JPH04302652A - Fiber composite gutter and manufacture thereof - Google Patents

Fiber composite gutter and manufacture thereof

Info

Publication number
JPH04302652A
JPH04302652A JP6740191A JP6740191A JPH04302652A JP H04302652 A JPH04302652 A JP H04302652A JP 6740191 A JP6740191 A JP 6740191A JP 6740191 A JP6740191 A JP 6740191A JP H04302652 A JPH04302652 A JP H04302652A
Authority
JP
Japan
Prior art keywords
vinyl chloride
monomer
chloride resin
core material
gutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6740191A
Other languages
Japanese (ja)
Other versions
JP2904602B2 (en
Inventor
Kouichi Karikaya
孝一 刈茅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP6740191A priority Critical patent/JP2904602B2/en
Publication of JPH04302652A publication Critical patent/JPH04302652A/en
Application granted granted Critical
Publication of JP2904602B2 publication Critical patent/JP2904602B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To prevent interlayer separation and corrosion and to enhance heat- resistance, stretchability, durability and the like by laminating polyvinyl resin layers on both surfaces of a trough-like core member made of fiber reinforced resin of an acrylic crosslinked group or a vinyl chloride group. CONSTITUTION:Several long reinforcing fibers made of robing glass or the like, is impregnated with, for example, a mixed paste made of, for example, vinyl chloride resin powder and liquids acrylic group monomer. Then, the reinforcing fibers impregnated with this paste, is led into a heating furnace at a temperature lower than a monomer reacting temperature, and the impregnated paste is allowed to gel into a prepreg sheet which is then formed into a trough- like core member 2. Then, the core member 2 is led into cross-head dies of an extruder. Next, molten vinyl chloride resin is laminated on both sides of the core member 2, and the monomer in the core member 2 is cured. Then, a sizing process is carried by a cooling and sizing device, and accordingly, a gutter 1 laminated on both inner and outer both side surfaces with vinyl chloride resin layers 3 is continuously formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、繊維複合雨樋及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber composite rain gutter and a method for manufacturing the same.

【0002】0002

【従来の技術】従来、一般に雨樋は押出成形せられた硬
質塩化ビニル製であるが、硬質塩化ビニルは線膨張係数
が7.0×10−5(1/℃)と大きいために熱伸縮が
大きい。したがって、硬質塩化ビニル製雨樋を継手と共
に建物に取付けると、四季の気温の変化や昼夜の温度差
により、雨樋が熱伸縮して継手から抜けたり、熱変形が
生じ、その結果ひび割れしたりして雨樋としての機能を
果たし得なくなるおそれがあった。
[Prior Art] Conventionally, rain gutters are generally made of extruded hard vinyl chloride, but hard vinyl chloride has a large coefficient of linear expansion of 7.0 x 10-5 (1/°C), so it expands and contracts when heated. is large. Therefore, when hard PVC rain gutters are attached to a building along with joints, changes in seasonal temperatures and temperature differences between day and night can cause the rain gutters to expand and contract due to heat, causing them to pull out of the joints or become thermally deformed, resulting in cracks. There was a risk that the rain gutter would no longer function as a rain gutter.

【0003】そこで、上記欠点を補なった雨樋として、
(イ)金属板製芯材の両面に熱可塑性樹脂を押出成形に
より被覆したもの(特開昭57−33660号公報参照
)や、(ロ)繊維質基材にゴム、合成樹脂等が含浸され
た芯材の内外両面に熱可塑性樹脂を押出成形により被覆
したもの(実公昭62−42019号公報参照)が提案
されている。
[0003] Therefore, as a rain gutter that compensates for the above drawbacks,
(a) Metal plate core material coated with thermoplastic resin on both sides by extrusion molding (see JP-A-57-33660), and (b) fibrous base material impregnated with rubber, synthetic resin, etc. It has been proposed that the inner and outer surfaces of a core material are coated with thermoplastic resin by extrusion molding (see Japanese Utility Model Publication No. 42019/1983).

【0004】0004

【発明が解決しようとする課題】上記(イ)の雨樋の場
合、金属板製芯材と内外被覆合成樹脂の各界面に、温度
変化による応力集中等で剥離が生じたり、蓄熱による変
形を生じるという問題があるし、切断面からの雨水の界
面への侵入による腐食や層間剥離等の問題をも有してい
る。
[Problem to be Solved by the Invention] In the case of the rain gutter described in (a) above, peeling occurs at each interface between the metal plate core material and the inner and outer coating synthetic resin due to stress concentration due to temperature changes, and deformation due to heat accumulation. There are also problems such as corrosion and delamination due to rainwater entering the interface from the cut surface.

【0005】また上記(ロ)の雨樋の場合、熱伸縮性を
低減させるために繊維量を増加させると、芯材がもろく
なり、衝撃による芯材の割れや層間剥離等が発生する。
[0005] In the case of the rain gutter described in (b) above, if the amount of fiber is increased in order to reduce thermal elasticity, the core material becomes brittle, causing cracking and delamination of the core material due to impact.

