JP2596205B2 - Manufacturing method of Al alloy powder compact - Google Patents

Manufacturing method of Al alloy powder compact

Info

Publication number
JP2596205B2
JP2596205B2 JP2263645A JP26364590A JP2596205B2 JP 2596205 B2 JP2596205 B2 JP 2596205B2 JP 2263645 A JP2263645 A JP 2263645A JP 26364590 A JP26364590 A JP 26364590A JP 2596205 B2 JP2596205 B2 JP 2596205B2
Authority
JP
Japan
Prior art keywords
alloy powder
powder
alloy
vibration
mechanical energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2263645A
Other languages
Japanese (ja)
Other versions
JPH04141501A (en
Inventor
芳春 和久
充 安達
昭男 岡本
英樹 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2263645A priority Critical patent/JP2596205B2/en
Publication of JPH04141501A publication Critical patent/JPH04141501A/en
Application granted granted Critical
Publication of JP2596205B2 publication Critical patent/JP2596205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はAl合金粉末成形材の製造方法に係り、特に合
金粉末に前処理を施した後、熱間成形加工して合金部材
を製造する方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing an Al alloy powder molded material, and in particular, to pre-treat an alloy powder and then hot-work to form an alloy member. It is about the method.

[従来の技術] 近年、自動車、航空機等の分野における構成部材の軽
量化、高性能化、高負荷化が活発に検討されている。中
でも、合金組成、熱処理及び加工を組み合わせた従来の
方法では、耐熱性、耐摩耗性、強度、耐応力腐食割れな
どの特性を向上させることが難しいため、急冷凝固粉を
用いた粉末合金材の研究がさかんに行なわれている。
[Related Art] In recent years, in the fields of automobiles, aircrafts, and the like, weight reduction, high performance, and high load of components have been actively studied. Above all, it is difficult to improve properties such as heat resistance, abrasion resistance, strength, and stress corrosion cracking by the conventional method combining the alloy composition, heat treatment and processing. Research is being actively conducted.

ただし、急冷凝固粉粒子の表面には酸化物、吸着水、
結晶水が存在し、これらは熱間成形に当り、粉末同志の
結合を妨げるために、粉末の成形材の機械的性質、とり
わけ靭性、成形方向と直角方向の機械的性質は十分満足
できるものではない。このため、これらの付着物を急冷
凝固粉の成形、固化に際し、予め取り除く必要がある。
However, oxide, adsorbed water,
Crystallized water is present, which is hot-forming and hinders the bonding between powders, so that the mechanical properties of the powder molding material, especially toughness, mechanical properties in the direction perpendicular to the forming direction, are not sufficiently satisfactory. Absent. For this reason, it is necessary to remove these deposits before molding and solidifying the rapidly solidified powder.

例えば、急冷凝固させたアルミニウム合金粉末では、
一般に第3図に模式的に示す如く、アルミニウム合金粒
子20の表面にAl2O3・3H2O等の含水酸化物層21及びAl2O3
等の酸化物層22が形成され、しかも吸着水が付着してい
る。このため、成形前には水分や結晶水の除去を目的と
して、加熱真空脱気処理を通常、次のような要領で行な
う。即ち、急冷凝固粉を予備成形した後、予備成形体を
アルミニウム等の金属缶に封入して、高温(例えば350
〜500℃)において10-2〜10-5Torrの真空中で真空脱ガ
ス処理し、その後封缶をする。さらに粉末表面の酸化物
を破砕し粉末同志の接合を図るために、比較的高い押出
比で加工が行なわれている。
For example, in rapidly solidified aluminum alloy powder,
Generally, as schematically shown in FIG. 3 , a hydrated oxide layer 21 such as Al 2 O 3 .3H 2 O and an Al 2 O 3
Is formed, and adsorbed water adheres. For this reason, before forming, a heating vacuum degassing process is usually performed in the following manner for the purpose of removing water and crystal water. That is, after the quenched and solidified powder is preformed, the preformed body is sealed in a metal can made of aluminum or the like, and heated at a high temperature (for example, 350
(−500 ° C.) at a vacuum of 10 −2 to 10 −5 Torr, and then sealed. Further, in order to crush the oxide on the powder surface and join the powders together, the processing is performed at a relatively high extrusion ratio.

[発明が解決しようとする課題] このような急冷凝固粉を用いた成形材の従来の製造法
においては、次のような問題があった。
[Problems to be Solved by the Invention] In the conventional method for producing a molded material using such rapidly solidified powder, there are the following problems.

脱気処理中の熱影響により過剰焼鈍を受け軟化する
ため、急冷凝固粉末としての性質が失われる。このた
め、脱気温度を十分に高くすることができず、その結
果、成形材中の水素ガス量が高くなる。
Due to the thermal influence during the degassing treatment, the steel is softened due to excessive annealing, and thus loses its properties as a rapidly solidified powder. For this reason, the degassing temperature cannot be sufficiently increased, and as a result, the amount of hydrogen gas in the molding material increases.

