JP3884524B2 - Laminated molded product and manufacturing method thereof - Google Patents

Laminated molded product and manufacturing method thereof Download PDF

Info

Publication number
JP3884524B2
JP3884524B2 JP13123197A JP13123197A JP3884524B2 JP 3884524 B2 JP3884524 B2 JP 3884524B2 JP 13123197 A JP13123197 A JP 13123197A JP 13123197 A JP13123197 A JP 13123197A JP 3884524 B2 JP3884524 B2 JP 3884524B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
molded product
sheet
laminated molded
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13123197A
Other languages
Japanese (ja)
Other versions
JPH10315366A (en
Inventor
尚志 江口
光秀 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP13123197A priority Critical patent/JP3884524B2/en
Publication of JPH10315366A publication Critical patent/JPH10315366A/en
Application granted granted Critical
Publication of JP3884524B2 publication Critical patent/JP3884524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、補強芯材を熱可塑性樹脂で被覆した、低伸縮性と剛性に優れた積層成形品と、その製造方法に関する。
【0002】
【従来の技術】
熱可塑性樹脂、例えば塩化ビニル樹脂は、汎用プラスチックの中で耐水、難燃性に優れ、機械的性質も良好であり、しかも価格も比較的安価であることから、建築部材の材料として広く採用されている。
【0003】
例えば雨樋は、従来、硬質の塩化ビニル樹脂を用いた押出成形により成形されるのが一般的である。また、このような塩化ビニル樹脂の伸縮性と耐熱性を向上させるために、特開昭57−33660号公報には、金属板の表裏を塩化ビニル樹脂で被覆した構造を持つ雨樋に関する開示がある。
【0004】
【発明が解決しようとする課題】
ところで、塩化ビニル樹脂は、難燃性ではあるものの耐熱温度が60〜70℃であり、また、線膨張係数が7.0×10-3(1/℃)と大きい。そのため、このような塩化ビニル樹脂を雨樋の材料として用いた場合、雨樋は軒先に取り付けられる関係上、直射日光などの熱により変形しやすく、また、熱伸縮によるひび割れやそりが発生して雨樋としての機能を果たし得なくなる恐れがあるなど、長期にわたる使用に際しての信頼性に乏しいという問題があった。
【0005】
一方、上記した特開昭57−33660号公報に開示されている構造の雨樋によれば、低伸縮性および耐熱性は向上するものの、切断面より錆が発生したり、製品が重くなるといった問題がある。
【0006】
また、塩化ビニル樹脂をはじめとする樹脂からなる成形品は、その材料の性質上、静電気を帯びる。そのため、成形時や製品の梱包時および保管時において、製品に埃やゴミ等が付着し、美観を損ねるという問題もある。
【0007】
本発明の第1の目的は、低伸縮性で耐熱性に優れ、しかも軽量で錆の発生の恐れがなく、特に雨樋などの屋外に用いる建築部材等に適用するのに適した積層成形品を提供することにある。
【0008】
また、本発明の第2の目的は、上記の目的を達成しながら、静電気による埃やゴミ等が付着しにくい積層成形品を提供することにある。更に、本発明の第3の目的は、以上のような積層成形品を連続的に容易に製造することのできる積層成形品の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
請求項1に係る発明の積層成形品は、短繊維状の熱可塑性樹脂と、ランダム配向したカーボン短繊維よりなり、所要断面形状に賦形されてなるシートの表裏に、第2の熱可塑性樹脂を押出被覆してなる構成を採用している。
【0010】
更に、上記シートを構成する熱可塑性樹脂は、強度、耐熱性、寸法安定性に優れたポリチエレンテレフタレート樹脂とすることが好ましい(請求項)。
【0011】
請求項1〜請求項に係る発明の構成によれば、線膨張係数の小さいカーボン短繊維をランダム配向させて、ポリエチレンテレフタレート樹脂をはじめとする耐熱性、寸法安定性に優れた熱可塑性樹脂を混合させたシートを所要断面形状に賦形して芯材とすることにより、積層成形品としての耐熱性並びに低伸縮性が向上し、雨樋等の屋外に用いられる部材に適用して、直射日光等による熱によっても変形や割れ、そり等が発生しにくく、長期使用に対しての信頼性の高い製品とすることができる。
【0012】
また、芯材のシートはカーボン短繊維をランダムに配向しているが故に、積層成形品の強度は各方向に均一に補強されることになり、機械的強度にも優れたものとなる。
【0013】