【0006】本発明の目的は、層間剥離や腐食の問題が
なくかつ熱伸縮性が少なくて耐熱性及び剛性が大きい繊
維複合雨樋及びその連続的製造方法を提供することにあ
る。
[0006] An object of the present invention is to provide a fiber composite rain gutter which is free from problems of delamination and corrosion, has low thermal expansion and contraction, and has high heat resistance and rigidity, and a continuous manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】請求項1の発明による繊
維複合雨樋は、樋状の繊維強化アクリル架橋系樹脂及び
塩化ビニル樹脂からなる芯材と、芯材の内外両面に積層
せられた塩化ビニル樹脂層とよりなることを特徴とする
ものである。
[Means for Solving the Problems] A fiber composite rain gutter according to the invention of claim 1 includes a gutter-shaped core material made of a fiber-reinforced acrylic cross-linked resin and a vinyl chloride resin, and a core material laminated on both the inner and outer surfaces of the core material. It is characterized by consisting of a vinyl chloride resin layer.

【0008】請求項2の発明による繊維複合雨樋の製造
方法は、連続した多数の強化繊維に、塩化ビニル樹脂粉
体と液状アクリル系モノマーとを混合してなるペースト
を含浸させる工程と、ペースト含浸強化繊維をモノマー
反応開始温度未満の温度で加熱してプリプレグ・シート
となす工程と、プリプレグ・シートを樋状に賦形して樋
状芯材となす工程と、樋状芯材をクロスヘッド・ダイに
引込んで内外両面に塩化ビニル樹脂を積層するとともに
、樋状芯材中のモノマーを反応硬化させることを特徴と
するものである。
The method for manufacturing a fiber composite rain gutter according to the second aspect of the invention includes the steps of impregnating a large number of continuous reinforcing fibers with a paste made by mixing vinyl chloride resin powder and a liquid acrylic monomer; A process of heating the impregnated reinforcing fiber at a temperature below the monomer reaction initiation temperature to form a prepreg sheet, a process of shaping the prepreg sheet into a trough shape to form a trough-shaped core material, and a process of forming the trough-shaped core material into a crosshead.・It is characterized by drawing it into a die and laminating vinyl chloride resin on both the inside and outside surfaces, as well as reacting and curing the monomer in the trough-shaped core material.

【0009】請求項3の発明による繊維複合雨樋の製造
方法は、連続した多数の強化繊維に、塩化ビニル樹脂粉
体と液状アクリル系モノマーとを混合してなるペースト
を含浸させる工程と、ペースト含浸強化繊維をモノマー
反応開始温度未満の温度で加熱してプリプレグ・シート
となす工程と、プリプレグ・シートを樋状に賦形して樋
状芯材となす工程と、樋状芯材中のモノマーを反応硬化
させる工程と、モノマーが硬化した樋状芯材をクロスヘ
ッド・ダイに引込んで内外両面に塩化ビニル樹脂を積層
することを特徴とするものである。
The method for producing a fiber composite rain gutter according to the invention of claim 3 includes the steps of impregnating a large number of continuous reinforcing fibers with a paste made by mixing vinyl chloride resin powder and a liquid acrylic monomer; A process of heating the impregnated reinforcing fibers at a temperature below the monomer reaction initiation temperature to form a prepreg sheet, a process of shaping the prepreg sheet into a trough shape to form a trough-shaped core material, and a step of forming a trough-shaped core material using the monomer in the trough-shaped core material. This process is characterized by the step of reaction-curing the monomer, and drawing the trough-shaped core material with the monomer cured into a crosshead die to laminate vinyl chloride resin on both the inside and outside surfaces.

【0010】請求項4の発明による繊維複合雨樋の製造
方法は、連続した多数の強化繊維に、塩化ビニル樹脂粉
体と液状アクリル系モノマーとを混合してなるペースト
を含浸させる工程と、ペースト含浸強化繊維をモノマー
反応開始温度未満の温度で加熱してプリプレグ・シート
となす工程と、プリプレグ・シートの両面に塩化ビニル
樹脂を積層して複合シートとなす工程と、複合シートを
塩化ビニル樹脂の軟化点以上の温度に加熱して樋状に曲
げ加工するとともに、芯材中のモノマーを反応硬化させ
ることを特徴とするものである。
The method for manufacturing a fiber composite rain gutter according to the invention of claim 4 includes the steps of impregnating a large number of continuous reinforcing fibers with a paste made by mixing vinyl chloride resin powder and a liquid acrylic monomer; A process of heating the impregnated reinforcing fibers at a temperature below the monomer reaction initiation temperature to form a prepreg sheet, a process of laminating vinyl chloride resin on both sides of the prepreg sheet to form a composite sheet, and a process of laminating the composite sheet with vinyl chloride resin. It is characterized in that it is heated to a temperature above its softening point and bent into a trough shape, and the monomer in the core material is reacted and hardened.