熱間成形、例えば高押出比で熱間成形しても、粉末
表面の酸化物の破砕が十分でないために、粉末界面の接
合が不十分なものになることがある。この結果、得られ
る合金粉末成形材の破壊靭性が低くなる。また、成形材
の機械的性質に異方性が生じる。(押出成形方向に比べ
て、それと直角方向は機械的性質が劣る。) [課題を解決するための手段] 請求項(1)の発明は、内部が減圧雰囲気又は不活性
ガス雰囲気とされた容器内において、急冷凝固して得ら
れた0.01〜20重量%のMgを含むAl合金粉末であって、そ
の表面にMgを含む酸化物層が形成された粉末に振動によ
り機械的エネルギーを与え、主として粉末同志の接触に
より粉末表面を改質する工程;及び、その後前記合金粉
末を熱間成形加工して成形材を得る工程;を有するもの
である。
Even when hot forming, for example, hot forming at a high extrusion ratio, bonding of the powder interface may be insufficient due to insufficient crushing of the oxide on the powder surface. As a result, the fracture toughness of the obtained alloy powder molded material decreases. In addition, anisotropy occurs in the mechanical properties of the molding material. (Mechanical properties are inferior in the direction perpendicular to the extrusion direction.) [Means for Solving the Problems] According to the invention of claim (1), the inside of the container has a reduced-pressure atmosphere or an inert gas atmosphere. In the Al alloy powder containing 0.01 to 20% by weight of Mg obtained by rapid solidification, mechanical energy is given by vibration to the powder having an Mg-containing oxide layer formed on its surface. A step of modifying the powder surface by contact between the powders; and a step of subsequently hot-forming the alloy powder to obtain a molded material.

なお、粉末の改質に当り、アルミニウム合金粉末の中
に金属及びセラミックス等の硬質粒子を機械的性質を損
なわない範囲で添加し、改質を促進することは可能であ
る。
In the modification of the powder, it is possible to promote the modification by adding hard particles such as metals and ceramics to the aluminum alloy powder within a range that does not impair the mechanical properties.

請求項(2)の発明は、請求項(1)において、前記
合金粉末をその融点以下の温度に加熱した状態において
前記機械的エネルギーを与えることを特徴とするもので
ある。
The invention of claim (2) is characterized in that, in claim (1), the mechanical energy is applied while the alloy powder is heated to a temperature lower than its melting point.

請求項(3)の発明は、請求項(1)又は(2)にお
いて、前記合金粉末に機械的エネルギーを与える前に該
合金粉末を100〜300℃に加熱することを特徴とするもの
である。
The invention of claim (3) is characterized in that, in claim (1) or (2), the alloy powder is heated to 100 to 300 ° C. before applying mechanical energy to the alloy powder. .

請求項(4)の発明は、請求項(1)ないし(3)の
いずれか1項において、前記機械的エネルギーが与えら
れた合金粉末を加熱真空脱気処理し、その後、該粉末を
熱間成形加工することを特徴とするものである。
According to a fourth aspect of the present invention, in any one of the first to third aspects, the alloy powder to which the mechanical energy has been applied is subjected to a heating vacuum degassing treatment, and thereafter, the powder is hot-deposited. It is characterized by forming.

本発明方法の処理対象となる合金粉末は、急冷凝固し
て得られた0.01〜20重量%のMgを含むAl合金であって、
その表面に該合金の、即ちMgを含むAl合金の酸化物層が
形成されたものである。この場合、合金粉末として利用
できる粉末の凝固時の冷却速度は、その合金組成によっ
て異なるが、50〜106℃/secが好ましい。なぜなら、Al
合金の場合、冷却速度が50℃/sec未満であるとAl合金中
に含まれるSi、Fe等の金属間化合物が粗大に晶出し、得
られる部材の機械的性質が低下する。このため冷却速度
は50℃/sec以上とする。一方、冷却速度が過度に高くて
も効果に差異はなく、急冷技術が困難となり、コストア
ップを招くこととなる。このため、冷却速度は50〜106
℃/secの範囲とするのが好ましい。
The alloy powder to be treated by the method of the present invention is an Al alloy containing 0.01 to 20% by weight of Mg obtained by rapid solidification,
An oxide layer of the alloy, that is, an Al alloy containing Mg is formed on the surface thereof. In this case, the cooling rate during solidification of a powder which can be used as an alloy powder varies depending on the alloy composition, preferably 50~10 6 ℃ / sec. Because Al
In the case of an alloy, if the cooling rate is less than 50 ° C./sec, intermetallic compounds such as Si and Fe contained in the Al alloy are coarsely crystallized, and the mechanical properties of the obtained member are reduced. Therefore, the cooling rate is set to 50 ° C./sec or more. On the other hand, even if the cooling rate is excessively high, there is no difference in the effect, the quenching technique becomes difficult, and the cost is increased. For this reason, the cooling rate is 50 to 10 6
The temperature is preferably in the range of ° C / sec.

このようにして得られる合金粉末は、製造条件により
一般には球状、フレーク状、糸状等の様々な形状を取り
得る微細粉末である。
The alloy powder thus obtained is a fine powder that can generally take various shapes such as a sphere, a flake, and a thread depending on the manufacturing conditions.