更に、カーボン短繊維は導電性を有しているので、同カーボン短繊維を用いてランダム配向させたシートを芯材とすることより、積層成形品の表面の熱可塑性樹脂層が帯電しても、芯材が導電性を有するが故に、積層成形品全体としては帯電せず、埃やゴミ等の付着を防止することができる。
【0014】
一方、請求項に係る発明の積層成形品の製造方法は、短繊維状の熱可塑樹脂とカーボン短繊維とを混合したマット状の連続複合体を加熱して熱可塑性樹脂を溶融させ、連続的に加熱加圧/冷却加圧することにより、前記カーボン短繊維が熱可塑性樹脂内に三次元状に配向してなる連続シートを製造し、次いでその連続シートを所要断面形状に連続的に賦形してその表裏に第2の熱可塑性樹脂を押出被覆することによって特徴づけられる。
【0015】
この請求項の発明に係る製造方法によれば、カーボン短繊維と、短繊維状の熱可塑性樹脂とを混合したマット状の連続複合体を、連続的に加熱加圧/冷却加圧することによって、カーボン短繊維がランダム配向した連続シートが得られる。また、その連続シートを製品に要求される所要の断面形状に連続的に賦形しつつその表裏に熱可塑性樹脂を押出被覆することで、請求項1に係る発明の積層成形品を連続的に得ることができる。
【0016】
ここで、本発明において芯材を構成するシートに用いられるカーボン短繊維としては、その繊維長および繊維径は、芯材の必要性能により適宜に選択されるが、繊維長としては100μm〜100mm、繊維径は5〜50μmの範囲で用いられる場合が多い。
【0017】
また、本発明における芯材に用いられる熱可塑性樹脂は、芯材の性能およびこれに押出被覆する熱可塑性樹脂との界面融着性等から適宜に選択されるが、上記したポリエチレンテレフタレート樹脂をはじめとするポリエステル樹脂や、アクリル樹脂、ポリエチレン、ナイロン樹脂、塩化ビニル樹脂等を用いることができる。
【0018】
芯材におけるカーボン短繊維の含有量、目付量、肉厚、比重については、積層成形品の必要品質、成形性により適宜に選択されるが、例えば、含有量は20〜60体積%、目付量は200〜700g/m2 とすることが好ましく、また、芯材の肉厚は0.1〜1.5mm、比重は0.2〜1.4の範囲で使用される場合が多い。
【0019】
また、芯材を覆う第2の熱可塑性樹脂の材質としては、塩化ビニル樹脂、アクリル樹脂、およびそれらの共重合体、ナイロン樹脂などの耐候性のよい樹脂を用いることが好ましい。
【0020】
【発明の実施の形態】
図1は本発明方法を適用した積層成形品の製造工程の説明図で、(A)は芯材成形装置を、(B)は芯材賦形押出被覆装置を示している。
【0021】
芯材成形装置1は、ランダムに配向したカーボン短繊維と、短繊維状の熱可塑性樹脂とを混合してなるマットMを繰り出すための繰り出し機11と、その繰り出し機11から繰り出されたマットMを加熱して、マットM内の熱可塑性樹脂を溶融させるための加熱炉12と、その加熱炉12を経たマットMを加熱加圧する加熱プレスロール13と、その加熱プレスロール13に隣接配置された冷却プレスロール14、およびその冷却プレスロール14を経て得られるシートSを巻き取るための巻き取り機15を主たる構成要素としている。
【0022】
以上の芯材成形装置1により、繰り出し機11のロールに巻回された連続的なマットMが、連続的に加熱・加圧された後に冷却・加圧されることにより、熱可塑性樹脂内にカーボン短繊維がランダムに配向された連続的な複合体であるシートSが得られる。
【0023】
なお、以上の芯材成形装置1において、加熱プレスロール13および冷却プレスロール14については、ベルトを用いた加熱加圧/冷却加圧や、キャタピラを用いた加熱加圧/冷却加圧方式を採用することもでき、用いる材料に応じて適宜に選択される。
【0024】
一方、芯材賦形押出被覆装置2は、上記した芯材賦形装置1により製造されたシートSを巻回したロールから、そのシートSを繰り出すための繰り出し機21と、その繰り出し機21から繰り出されたシートSを所要の断面形状に賦形するための賦形装置22と、賦形後のシートSの表裏両面に第2の熱可塑性樹脂を押出すための押出被覆金型23と、その押出被覆金型23を経た積層体を冷却してサイジングするための冷却サイジング装置24、および、その冷却サイジング装置24を経て得られる製品Wを引き取るための引取機25を主たる構成要素としている。
【0025】
ここで、芯材賦形装置22は、例えばロールやブロック状のシューにより、シートSを徐々に所要断面形状に賦形していく装置であり、シートSを構成する熱可塑性樹脂の材質によっては、局部的に熱を与えたり、全体的に熱を与えながら賦形することもあり、材料によって適宜に選択される。
【0026】
また、押出被覆金型23は、クロスヘッドダイによって芯材である賦形後のシートSの表裏両面に連続的に溶融状態の第2の熱可塑性樹脂Pを押出し、シートSの両面を熱可塑性樹脂Pで被覆できるようになっている。
【0027】
【実施例】
次に、以上の製造装置を用いて、実際に積層成形品を製造した例について、比較例とともに述べる。
【0028】
(実施例1)
芯材となるシートSを製造するためのマットMは、カーボン繊維の短繊維(繊維長1〜40mm、繊維径10μm)に、熱可塑性樹脂としてポリエチレンテレフタレート樹脂を短繊維化したものエアにより混合してマット状にしたものを用いた。そのマットMを連続的に加熱加圧および冷却加圧を施すことによってシートSを得た。
【0029】
このシートSの厚みは0.5mm、そのカーボン繊維の含有率は40体積%であり、図2に模式的断面図を示すように、熱可塑性樹脂P内にカーボン短繊維Cがランダムに配向していることが確認された。
【0030】
また、芯材を覆う熱可塑性樹脂としては塩化ビニル樹脂を用い、押出被覆金型23により芯材の表裏両面に溶融した塩化ビニル樹脂を押出被覆することにより、図3に模式的な部分切欠斜視図を示すように、芯材100の表裏両面が塩化ビニル樹脂層(熱可塑性樹脂層)200で覆われた積層成形品を得た。