【0011】強化繊維の具体例としては、ガラス、炭素
、セラミック等の無機繊維、アラミド、ビニロン、ポリ
エステル等の有機繊維をあげることができる。
Specific examples of reinforcing fibers include inorganic fibers such as glass, carbon, and ceramic, and organic fibers such as aramid, vinylon, and polyester.

【0012】強化繊維の形態には、ロービング、ネット
、マット、チョップド・ストランド等があり、いずれの
形態のものを用いてもよいし、複合して用いても差支え
ない。また繊維径は、通常1〜数10μ程度であるが、
この範囲のものに限定されることはない。
[0012] The reinforcing fibers may be in the form of rovings, nets, mats, chopped strands, etc., and any of them may be used, or they may be used in combination. In addition, the fiber diameter is usually about 1 to several tens of microns,
It is not limited to this range.

【0013】アクリル系モノマーは、多官能アクリレー
ト、メタクリレートを指し、ジアクリレート、トリアク
リレート、ジメタクリレート、トリメタクリレート・モ
ノマーが適宜採択される。
The acrylic monomer refers to polyfunctional acrylates and methacrylates, and diacrylate, triacrylate, dimethacrylate, and trimethacrylate monomers are appropriately selected.

【0014】用いられる重合開始剤としては、有機過酸
化物(BPO,MEKPO)、ジアゾ化合物(AIBN
)等があるが、反応時間、温度に応じてその種類及び量
が適宜決められる。
The polymerization initiators used include organic peroxides (BPO, MEKPO), diazo compounds (AIBN
), but the type and amount thereof are determined as appropriate depending on the reaction time and temperature.

【0015】塩化ビニル樹脂粉体と液状アクリル系モノ
マーとを混合してペースト化するさい、なるべくプリプ
レグ中のボイドを無くするために減圧攪拌することが望
ましい。ペースト化するさいのアクリル系モノマーの添
加量は、塩化ビニル樹脂100重量部に対して80〜2
00重量部が適当である。80重量部未満では、含浸に
適した粘度のペーストが得られず、200重量部を超え
ると、アクリル系モノマー量が多すぎてBステージ状態
のプリプレグ・シートが得られない。
[0015] When mixing the vinyl chloride resin powder and the liquid acrylic monomer to form a paste, it is desirable to stir under reduced pressure in order to eliminate voids in the prepreg as much as possible. The amount of acrylic monomer added when making a paste is 80 to 2 parts by weight per 100 parts by weight of vinyl chloride resin.
00 parts by weight is appropriate. If it is less than 80 parts by weight, a paste with a viscosity suitable for impregnation cannot be obtained, and if it exceeds 200 parts by weight, the amount of acrylic monomer is too large and a B-stage prepreg sheet cannot be obtained.

【0016】芯材中の強化繊維の含有量は適宜選択でき
るが、理論上繊維含有量90容量%程度が上限となり、
上限値を超える充填率になると繊維の合着が不完全であ
るために所望の性能は得られない。
[0016] Although the content of reinforcing fibers in the core material can be selected as appropriate, the theoretical upper limit is about 90% by volume of fiber content;
If the filling rate exceeds the upper limit, the desired performance cannot be obtained because the coalescence of the fibers is incomplete.

【0017】積層せられる塩化ビニル樹脂には、必要に
応じて、安定剤、滑剤、強化剤、ゲル化促進剤等が添加
される。また重合度は600以上が、製造せられる雨樋
の物性、耐候性の面で好ましい。
[0017] A stabilizer, a lubricant, a reinforcing agent, a gelling accelerator, etc. are added to the vinyl chloride resin to be laminated, if necessary. Further, a degree of polymerization of 600 or more is preferable in terms of physical properties and weather resistance of the rain gutter produced.

【0018】[0018]

【作用】本発明による繊維複合雨樋は、芯材が樋状の繊
維強化アクリル架橋系樹脂及び塩化ビニル樹脂からなり
、両樹脂が一体的に融着されていると推定され、芯材の
内外両面に積層せられた層が塩化ビニル樹脂であるから
、両者は一体的に接合する。また芯材が繊維強化アクリ
ル架橋塩化ビニル樹脂であるため、熱伸縮性が少なくて
、熱変形温度、ガラス転移温度が高く、耐熱性に優れて
おり、しかも剛性が大である。
[Function] In the fiber composite rain gutter according to the present invention, the core material is made of a gutter-shaped fiber-reinforced acrylic cross-linked resin and a vinyl chloride resin, and it is presumed that both resins are integrally fused. Since the layers laminated on both sides are made of vinyl chloride resin, the two are integrally bonded. In addition, since the core material is a fiber-reinforced acrylic crosslinked vinyl chloride resin, it has low thermal elasticity, high heat distortion temperature and high glass transition temperature, excellent heat resistance, and high rigidity.