本発明に好適なMgを含むAl合金として、冷えばMgを含
むAl−Si系、Al−Si−Cu系、Al−Zn系、Al−Fe系合金な
どが挙げられる。また、これらの合金は、さらにNi、
W、Mo、Fe等の遷移金属を含んでいても良い。これらの
Mgを含むAl合金に含有される他の金属構成成分の含有量
は、一般には次のような範囲とされる。
Al alloys containing Mg suitable for the present invention include Al-Si-based, Al-Si-Cu-based, Al-Zn-based, and Al-Fe-based alloys containing Mg when cooled. In addition, these alloys further include Ni,
Transition metals such as W, Mo, and Fe may be included. these
The content of the other metal components contained in the Mg-containing Al alloy is generally in the following range.

Si:10〜30重量% Cu:0.5〜8.0重量% Fe:0.5〜10.0重量% Zn:0.01〜10.0重量% もちろん、本発明は上記以外の各種のMgを含むAl合金
粉末であって、その表面にMgを含む酸化物層が形成され
た合金粉末に適用できる。
Si: 10 to 30% by weight Cu: 0.5 to 8.0% by weight Fe: 0.5 to 10.0% by weight Zn: 0.01 to 10.0% by weight Of course, the present invention is an Al alloy powder containing various Mg other than the above, and its surface Can be applied to an alloy powder in which an oxide layer containing Mg is formed.

なお、本発明において、Mgを含むAl合金のMg含有量は
0.01〜20重量%、好ましくは0.2〜15重量%、より好ま
しくは0.2〜10重量%である。Mg含有量が0.01重量%未
満では、粉末表面にMgを含む酸化物層がわずかしか形成
されず、20重量%を超えるとAl合金粉末成形材の延性が
低い。
In the present invention, the Mg content of the Al alloy containing Mg is:
It is 0.01 to 20% by weight, preferably 0.2 to 15% by weight, more preferably 0.2 to 10% by weight. If the Mg content is less than 0.01% by weight, only a small amount of the oxide layer containing Mg is formed on the powder surface, and if it exceeds 20% by weight, the ductility of the Al alloy powder compact is low.

本発明において、合金粉末に振動により機械的エネル
ギーを付与するには、例えば、急冷凝固して得られた合
金粉末を充填した容器を振動装置上に載置し、容器内を
大気に晒すことなく減圧雰囲気又は不活性ガス雰囲気下
で、例えば1〜2時間程度振動させる。
In the present invention, in order to impart mechanical energy to the alloy powder by vibration, for example, a container filled with an alloy powder obtained by rapid solidification is placed on a vibrating device, and the inside of the container is not exposed to the atmosphere. Vibration is performed under a reduced pressure atmosphere or an inert gas atmosphere, for example, for about 1 to 2 hours.

本発明における熱間成形加工としては、押出成形、な
いしは、鍛造、HIP、ホットプレス、圧延等の加工を行
なう。
As the hot forming process in the present invention, processes such as extrusion forming, forging, HIP, hot pressing, and rolling are performed.

[作用] 本発明の処理方法によると、Al合金粉末表面部に形成
されたMgを含む酸化物層が脆いために効果的に合金粉末
の表面層が除去されることから、 水素ガス量が低減し易く、かつ、ブリスターの発生
も少ないために、高温、長時間の脱気処理を施す必要が
なく、過剰の焼鈍を避けることができる。この結果、急
冷凝固で得られた合金組織の粗大化が抑えられ、破壊靭
性が向上する。
[Action] According to the treatment method of the present invention, the surface layer of the alloy powder is effectively removed because the oxide layer containing Mg formed on the surface of the Al alloy powder is brittle, so that the amount of hydrogen gas is reduced. Since it is easy to perform and the occurrence of blisters is small, it is not necessary to perform a high-temperature and long-time deaeration treatment, so that excessive annealing can be avoided. As a result, coarsening of the alloy structure obtained by rapid solidification is suppressed, and fracture toughness is improved.

粉末表面の酸化物層が破砕され活性な面が出るため
に、熱間成形時に粉末同志の接合が効果的に進む。この
結果、破壊靭性が向上し、しかも熱間成形した材料の機
械的性質の異方性が小さい。
Since the oxide layer on the surface of the powder is crushed to form an active surface, bonding between the powders proceeds effectively during hot compaction. As a result, the fracture toughness is improved, and the anisotropy of the mechanical properties of the hot-formed material is small.

なお、粉末の外周面にAl酸化物のみの被覆層がある場
合は、少しねばっこく、このAl酸化物被覆層が取れにく
いが、所定量のMgを添加したAl合金粉末では、AlとMgの
酸化物の被覆層ができ、実験によると、振動により両酸
化物被覆層が共に取れ易く、全部の酸化物被覆層が容易
に脱落して取れることが確認された。
When there is a coating layer of only Al oxide on the outer peripheral surface of the powder, it is slightly sticky and it is difficult to remove this Al oxide coating layer.However, in an Al alloy powder to which a predetermined amount of Mg is added, Al and Mg are mixed. An oxide coating layer was formed. According to the experiment, it was confirmed that both the oxide coating layers were easily removed by vibration, and that all the oxide coating layers were easily removed and removed.