【0031】
(比較例1)
ロービング状のカーボン繊維にポリエチレンテレフタレート樹脂を含浸させた一方向強化のシートを芯材として用い、実施例と同様に賦形してその表裏両面に塩化ビニル樹脂を押出被覆した。
【0032】
(比較例2)
塩化ビニル樹脂を押出成形することにより、図3に示したものと同等の断面輪郭形状を持つ成形品を一体成形した。
【0033】
(実施例および各比較例の評価)
(1)積層成形品の成形安定性
実施例と比較例1において用いた芯材の賦形時における安定性を比較すると、実施例の芯材は賦形時に座屈、割れがなかったのに対し、比較例1の芯材は賦形時に座屈および破壊が発生した。また、実施例においては押出被覆後の変形や強度変化がなかったのに対し、比較例1では押出被覆後に変形した。
【0034】
(2)芯材の相違による積層成形品の横方向強度
実施例で得た製品は全体に均一な強度を示したのに対し、比較例1で得た製品は、繊維配向していない横方向の強度は樹脂単体品と同等強度以下であった。
【0035】
(3)成形品の熱伸縮による反り、割れ
実施例で得た製品と、比較例2で得た製品について、野外での熱変形の有無を評価した。
熱変形の有無は、5%以上変位した場合を有、それ未満では無としたところ、実施例の製品は変形なしであったのに対し、比較例2の製品は側面部分が外側へ倒れる熱変形が有った。
【0036】
(4)成形品引張強度
実施例の製品と比較例2の製品の引張強度を測定した結果を〔表1〕に示す。
【0037】
【表1】

Figure 0003884524
【0038】
この〔表1〕から明らかなように、短繊維状のカーボン繊維をランダム配向した芯材を用いた実施例製品では、比較例2の製品に対して引張弾性率が約1.8倍となり、剛性に優れた積層成形品が得られることが確かめられた。
【0039】
(5)帯電性
実施例製品と比較例2で得た製品の帯電性を調査したところ、比較例2の製品は塩化ビニル樹脂の帯電により埃やゴミが付着したが、実施例製品は芯材にランダム配向しているカーボン繊維が導電性を有しているために、製品全体としては電気的に中和されて帯電することがなく、埃やゴミの付着が大幅に緩和されることが確認できた。
【0040】
【発明の効果】
以上のように本発明の積層成形品によれば、熱可塑性樹脂中にカーボン短繊維がランダム配向したシートを芯材として、その表裏両面を第2の熱可塑性樹脂層で覆った構造を有しているため、任意方向への引張強度が高く、均質で高剛性の積層成形品が得られるとともに、カーボン短繊維の低伸縮性の故に、耐熱性の高い積層成形品が得られ、屋外での使用によっても直射日光等によって変形しにくい積層成形品となる。更に、カーボン短繊維が導電性を有していることで、帯電しにくく埃やゴミの付着しにくい積層成形品が得られる。
【0041】
また、本発明の積層成形品の製造方法によれば、短繊維状の熱可塑樹脂とカーボン短繊維とを混合したマット状の連続複合体を加熱して熱可塑性樹脂を溶融させ、連続的に加熱加圧、冷却加圧することによって、カーボン短繊維が熱可塑性樹脂内にランダム配向した繊維強化熱可塑性樹脂シートを連続的に成形し、そのシートを所望の断面形状に賦形しながらその表裏両面に第2の熱可塑性樹脂を押出被覆するから、任意の断面形状を有し、かつ、上記した構造を持つ本発明の積層成形品を容易かつ効率的に製造できるようになった。
【図面の簡単な説明】
【図1】 本発明を適用した積層成形品の製造工程の模式的説明図で、(A)は芯材成形装置、(B)は芯材賦形押出被覆装置をそれぞれ表す図
【図2】 実施例により得られたシートSの構造を示す模式的断面図
【図3】 実施例により得られた積層成形品の構造を示す模式的部分切欠斜視図
【符号の説明】
1 芯材成形装置
11 繰り出し機
12 加熱炉
13 加熱プレスロール
14 冷却プレスロール
15 巻き取り機
2 芯材賦形押出被覆装置
21 繰り出し機
22 賦形装置
23 押出被覆金型
24 冷却サイジング装置
25 引取機
100 芯材
200 塩化ビニル樹脂層(熱可塑性樹脂層)
M マット
S シート
C カーボン繊維
P 熱可塑性樹脂
W 製品[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated molded article excellent in low stretchability and rigidity, in which a reinforcing core material is coated with a thermoplastic resin, and a method for producing the same.
[0002]
[Prior art]
Thermoplastic resins, such as vinyl chloride resins, are widely used as building materials because they are superior in water resistance and flame resistance among general-purpose plastics, have good mechanical properties, and are relatively inexpensive. ing.
[0003]