【0019】[0019]

【実施例】本発明の実施例を、以下図面を参照して説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings.

【0020】図1に示す請求項1の発明による繊維複合
雨樋(1) は、樋状の繊維強化アクリル架橋系樹脂及
び塩化ビニル樹脂からなる芯材(2) と、芯材(2)
 の内外両面に積層せられた塩化ビニル樹脂層(3) 
とよりなるものである。
The fiber composite rain gutter (1) according to the invention of claim 1 shown in FIG.
PVC resin layer (3) laminated on both the inside and outside of the
It depends on this.

【0021】上記繊維複合雨樋の3つの製造方法すなわ
ち請求項2〜4による発明の実施例を、それぞれ以下実
施例1〜3として説明する。
[0021] Three manufacturing methods of the fiber composite rain gutter, ie, embodiments of the invention according to claims 2 to 4, will be described below as Examples 1 to 3, respectively.

【0022】実施例1  図2に示すように、多数のボ
ビン(4) から連続した多数の強化繊維(5) を複
数のガイド・ロール(6) により案内し、塩化ビニル
樹脂粉体と液状アクリル系モノマーとを混合してなるペ
ーストの満たされた含浸槽(7) を通過させた後、一
対の圧延ロール(8) を通過させてペーストを含浸せ
しめる。
Example 1 As shown in FIG. 2, a large number of continuous reinforcing fibers (5) from a large number of bobbins (4) are guided by a plurality of guide rolls (6), and vinyl chloride resin powder and liquid acrylic After passing through an impregnating tank (7) filled with a paste made by mixing with a system monomer, the material is passed through a pair of rolling rolls (8) to be impregnated with the paste.

【0023】つぎに、ペースト含浸強化繊維(9) を
モノマー反応開始温度未満の温度に設定した加熱炉(1
0)中を通過させて加熱し、含浸ペーストをゲル化して
Bステージ状態のプリプレグ・シート(11)となして
巻取りロール12) に巻取る。
Next, the paste-impregnated reinforcing fibers (9) were placed in a heating furnace (1) set at a temperature lower than the monomer reaction initiation temperature.
0) The impregnated paste is passed through and heated to gel the impregnated paste to form a prepreg sheet (11) in a B-stage state, which is then wound onto a winding roll 12).

【0024】強化繊維(5) としては、ガラス・ロー
ビングを用い、含浸槽(7) に導入する前に開繊する
。ペーストとしては、塩化ビニル樹脂粉体100重量部
に対してエチルジメチタクリレートモノマー100重量
部、重合開始剤2重量部、スズ系安定剤1重量部を混合
したものを用いた。ペースト含浸強化繊維に対する加熱
は、100℃で約5分行なった。プリプレグ・シート(
11)の厚みは0.5mm、幅は400mm、ガラス含
有率は30容量%であった。
Glass rovings are used as the reinforcing fibers (5) and are opened before being introduced into the impregnating tank (7). The paste used was a mixture of 100 parts by weight of vinyl chloride resin powder, 100 parts by weight of ethyl dimethacrylate monomer, 2 parts by weight of a polymerization initiator, and 1 part by weight of a tin-based stabilizer. The paste-impregnated reinforcing fibers were heated at 100° C. for about 5 minutes. Prepreg sheet (
11) had a thickness of 0.5 mm, a width of 400 mm, and a glass content of 30% by volume.