ところで、本発明の前処理方法は、振動により粒子同
志の接触による粒子表面層の破壊ないし剥離を行なうも
のであり、改質媒体(例えば金属やセラミックボール)
を用いたアトリッションミル、ボールミルによる攪拌、
メカニカルアロイング等とは異なる。
By the way, the pretreatment method of the present invention is to perform destruction or peeling of a particle surface layer by contact of particles by vibration, and a reforming medium (for example, metal or ceramic ball).
Stirring with an attrition mill using a ball mill,
Different from mechanical alloying.

本願発明に係る改質処理が、振動の付与で粒子同志の
接触による粒子表面層の破壊ないし剥離を行なうもので
あることは極めて重要である。
It is extremely important that the modification treatment according to the invention of the present application is one in which the particle surface layer is broken or peeled off by the contact of particles by applying vibration.

即ち、アトリッションミル、ボールミル等によっても
粉末の表面の改質はある程度可能であるが、改質媒体が
粉末の表面に衝突したときの衝撃により、粉末表面の結
晶水等の水分や、酸化物、水酸化物、あるいは改質媒体
の微小破片、容器に付着していた水分や不純物などが合
金粒子の内部に取り込まれる可能性がある。
That is, although the surface of the powder can be modified to some extent by an attrition mill, a ball mill, or the like, moisture such as crystallization water on the powder surface or oxidation due to the impact when the reforming medium collides with the surface of the powder. There is a possibility that substances, hydroxides, minute fragments of the reforming medium, moisture or impurities attached to the container may be taken into the alloy particles.

これに対し、本発明においては、振動により粒子同志
の接触のみにより表面層を破壊ないし剥離するので、水
酸化物や水分等が合金粒子の内部に取り込まれることが
ない。
On the other hand, in the present invention, the surface layer is destroyed or peeled off only by the contact of the particles by vibration, so that hydroxide, moisture and the like are not taken into the alloy particles.

さらに、振動による機械的エネルギーを与えるに当
り、100℃〜300℃程度の予備加熱や融点以下の温度にお
ける加熱処理を組み合わせれば、粉末表面、容器の吸着
水分の影響の除去、粉末表面の改質促進が期待される。
In addition, when applying mechanical energy by vibration, preheating of about 100 ° C to 300 ° C or heat treatment at a temperature below the melting point can be combined to remove the effects of moisture on the powder surface and container, and to improve the powder surface. Quality promotion is expected.

なお、通常、合金粉末の表面に生成した酸化物等の層
は100〜200Å厚であるが、上記振動による機械的エネル
ギー付与処理により殆ど0Åになる。また、脱気するこ
とにより付着水分はほぼ完全に除去される。
The layer of oxide or the like formed on the surface of the alloy powder usually has a thickness of 100 to 200 mm, but becomes almost 0 mm by the mechanical energy applying treatment by the vibration. Further, by degassing, the attached water is almost completely removed.

この振動による機械的エネルギー付与処理を行なった
後、そのまま押出成形等の成形を行なう場合には、新た
な酸化物の生成は生じない。振動による機械的エネルギ
ー付与処理を行なった後、30分〜1時間程度大気に晒
し、その後の合金粉末の表面の酸化物層の厚さを測定し
たところ、その厚さは10〜20Å程度にすぎなかった。こ
のため、上記振動による機械的エネルギー付与処理を行
なった後、できるだけ早くそのまま成形すれば、一時的
に大気中に晒しても、良い効果が得られる。なお、乾燥
状態をそのまま持続して成形すれば、水分は0に保て
る。
When molding such as extrusion molding is performed as it is after performing the mechanical energy imparting process by the vibration, no new oxide is generated. After performing mechanical energy applying treatment by vibration, it was exposed to the air for about 30 minutes to 1 hour, and the thickness of the oxide layer on the surface of the alloy powder was measured. The thickness was only about 10 to 20 mm. Did not. Therefore, if the molding is performed as soon as possible after performing the mechanical energy applying process by the vibration, a good effect can be obtained even if the molding is temporarily exposed to the atmosphere. It should be noted that the moisture can be kept at zero if the dry state is continuously formed.

[実施例] 以下に図面を参照して本発明をさらに詳細に説明す
る。
EXAMPLES The present invention will be described below in more detail with reference to the drawings.

第1図及び第2図は本発明を実施するために好適な振
動装置を示し、第1図は真空脱気完了まで大気に全く触
れることがないように密閉容器の中で合金粉末に振動を
与え粉末改質を行なうための振動処理装置の一部縦断面
図、第2図は脱気処理用の容器に合金粉末を移し替える
時に一度は大気に触れることがあるようにした振動処理
装置の一部縦断面図をそれぞれ示す。
FIGS. 1 and 2 show a vibration device suitable for carrying out the present invention. FIG. 1 shows that an alloy powder is vibrated in a closed container so as not to come into contact with the atmosphere until the completion of vacuum degassing. FIG. 2 is a partial longitudinal sectional view of a vibration processing apparatus for performing powder reforming, and FIG. 2 shows a vibration processing apparatus which is once exposed to the atmosphere when transferring alloy powder to a container for degassing processing. Partial longitudinal sectional views are shown.

