脱気後
密封してHIP処理に供した。HIP処理後はカプセル
部分を機械的方法によって除去した後に鍛造を行った。 各HIP処理条件と加圧鍛造の条件ならびにこれらの結
果得られたチタンアルミ金属間化合物の鍛造品について
浸透液検査によるわれ発生の有無を調べた結果を表2に
示す。表2A、BにおいてNo.4〜19は、いずれも
本発明の条件を満足して鍛造によってわれは全く発生し
なかった。一方、No.1〜3、またNo.20〜22
は、鍛造でわれを発生して加工ができなかった。
EXAMPLES Next, the present invention will be explained in detail together with comparative examples. Table 1 shows the manufacturing method, particle size range, and basic chemical components of the metal powder used in the present invention. These metal powders were filled into a cylindrical capsule made of pure titanium, and after degassing, the capsule was sealed and subjected to HIP treatment. After the HIP treatment, the capsule portion was removed by a mechanical method and then forged. Table 2 shows the HIP treatment conditions and pressure forging conditions, as well as the results of a penetrant test for the presence or absence of cracking for the titanium-aluminum intermetallic compound forged products obtained as a result. In Tables 2A and B, No. No. 4 to No. 19 all satisfied the conditions of the present invention and no cracks were generated during forging. On the other hand, No. 1 to 3, and No. 20-22
could not be processed due to cracks during forging.

【0010】0010

【表1】[Table 1]

【0011】[0011]

【表2A】[Table 2A]

【0012】0012

【表2B】[Table 2B]

【0013】[0013]

【発明の効果】本発明は、チタンアルミ金属間化合物に
おいて粉末HIP材が高温鍛造性に優れていることを見
いだし、加工性を向上させるものである。従来粉末を利
用した成形加工法として、最終製品に近い形のカプセル
によるHIP加工の方法があるが、カプセル加工やその
後の処理に多くの工程を要していたが、本発明は特定の
粉末によりHIP処理したインゴットが鍛造性を向上さ
せることを見出し、よって難加工材であるチタンアルミ
金属間化合物に鍛造成形加工の道を開拓したものである
[Effects of the Invention] The present invention has discovered that a powder HIP material of titanium-aluminum intermetallic compounds has excellent high-temperature forgeability, and improves workability. As a conventional molding method using powder, there is a HIP processing method using capsules in a shape close to the final product, but capsule processing and subsequent processing required many steps. It was discovered that HIP-treated ingots improve forgeability, and this led to the development of forging processing for titanium-aluminum intermetallic compounds, which are difficult-to-process materials.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  チタンアルミ金属間化合物の加工方法
において、チタンアルミ系合金融液から不活性ガス雰囲
気中に飛散させて急冷凝固させて得た金属粉末とし、該
金属粉末を熱間等方圧加圧したものを素材として850
℃〜1,200℃の間の温度で10−3〜10−1/s
ecの変形加圧速度で鍛造することを特徴とする金属間
化合物の高温鍛造方法
Claim 1: In a method for processing a titanium-aluminum intermetallic compound, a titanium-aluminum alloy alloy liquid is dispersed into an inert gas atmosphere and rapidly solidified to obtain a metal powder, and the metal powder is heated under hot isostatic pressure. 850 as a pressurized material
10-3 to 10-1/s at temperatures between ℃ and 1,200℃
A high-temperature forging method for intermetallic compounds, characterized by forging at a deformation and pressing speed of ec.
JP3099780A 1991-04-05 1991-04-05 High temperature forging method for intermetallic compound Withdrawn JPH04308049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3099780A JPH04308049A (en) 1991-04-05 1991-04-05 High temperature forging method for intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3099780A JPH04308049A (en) 1991-04-05 1991-04-05 High temperature forging method for intermetallic compound

Publications (1)

Publication Number Publication Date
JPH04308049A true JPH04308049A (en) 1992-10-30

Family

ID=14256460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3099780A Withdrawn JPH04308049A (en) 1991-04-05 1991-04-05 High temperature forging method for intermetallic compound

Country Status (1)

Country Link
JP (1) JPH04308049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2575005A (en) * 2017-12-14 2020-01-01 Csir A process and method for producing titanium and titanium alloy billets, spherical and non-spherical powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2575005A (en) * 2017-12-14 2020-01-01 Csir A process and method for producing titanium and titanium alloy billets, spherical and non-spherical powder
GB2575005B (en) * 2017-12-14 2022-06-15 Csir A process and method for producing titanium and titanium alloy billets and spherical powder

Similar Documents

Publication Publication Date Title
US5429796A (en) TiAl intermetallic articles
JP5524257B2 (en) Method for producing metal articles without melting
US7879286B2 (en) Method of producing high strength, high stiffness and high ductility titanium alloys
US4714587A (en) Method for producing very fine microstructures in titanium alloy powder compacts
US4482398A (en) Method for refining microstructures of cast titanium articles
US4066449A (en) Method for processing and densifying metal powder
US3639179A (en) Method of making large grain-sized superalloys
US5635654A (en) Nial-base composite containing high volume fraction of AlN for advanced engines
US3698962A (en) Method for producing superalloy articles by hot isostatic pressing
JP2000225412A (en) Method for plastically working aluminum alloy and high- strength/high-ductility aluminum alloy worked by the same
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
US4655855A (en) Method for refining microstructures of prealloyed titanium powder compacted articles
US5520754A (en) Spray cast Al-Li alloy composition and method of processing
US4410488A (en) Powder metallurgical process for producing a copper-based shape-memory alloy
US5015305A (en) High temperature hydrogenation of gamma titanium aluminide
US4808250A (en) Method for refining microstructures of blended elemental titanium powder compacts
JPH04308049A (en) High temperature forging method for intermetallic compound
US4808225A (en) Method for producing an alloy product of improved ductility from metal powder
US4832760A (en) Method for refining microstructures of prealloyed titanium powder compacts
KR19990088161A (en) Heat treated, spray formed superalloy articles and method of making the same
JPS6360265A (en) Production of aluminum alloy member
JP3878432B2 (en) High-purity ruthenium target and method for producing the target
JPS5884901A (en) Production of heat resistant superalloy by powder metallurgical method
JP2596205B2 (en) Manufacturing method of Al alloy powder compact
JPH0257121B2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711