【0025】図3に示すように、プリプレグ・シート(
11)を繰出機(29)に移し、これより繰出されたプ
リプレグ・シート(11)を賦形装置(12)により樋
状に賦形し、樋状芯材(2) となす(図4参照)。こ
のさいプリプレグ・シート(11)をアクリル系モノマ
ーの反応開始温度未満の温度に加熱し、シート(11)
の軟化を促進せしめてもよい。 なお、プリプレグ・シート(11)はこれを繰出機(2
9)に移すことなく、直接賦形装置(12)に導いても
よい。つぎに、樋状芯材(2) を押出機(13)に接
続されクロスヘッド・ダイ(14)に引込んで押出圧力
の下で溶融塩化ビニル樹脂を芯材(2) の両面に積層
するとともに、その温度により樋状芯材(2) 中のモ
ノマーを反応硬化させた後、冷却サイジング装置(15
)内でサイジングすることにより、図1に示されている
ような芯材(2) の内外両面に塩化ビニル樹脂層(3
) が積層せられた厚み1.5mmの雨樋(1) を連
続的に得、これを引取機(16)により引取る。クロス
ヘッド・ダイ(14)は、図5に示されているように、
芯材通路(17)を介して一方に配された樹脂流路(1
8)と、同他方に配された樹脂流路(19)とが、芯材
通路(17)と直交する同一線上に位置せしめられてい
るが、ランド部(19)の長さは塩化ビニル樹脂の溶融
合着性及び脱泡性に応じて定められる。樹脂流路(18
)(19)には、塩化ビニル樹脂100部に対して、安
定剤1重量部、滑剤0.7重量部、顔料1重量部をコン
パウンド化したもの(軟化温度81℃、溶融温度180
℃)を供給した。このさい金型温度185℃、成形速度
3m/min とした。
As shown in FIG. 3, the prepreg sheet (
11) is transferred to a feeding machine (29), and the prepreg sheet (11) fed out from this is shaped into a trough shape by a forming device (12) to form a trough-shaped core material (2) (see Fig. 4). ). At this time, the prepreg sheet (11) is heated to a temperature below the reaction initiation temperature of the acrylic monomer, and the sheet (11) is heated to a temperature lower than the reaction initiation temperature of the acrylic monomer.
The softening may be promoted. The prepreg sheet (11) is fed by a feeding machine (2).
9), it may be directly guided to the shaping device (12). Next, the trough-shaped core material (2) is connected to an extruder (13) and drawn into a crosshead die (14), and under extrusion pressure, molten vinyl chloride resin is laminated on both sides of the core material (2). After reacting and hardening the monomer in the trough-shaped core material (2) at that temperature, the cooling sizing device (15
), a vinyl chloride resin layer (3) is formed on both the inner and outer surfaces of the core material (2) as shown in Fig.
) is continuously obtained with a thickness of 1.5 mm, and this is collected by a collecting machine (16). The crosshead die (14), as shown in FIG.
A resin channel (1) arranged on one side via a core material channel (17)
8) and the resin channel (19) arranged on the other side are located on the same line perpendicular to the core material channel (17), but the length of the land part (19) is the same as that of the vinyl chloride resin. It is determined according to the melt adhesion and defoaming properties of Resin flow path (18
) (19) contains 100 parts of vinyl chloride resin, 1 part by weight of stabilizer, 0.7 part by weight of lubricant, and 1 part by weight of pigment (softening temperature: 81°C, melting temperature: 180°C).
°C) was supplied. At this time, the mold temperature was 185° C., and the molding speed was 3 m/min.

【0026】実施例2  図6に示すように、賦形装置
(12)とクロスヘッド・ダイ(14)との間に加熱硬
化装置(20)を配置し、樋状芯材(2) 中のモノマ
ーを反応硬化させるのに、実施例1ではクロスヘッド・
ダイ(14)内において溶融塩化ビニル樹脂の温度を利
用していたのを実施例2では加熱硬化装置(20)によ
って樋状芯材(2) 中のモノマーを反応硬化させ、モ
ノマーが硬化した樋状芯材(2) をクロスヘッド・ダ
イ(14)に引込む以外は、実施例1と同様にして雨樋
(1) を製造した。
Example 2 As shown in FIG. 6, a heat curing device (20) is arranged between the shaping device (12) and the crosshead die (14), and the trough-shaped core material (2) is In Example 1, a crosshead was used to reaction-cure the monomer.
In Example 2, the temperature of the molten vinyl chloride resin was used in the die (14), but in Example 2, the monomer in the trough-shaped core material (2) was reacted and hardened by the heat curing device (20), and the trough with the monomer hardened was used. A rain gutter (1) was manufactured in the same manner as in Example 1, except that the core material (2) was drawn into the crosshead die (14).

【0027】この実施例では、加熱硬化装置(20)と
して150℃の加熱炉を用いたが、ヒーターでもよく、
その他、熱風、紫外線照射、電離性放射線照射等によっ
てもよく、その種類は用いられる重合開始剤の種類との
関係で適宜選択せられる。
In this example, a 150°C heating furnace was used as the heat curing device (20), but a heater may also be used.
In addition, hot air, ultraviolet irradiation, ionizing radiation, etc. may also be used, and the type thereof is appropriately selected depending on the type of polymerization initiator used.

【0028】実施例3  図7に示されているように、
中間繰出機(29)から実施例1と同じプリプレグ・シ
ート(11)を繰出すとともに、中間プリプレグ・シー
ト繰出機(29)の上下に配された上下繰出機(21)
(22)から厚み0.5mmの塩化ビニル樹脂シート(
23)(24)を繰出し、一対のピンチ・ロール(25
)により面圧5kg/cm2 、常温で三者を圧着して
3層複合シート(26)となし、これを巻取りロール(
27)に巻取る。3層複合シート(26)を別の繰出機
(28)に移し、これより曲げ加工装置(30)に引込
んで塩化ビニル樹脂の軟化点以上の温度すなわち90℃
に加熱して樋状に曲げ加工するとともに、芯材中のモノ
マーを反応させ、得られた雨樋(1) を引取機(16
)で引取った。
Example 3 As shown in FIG.
The same prepreg sheet (11) as in Example 1 is fed from the intermediate feeder (29), and upper and lower feeders (21) are arranged above and below the intermediate prepreg sheet feeder (29).
(22) to a 0.5 mm thick vinyl chloride resin sheet (
23) (24), and a pair of pinch rolls (25
) at room temperature with a surface pressure of 5 kg/cm2 to form a three-layer composite sheet (26), which was then rolled with a winding roll (
27). The three-layer composite sheet (26) is transferred to another feeding machine (28), and from there it is drawn into a bending device (30) where it is heated to a temperature above the softening point of the vinyl chloride resin, that is, 90°C.
The rain gutter (1) is heated to bend it into a gutter shape, and the monomer in the core material is reacted.
).