第1図において、Mgを含むAl合金粉末4の入ったアル
ミニウム缶密閉容器2を、振動モータ5を有した振動装
置6上に載置して移動不可能に固定し、さらに、アルミ
ニウム缶密閉容器2上部にコック1Aを設け、コック1Aか
ら真空ポンプ1に至る配管を配設してあり、また、図示
しない不活性ガス導入用配管がアルミニウム缶密閉容器
2に接続してある。
In FIG. 1, an aluminum can sealed container 2 containing an Mg-containing Al alloy powder 4 is mounted on a vibrating device 6 having a vibration motor 5 so as to be immovably fixed. A cock 1A is provided at the upper part of 2, and a pipe from the cock 1A to the vacuum pump 1 is provided. In addition, an inert gas introducing pipe (not shown) is connected to the aluminum can sealed container 2.

このように構成された装置において、振動装置6と真
空ポンプ1を起動し、コック1Aを開いて減圧雰囲気下又
は不活性ガス雰囲気下で、アルミニウム缶密閉容器2に
装填された合金粉末4に、例えば0.2〜20時間、好まし
くは0.5〜5時間程度振動を加える。
In the device configured as described above, the vibrating device 6 and the vacuum pump 1 are started, the cock 1A is opened, and the alloy powder 4 loaded in the aluminum can sealed container 2 is placed under a reduced pressure atmosphere or an inert gas atmosphere. For example, vibration is applied for about 0.2 to 20 hours, preferably about 0.5 to 5 hours.

第2図において、合金粉末4の入った上部開放型容器
11を、振動モータ5を内蔵した振動装置6上に載置して
移動不可能に固定した後、これら全体を蓋12を有した密
閉箱8に入れ、さらに、蓋12に挿通されて接続された配
管が2本配設されている。2本の配管のうち、一方はバ
ルブ10に接続されており、密閉箱8内に導入された不活
性ガスを放出して大気圧に戻す役目を有している。ま
た、他方の配管は、三方バルブ9を介して、一方を不活
性ガス供給源7と接続され、不活性ガスを導入しないと
きは、他方を真空ポンプ1にそれぞれ接続されるように
なっている。
In FIG. 2, an open top container containing an alloy powder 4 is shown.
11 is placed on a vibration device 6 having a built-in vibration motor 5 and fixed so as not to be movable. Then, the whole is put into a closed box 8 having a lid 12, and further inserted and connected to the lid 12. Two pipes are provided. One of the two pipes is connected to the valve 10 and has a function of releasing the inert gas introduced into the closed box 8 and returning the gas to the atmospheric pressure. One of the other pipes is connected to the inert gas supply source 7 via the three-way valve 9, and the other is connected to the vacuum pump 1 when no inert gas is introduced. .

こうして構成された装置において、振動装置6と真空
ポンプ1を起動し、三方バルブ9を切換えて密閉箱8内
の減圧雰囲気下又は不活性ガス雰囲気下にし、上部開放
型容器11内に装填された合金粉末4に振動を与える。
In the device configured in this manner, the vibrating device 6 and the vacuum pump 1 were started, and the three-way valve 9 was switched to a reduced pressure atmosphere or an inert gas atmosphere in the closed box 8. Vibration is applied to the alloy powder 4.

この場合、第1図及び第2図において、振動の強さの
程度は、振動数や振幅が小さ過ぎると十分な効果が得ら
れないから、粉末の種類や粒度等に応じて適切に選定す
る。
In this case, in FIG. 1 and FIG. 2, the degree of the vibration intensity is appropriately selected according to the type and particle size of the powder, since a sufficient effect cannot be obtained if the frequency or amplitude is too small. .

このような本発明の方法により前処理を施した合金粉
末は、常法に従って真空脱気処理した後、熱間押出成形
するなどの方法により合金部材とされる。
The alloy powder pretreated by the method of the present invention is formed into an alloy member by a method such as hot extrusion molding after vacuum degassing according to a conventional method.

ただし、第1図の方法によれば、真空脱気完了まで大
気に全く触れることがないが、第2図の方法によれば、
脱気処理用の容器に粉末を移し替える時に一度大気に触
れるため、速やかに処理する必要がある。
However, according to the method of FIG. 1, there is no exposure to the atmosphere until the completion of vacuum degassing, but according to the method of FIG.
When the powder is transferred to a degassing container, the powder must be exposed to the atmosphere once, so it must be processed promptly.

なお、粉末表面の水分の除去を目的とした脱気処理は
100torr以下の高真空で行なうことが望ましいが、Ar、N
2のような不活性雰囲気あるいは大気中でも可能であ
る。
In addition, the deaeration process for the purpose of removing water from the powder surface is
It is desirable to perform the process in a high vacuum of 100 torr or less, but Ar, N
It is also possible in an inert atmosphere such as 2 or in the air.