【0029】この実施例では、曲げ加工装置(30)と
してシューフォーミング装置を用いたが、ロールフォー
ミング装置その他曲げ加工できる装置であればとくに制
約はなく、たとえば定寸に裁断した3層複合シート(2
6)をプレス成形してもよい。
In this embodiment, a shoe forming device was used as the bending device (30), but there is no particular restriction as long as it is a roll forming device or other device capable of bending. 2
6) may be press-molded.

【0030】実施例1〜3につき、つぎの比較例と、線
膨張係数、耐熱変形性及び横方向曲げ弾性率を対比した
[0030] Examples 1 to 3 were compared with the following comparative example in linear expansion coefficient, heat deformation resistance, and transverse bending modulus.

【0031】比較例1  市販塩化ビニル樹脂製雨樋比
較例2  含浸樹脂として塩化ビニル樹脂(安定剤1重
量部添加)を用い、粉体状で含浸した後に、加熱溶融し
てプリプレグとし、これを加熱賦形して樋状芯材となし
、クロスヘッド・ダイに引込み、樋状芯材の内外両面に
塩化ビニル樹脂を押出し被覆したこと以外は実施例1と
同様にして雨樋を製造した。
Comparative Example 1 Commercially available vinyl chloride resin rain gutter Comparative Example 2 Vinyl chloride resin (1 part by weight of stabilizer added) was used as the impregnating resin, and after impregnating it in powder form, it was heated and melted to form a prepreg. A rain gutter was produced in the same manner as in Example 1, except that it was heated and shaped into a gutter-shaped core material, drawn into a crosshead die, and extruded and coated both the inner and outer surfaces of the gutter-shaped core material with vinyl chloride resin.

【0032】得られたサンプルを長さ4mに裁断し、以
下のように評価した。
The obtained sample was cut to a length of 4 m and evaluated as follows.

【0033】1)  線膨張係数の測定得られたサンプ
ルを恒温温室に入れ、20℃での寸法を測っておき、つ
ぎに60℃に温度をあげて寸法変化量を測定することに
より線膨張係数を算出した。
1) Measurement of linear expansion coefficient Place the obtained sample in a thermostatic chamber and measure the dimensions at 20°C. Next, raise the temperature to 60°C and measure the amount of dimensional change to determine the linear expansion coefficient. was calculated.

【0034】2)  熱変形の評価 得られたサンプルを20cmの長さに切断し、80℃の
オーブン中に1時間放置することにより耐熱変形性を評
価した。
2) Evaluation of thermal deformation The obtained sample was cut into 20 cm lengths and left in an oven at 80° C. for 1 hour to evaluate thermal deformation resistance.

【0035】3)  曲げ弾性率の測定得られたサンプ
ルを25×150m の大きさに切断し、JIS  K
6911に従って60℃での曲げ弾性率を測定した。
3) Measurement of flexural modulus The obtained sample was cut into a size of 25 x 150 m, and JIS K
The flexural modulus at 60° C. was measured according to 6911.

【0036】[0036]

【表1】[Table 1]

【0037】上記結果より明らかなように、本発明の製
造方法で得られた繊維複合雨樋の線膨張係数は、理論値
によく一致するとともに、耐熱性、剛性に優れている。
As is clear from the above results, the linear expansion coefficient of the fiber composite rain gutter obtained by the manufacturing method of the present invention closely matches the theoretical value, and is excellent in heat resistance and rigidity.

【0038】[0038]

【発明の効果】本発明の繊維複合雨樋によれば、芯材の
アクリル架橋系樹脂及び塩化ビニル樹脂と、これに積層
せられた塩化ビニル樹脂とが一体的に接合するから、層
間剥離を生じないし、腐食の問題もない。
Effects of the Invention According to the fiber composite rain gutter of the present invention, the acrylic cross-linked resin and vinyl chloride resin of the core material and the vinyl chloride resin laminated thereon are integrally bonded, so that delamination is prevented. There is no corrosion problem.

【0039】また熱伸縮性が少なくて耐熱性及び剛性が
大であるから、雨樋としての耐久性が大である。
[0039] Also, since it has low thermal expansion and contraction and high heat resistance and rigidity, it has high durability as a rain gutter.

【0040】さらに本発明の製造方法によれば、上記の
優れた雨樋を連続的に製造することができるので生産性
が高い。
Furthermore, according to the manufacturing method of the present invention, the excellent rain gutters described above can be manufactured continuously, resulting in high productivity.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明による繊維複合雨樋の部分斜視断面図で
ある。
1 is a partial perspective cross-sectional view of a fiber composite rain gutter according to the invention; FIG.

【図2】実施例1において、プリプレグ・シートの製造
工程を示す側面略図であり、含浸槽のみ垂直断面が示さ
れている。
FIG. 2 is a schematic side view showing the prepreg sheet manufacturing process in Example 1, with only the impregnating tank shown in vertical cross section.

【図3】実施例1において、プリプレグ・シートから雨
樋を製造するまでの工程を示す側面略図である。
FIG. 3 is a schematic side view showing the steps of manufacturing a rain gutter from a prepreg sheet in Example 1.

【図4】雨樋状芯材の部分斜視断面図である。FIG. 4 is a partial perspective cross-sectional view of a gutter-like core material.

【図5】クロスヘッド・ダイにより芯材に塩化ビニル樹
脂を積層する状態の拡大断面図である。
FIG. 5 is an enlarged sectional view of a state in which vinyl chloride resin is laminated on a core material using a crosshead die.

【図6】実施例2において、プリプレグ・シートから雨
樋を製造するまでの工程を示す側面略図である。
FIG. 6 is a schematic side view showing the steps of manufacturing a rain gutter from a prepreg sheet in Example 2.

【図7】実施例3において、3層複合シートの製造工程
を示す側面略図である。
FIG. 7 is a schematic side view showing the manufacturing process of a three-layer composite sheet in Example 3.

【図8】実施例3において、3層複合シートから雨樋を
製造するまでの工程を示す側面略図である。
FIG. 8 is a schematic side view showing the steps of manufacturing a rain gutter from a three-layer composite sheet in Example 3.

【符号の説明】[Explanation of symbols]

(1)     雨樋 (2)     繊維強化アクリル架橋系樹脂及び塩化
ビニル樹脂からなる芯材 (3)     塩化ビニル樹脂層 (11)    プリプレグ・シート (14)    クロスヘッド・ダイ (26)    複合シート
(1) Rain gutter (2) Core material made of fiber-reinforced acrylic cross-linked resin and vinyl chloride resin (3) Vinyl chloride resin layer (11) Prepreg sheet (14) Crosshead die (26) Composite sheet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  樋状の繊維強化アクリル架橋系樹脂及
び塩化ビニル樹脂からなる芯材(2) と、芯材(2)
 の内外両面に積層せられた塩化ビニル樹脂層(3) 
とよりなることを特徴とする繊維強化雨樋。
[Claim 1] A core material (2) made of a gutter-shaped fiber-reinforced acrylic crosslinked resin and a vinyl chloride resin;
PVC resin layer (3) laminated on both the inside and outside of the
A fiber-reinforced rain gutter characterized by:
【請求項2】  連続した多数の強化繊維に、塩化ビニ
ル樹脂粉体と液状アクリル系モノマーとを混合してなる
ペーストを含浸させる工程と、ペースト含浸強化繊維を
モノマー反応開始温度未満の温度で加熱してプリプレグ
・シート(11)となす工程と、プリプレグ・シート(
11)を樋状に賦形して樋状芯材(2) となす工程と
、樋状芯材(2) をクロスヘッド・ダイ(14)に引
込んで内外両面に塩化ビニル樹脂を積層するとともに、
樋状芯材(2) 中のモノマーを反応硬化させることを
特徴とする繊維複合雨樋の製造方法。
2. Impregnating a large number of continuous reinforcing fibers with a paste made by mixing vinyl chloride resin powder and a liquid acrylic monomer, and heating the paste-impregnated reinforcing fibers at a temperature below the monomer reaction initiation temperature. The process of forming a prepreg sheet (11) and preparing a prepreg sheet (11).
11) into a gutter shape to form a gutter-shaped core material (2), and the gutter-shaped core material (2) is drawn into a crosshead die (14) and laminated with vinyl chloride resin on both the inside and outside surfaces. ,
Gutter-shaped core material (2) A method for manufacturing a fiber composite rain gutter, characterized by reaction-curing monomers therein.
【請求項3】  連続した多数の強化繊維に、塩化ビニ
ル樹脂粉体と液状アクリル系モノマーとを混合してなる
ペーストを含浸させる工程と、ペースト含浸強化繊維を
モノマー反応開始温度未満の温度で加熱してプリプレグ
・シート(11)となす工程と、プリプレグ・シート(
11)を樋状に賦形して樋状芯材(2) となす工程と
、樋状芯材(2) 中のモノマーを反応硬化させる工程
と、モノマーが硬化した樋状芯材をクロスヘッド・ダイ
(14)に引込んで内外両面に塩化ビニル樹脂を積層す
ることを特徴とする繊維複合雨樋の製造方法。
3. Impregnating a large number of continuous reinforcing fibers with a paste made by mixing vinyl chloride resin powder and liquid acrylic monomer, and heating the paste-impregnated reinforcing fibers at a temperature below the monomer reaction initiation temperature. The process of forming a prepreg sheet (11) and preparing a prepreg sheet (11).
11) into a trough shape to form a trough-shaped core material (2), a step of reaction-curing the monomer in the trough-shaped core material (2), and a step in which the trough-shaped core material with the monomer cured is transferred to a crosshead. - A method for manufacturing a fiber composite rain gutter, which is characterized by drawing it into a die (14) and laminating vinyl chloride resin on both the inside and outside surfaces.
【請求項4】  連続した多数の強化繊維に、塩化ビニ
ル樹脂粉体と液状アクリル系モノマーとを混合してなる
ペーストを含浸させる工程と、ペースト含浸強化繊維を
モノマー反応開始温度未満の温度で加熱してプリプレグ
・シート(11)となす工程と、プリプレグ・シート(
11)の両面に塩化ビニル樹脂を積層して複合シート(
26)となす工程と、複合シート(26)を塩化ビニル
樹脂の軟化点以上の温度に加熱して樋状に曲げ加工する
とともに、芯材中のモノマーを反応硬化させることを特
徴とする繊維複合雨樋の製造方法。
4. Impregnating a large number of continuous reinforcing fibers with a paste made by mixing vinyl chloride resin powder and a liquid acrylic monomer, and heating the paste-impregnated reinforcing fibers at a temperature below the monomer reaction initiation temperature. The process of forming a prepreg sheet (11) and preparing a prepreg sheet (11).
11) PVC resin is laminated on both sides of the composite sheet (
26), and heating the composite sheet (26) to a temperature equal to or higher than the softening point of the vinyl chloride resin and bending it into a gutter shape, as well as reaction-curing the monomer in the core material. Method of manufacturing rain gutters.
JP6740191A 1991-03-30 1991-03-30 Fiber composite rain gutter and method of manufacturing the same Expired - Lifetime JP2904602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6740191A JP2904602B2 (en) 1991-03-30 1991-03-30 Fiber composite rain gutter and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6740191A JP2904602B2 (en) 1991-03-30 1991-03-30 Fiber composite rain gutter and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04302652A true JPH04302652A (en) 1992-10-26
JP2904602B2 JP2904602B2 (en) 1999-06-14