また、本発明においては、振動による機械的エネルギ
ーを粉末に付与する工程あるいは熱間成形加工する工程
において、予め、炭化ケイ素、窒化ケイ素、アルミナ、
シリカ、アルミナ−シリカ、ジルコニア、ベリリア、炭
化ボロン、炭化チタン等のセラミック、炭素、金属、金
属間化合物等の耐熱性物質の連続繊維、短繊維、ウイス
カ又は粉末等の耐熱性物質の少なくとも1種を混合して
複合材を得ることもできる。
In the present invention, in the step of applying mechanical energy by vibration to the powder or in the step of hot forming, silicon carbide, silicon nitride, alumina,
At least one of heat-resistant substances such as continuous fibers of heat-resistant substances such as silica, alumina-silica, zirconia, beryllia, boron carbide, and titanium carbide, carbon, metals, and intermetallic compounds, short fibers, whiskers, and powders. Can be mixed to obtain a composite material.

以下に実施例と比較例を挙げて本発明をより具体的に
説明する。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1〜3、比較例1〜3 103〜104℃/secの冷却速度で急冷凝固して得た、粒径
149〜44μmの窒素ガスアトマイズ法によるMgを含むAl
合金粉末(Al−8%Fe−1.5%Zr−1.5%Cr−Mg(ただ
し、Mg含有量は第1表に示す通り))(表面には該合金
の酸化物層が120Åの厚さに形成されている。)を第1
表に示す条件にて前処理を施した後、10-5torrの真空度
で、400℃×1h、真空脱気処理を行ない、得られた予備
成形体を押出比7、押出速度2.8mm/sec、温度440℃にて
熱間押出成形を行なった。
Examples 1-3, Comparative Examples 1-3 Particle size obtained by rapid solidification at a cooling rate of 10 3 -10 4 ° C / sec.
Al containing Mg by nitrogen gas atomization of 149-44μm
Alloy powder (Al-8% Fe-1.5% Zr-1.5% Cr-Mg (Mg content is as shown in Table 1)) (The oxide layer of the alloy is formed on the surface to a thickness of 120mm.) Is the first.
After pretreatment under the conditions shown in the table, vacuum deaeration was performed at 400 ° C. × 1 h at a degree of vacuum of 10 −5 torr, and the obtained preform was extruded at an extrusion ratio of 7 and an extrusion speed of 2.8 mm / Hot extrusion molding was performed at 440 ° C. for sec.

得られた成形体について引張試験を行ない、結果を第
1表に示した。
A tensile test was performed on the obtained molded body, and the results are shown in Table 1.

第1表より、次のことが明らかである。 From Table 1, the following is clear.

比較例6、7は、押出方向の引張強さ(L方向)と押
出直角方向の引張強さ(T方向)の差が大きく、かつ衝
撃値も低い。一方、比較例5は、熱間成形加工前に粉末
に振動処理を施しているために、比較例6、7に比べれ
ば機械的性質は改善されているが、まだ不十分である。
これは、比較例5の合金にMgが含まれていないため、酸
化物層の除去が十分になされないからである。これに対
し実施例1〜3は、L方向、T方向の引張強さに大きな
差がなく、かつ衝撃値も高い。さらにブリスターの発生
も殆ど無い。
In Comparative Examples 6 and 7, the difference between the tensile strength in the extrusion direction (L direction) and the tensile strength in the direction perpendicular to the extrusion (T direction) is large, and the impact value is low. On the other hand, in Comparative Example 5, the mechanical properties were improved as compared with Comparative Examples 6 and 7 because the powder was subjected to the vibration treatment before the hot compacting, but it was still insufficient.
This is because the alloy of Comparative Example 5 does not contain Mg, so that the oxide layer is not sufficiently removed. On the other hand, in Examples 1 to 3, there is no large difference in the tensile strength between the L direction and the T direction, and the impact value is high. Furthermore, there is almost no generation of blisters.

[発明の効果] 以上詳述した通り、本発明のAl合金粉末成形材の製造
方法によれば、次の効果が施される。
[Effects of the Invention] As described in detail above, according to the method for manufacturing an Al alloy powder compact of the present invention, the following effects are obtained.

水素ガス量が低減し易く、かつ、ブリスターの発生
も少ないために、高温、長時間の脱気処理を施す必要が
なく、過剰の焼鈍を避けることができる。この結果、急
冷凝固で得られた金属組織の粗大化が抑えられ、破壊靭
性が向上する。
Since the amount of hydrogen gas is easily reduced and the generation of blisters is small, it is not necessary to perform a high-temperature and long-time degassing treatment, and excessive annealing can be avoided. As a result, coarsening of the metal structure obtained by rapid solidification is suppressed, and fracture toughness is improved.

粉末表面の酸化物層が破砕され活性な面が出るため
に、熱間成形時に粉末同志の接合が効果的に進む。この
結果、破壊靭性が向上し、しかも熱間成形した材料の機
械的性質の異方性が小さい。
Since the oxide layer on the surface of the powder is crushed to form an active surface, bonding between the powders proceeds effectively during hot compaction. As a result, the fracture toughness is improved, and the anisotropy of the mechanical properties of the hot-formed material is small.