Family

ID=13343892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6740191A Expired - Lifetime JP2904602B2 (en) 1991-03-30 1991-03-30 Fiber composite rain gutter and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2904602B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740028A4 (en) * 1993-12-24 1997-04-02 Sekisui Chemical Co Ltd Gutter of fiber-containing thermoplastic resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740028A4 (en) * 1993-12-24 1997-04-02 Sekisui Chemical Co Ltd Gutter of fiber-containing thermoplastic resin

Also Published As

Publication number Publication date
JP2904602B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
KR920001316B1 (en) Improvements in fiber reinforced plastics sheets
IT8047685A1 (en) HOT MODELABLE LAMINATE AND PROCEDURE FOR MODELING IT
US5499441A (en) Continuous extrusion impregnation molded article process
JPH04302652A (en) Fiber composite gutter and manufacture thereof
JPH0249222B2 (en)
JP3396401B2 (en) Composite molded products
JP2904608B2 (en) Fiber composite rain gutter and method of manufacturing the same
JP3884524B2 (en) Laminated molded product and manufacturing method thereof
JPH02217231A (en) Fiber reinforced synthetic resin molded form and production thereof
JP2904607B2 (en) Laminated gutter and method of manufacturing the same
JP3456853B2 (en) Composite
JPH02258255A (en) Long-sized composite molded body and manufacture thereof
JPH02220841A (en) Composite formed body in continuous form and manufacture thereof
JP2554708B2 (en) Method for manufacturing long composite molded body
US20230311371A1 (en) Reinforced synthetic product with curved geometry
JPH0494932A (en) Long composite molded form and manufacture thereof
JPH07132565A (en) Preparation of fiber-reinforced thermoplastic resin composite pipe
JP2531127Y2 (en) Eaves gutter
JPS58209560A (en) Reinforced synthetic resin shape for building material
JPH02184435A (en) Manufacture of long composite molded object
CN116985438A (en) Continuous fiber reinforced thermoplastic pultrusion plate and preparation method thereof
EP0428306A2 (en) Composite sheet
JPH0822566B2 (en) Method for manufacturing long composite molded body
CN114806032A (en) Thermoplastic prepreg, thermoplastic composite material, and method for producing same
JPH0153187B2 (en)