本発明において、Al合金粉末に容器内で振動を与える
ことにより、粉末同志を接触させること、及び、Al合金
粉末がMgを0.01〜20重量%含むMg含有Al合金粉末である
ことは極めて重要である。
In the present invention, it is extremely important that the Al alloy powder is brought into contact with each other by vibrating the Al alloy powder in a container, and that the Al alloy powder is a Mg-containing Al alloy powder containing 0.01 to 20% by weight of Mg. is there.

即ち、容器内のAl合金粉末への振動の付与は、図面の
第1,2図に示すような、簡便かつ比較的安価な装置を用
いて容易に実施することができる。
That is, the application of vibration to the Al alloy powder in the container can be easily performed using a simple and relatively inexpensive apparatus as shown in FIGS.

また、本発明においては、粒子同志の接触のみにより
表面層を破壊ないし剥離するので、改質媒体を用いる場
合のように、水酸化物や水分、不純物等が合金粒子の内
部に取り込まれることもない。即ち、改質媒体(例えば
金属やセラミックボール)を用いたアトリッションミ
ル、ボールミルによる攪拌、メカニカルアロイング等を
用いる場合には、改質媒体が粉末の表面に衝突したとき
の衝撃により、粉末表面の結晶水等の水分や、酸化物、
水酸化物、あるいは改質媒体の微小破片、容器に付着し
ていた水分や不純物などが合金粒子の内部に取り込まれ
る可能性がある。これに対し、振動により粒子同志の接
触のみで表面層を破壊ないし剥離する場合には、水酸化
物や水分等が合金粒子の内部に取り込まれることがな
い。
Further, in the present invention, since the surface layer is broken or peeled only by the contact between the particles, hydroxide, moisture, impurities, etc. may be taken into the alloy particles as in the case of using the modified medium. Absent. That is, in the case of using an attrition mill using a modified medium (for example, metal or ceramic balls), stirring by a ball mill, mechanical alloying, or the like, the impact when the modified medium collides with the surface of the powder is used. Water such as crystal water on the surface, oxides,
There is a possibility that hydroxide, minute fragments of the reforming medium, moisture or impurities attached to the container may be taken into the alloy particles. On the other hand, when the surface layer is broken or peeled only by the contact of the particles by vibration, hydroxide, moisture, and the like are not taken into the alloy particles.

しかも、Al合金中に所定量のMgが含有され、粉末表面
に脆いMgを含む酸化物層が形成されているため、振動に
より、この表面層を容易に除去して改質できる。
In addition, since a predetermined amount of Mg is contained in the Al alloy and a brittle Mg-containing oxide layer is formed on the powder surface, the surface layer can be easily removed and modified by vibration.

因みに、粉末の外周面にAl酸化物のみの被覆層がある
場合は、この層の粘性が高く、容易には除去し得ない。
Incidentally, when there is a coating layer of only Al oxide on the outer peripheral surface of the powder, this layer has a high viscosity and cannot be easily removed.

本発明においては、容器内にAl合金粉末を入れて、振
動で粉末表面を改質した後、熱間成形加工できるので、
装置や装置の設置面積も比較的小さくでき、比較的簡単
に低コストで、しかも、テスト的な結果を出す場合でも
容易に行うことができる。
In the present invention, since the Al alloy powder is placed in a container, and the powder surface is modified by vibration, hot forming can be performed.
The apparatus and the installation area of the apparatus can be made relatively small, and the cost can be relatively easily reduced, and even when a test result is obtained, it can be easily performed.

しかも、容器の外部から振動を与えることができるた
め、容器内に合金粉末を入れたまま、完全に外気を遮断
して、外気と反応させることもなく連続的に最終成形工
程まで移行させることも可能であり、容易に高品質の成
形材を得ることができる。
In addition, since vibration can be applied from the outside of the container, it is possible to completely shut off the outside air while keeping the alloy powder in the container, and to continuously shift to the final molding step without reacting with the outside air. It is possible, and a high quality molding material can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は、本発明を実施するためのそれぞれ
異なる実施例を示す縦断面図、第3図はAl合金粒子部の
模式的断面図である。 1……真空ポンプ、2……缶密閉容器、 4……合金粉末、6……振動装置、 8……密閉箱、11……上部開放型容器。
1 and 2 are longitudinal sectional views showing different embodiments for carrying out the present invention, and FIG. 3 is a schematic sectional view of an Al alloy particle portion. DESCRIPTION OF SYMBOLS 1 ... Vacuum pump, 2 ... Can closed container, 4 ... Alloy powder, 6 ... Vibration device, 8 ... Closed box, 11 ... Open top type container.

フロントページの続き (72)発明者 岩井 英樹 山口県宇部市大字小串字沖の山1980番地 宇部興産株式会社宇部機械製作所内 (56)参考文献 特開 平1−219107(JP,A)Continuation of the front page (72) Inventor Hideki Iwai 1980, Ogushi-kogashi, Obe-shi, Ube-shi, Ube-shi, Yamaguchi Ube Industries, Ltd. Ube Machinery Works (56) References JP 1-2219107 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内部が減圧雰囲気又は不活性ガス雰囲気と
された容器内において、急冷凝固して得られた0.01〜20
重量%のMgを含むAl合金粉末であって、その表面にMgを
含む酸化物層が形成された粉末に振動により機械的エネ
ルギーを与え、主として粉末同志の接触により粉末表面
を改質する工程;及び、 その後前記合金粉末を熱間成形加工して成形材を得る工
程; を有するAl合金粉末成形材の製造方法。
(1) a solidified solid obtained by rapid cooling and solidification in a vessel having a reduced pressure atmosphere or an inert gas atmosphere.
A step of applying mechanical energy by vibration to an Al alloy powder containing Mg by weight and having an oxide layer containing Mg formed on its surface, and modifying the powder surface mainly by contact between the powders; And a step of subsequently hot-working the alloy powder to obtain a molded material.
【請求項2】前記合金粉末をその融点以下の温度に加熱
した状態において前記機械的エネルギーを与えることを
特徴とする請求項(1)に記載のAl合金粉末成形材の製
造方法。
2. The method for producing an Al alloy powder compact according to claim 1, wherein said mechanical energy is applied while said alloy powder is heated to a temperature lower than its melting point.
【請求項3】前記合金粉末に機械的エネルギーを与える
前に該合金粉末を100〜300℃に加熱することを特徴とす
る請求項(1)又は(2)に記載のAl合金粉末成形材の
製造方法。
3. The Al alloy powder compact according to claim 1, wherein said alloy powder is heated to 100 to 300 ° C. before applying mechanical energy to said alloy powder. Production method.
【請求項4】前記機械的エネルギーが与えられた合金粉
末を加熱真空脱気処理し、その後、該粉末を熱間成形加
工することを特徴とする請求項(1)ないし(3)のい
ずれか1項に記載のAl合金粉末成形材の製造方法。
4. The method according to claim 1, wherein the alloy powder to which the mechanical energy has been applied is subjected to a heating vacuum degassing process, and thereafter, the powder is hot formed. 2. The method for producing an Al alloy powder compact according to claim 1.
JP2263645A 1990-10-01 1990-10-01 Manufacturing method of Al alloy powder compact Expired - Lifetime JP2596205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2263645A JP2596205B2 (en) 1990-10-01 1990-10-01 Manufacturing method of Al alloy powder compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2263645A JP2596205B2 (en) 1990-10-01 1990-10-01 Manufacturing method of Al alloy powder compact

Publications (2)

Publication Number Publication Date
JPH04141501A JPH04141501A (en) 1992-05-15
JP2596205B2 true JP2596205B2 (en) 1997-04-02

Family

ID=17392359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2263645A Expired - Lifetime JP2596205B2 (en) 1990-10-01 1990-10-01 Manufacturing method of Al alloy powder compact

Country Status (1)

Country Link
JP (1) JP2596205B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830659B1 (en) 2007-05-03 2008-05-20 주식회사 성진사 Connector manufacturing method and connector for heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210977B (en) * 2022-02-23 2022-05-17 西安欧中材料科技有限公司 Device and method for preparing fine-particle-size powder high-temperature alloy hot isostatic pressing part
CN115213412A (en) * 2022-07-20 2022-10-21 中国航发北京航空材料研究院 Forming device and using method of large-diameter titanium-aluminum-niobium alloy blank

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209107A (en) * 1988-02-17 1989-08-22 Kuraudo:Kk Deodorizing of heat fusion equipment for waste plastics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830659B1 (en) 2007-05-03 2008-05-20 주식회사 성진사 Connector manufacturing method and connector for heat exchanger

Also Published As

Publication number Publication date
JPH04141501A (en) 1992-05-15

Similar Documents

Publication Publication Date Title
JP5697604B2 (en) Manufacturing method of metal parts
US5039476A (en) Method for production of powder metallurgy alloy
JPH0561321B2 (en)
JP5270677B2 (en) Method for producing metal matrix composite
EP2325342A2 (en) Hot compaction and extrusion of L12 aluminum alloys
EP2325343B1 (en) Forging deformation of L12 aluminum alloys
Božić et al. Microstructures and mechanical properties of ZA27-Al2O3 composites obtained by powder metallurgy process
JP2596205B2 (en) Manufacturing method of Al alloy powder compact
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
US20100254850A1 (en) Ceracon forging of l12 aluminum alloys
JP2751080B2 (en) Manufacturing method of metal powder molding material
US4655855A (en) Method for refining microstructures of prealloyed titanium powder compacted articles
Pickens High-strength aluminum powder metallurgy alloys
JP2569920B2 (en) Manufacturing method of metal powder molding material
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
JP3336645B2 (en) Method for degassing and solidifying aluminum alloy powder
US5193605A (en) Techniques for preparation of ingot metallurgical discontinuous composites
JP3691399B2 (en) Method for producing hot-worked aluminum alloy powder
JPS59157201A (en) Manufacture of molded body of zinc-aluminum alloy powder
JP2757928B2 (en) Manufacturing method of metal powder molding material
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
JPS62199703A (en) Hot hydrostatic compression molding method for al-si powder alloy
JPH02267201A (en) Method for pretreating aluminum alloy powder
JPH0533002A (en) Connecting rod having high toughness and strength
JPH0533001A (en) Heat and wear resistant aluminum compacted member having high toughness