For example, rain gutters are conventionally formed by extrusion using a hard vinyl chloride resin. Further, in order to improve the stretchability and heat resistance of such vinyl chloride resins, in JP-A-57-33660, the disclosure regarding gutter having a structure coated with vinyl chloride resin the front and back of the metal plate is there.
[0004]
[Problems to be solved by the invention]
By the way, although the vinyl chloride resin is flame retardant, the heat resistant temperature is 60 to 70 ° C., and the linear expansion coefficient is as large as 7.0 × 10 −3 (1 / ° C.). Therefore, when such a vinyl chloride resin is used as a material for rain gutters, rain gutters are easily deformed by heat such as direct sunlight because they are attached to the eaves, and cracks and warpage due to thermal expansion and contraction occur. There was a problem that the reliability during long-term use was poor, such as the possibility of failing to function as a rain gutter.
[0005]
On the other hand, according to the gutter of the structure disclosed in JP-A-57-33660 mentioned above, although the low-stretch and heat resistance is improved, or rust is generated from the cut surface, said product is heavy There's a problem.
[0006]
In addition, a molded product made of a resin such as a vinyl chloride resin is charged with static electricity due to the properties of the material. For this reason, there is a problem that dust, dust or the like adheres to the product at the time of molding or packing and storing the product, and the appearance is impaired.
[0007]
The first object of the present invention is a laminated molded product that is low stretch and excellent in heat resistance, is light in weight and does not generate rust, and is particularly suitable for application to building members used outdoors such as rain gutters. Is to provide.
[0008]
In addition, a second object of the present invention is to provide a laminated molded product that is less likely to be adhering to dust and dirt due to static electricity while achieving the above object. Furthermore, the third object of the present invention is to provide a method for producing a laminated molded product capable of easily and continuously producing the laminated molded product as described above.
[0009]
[Means for Solving the Problems]
The laminated molded product of the invention according to claim 1 is a second thermoplastic resin on the front and back of a sheet made of short fiber thermoplastic resin and randomly oriented carbon short fibers and shaped into a required cross-sectional shape. The structure formed by extrusion coating is adopted.
[0010]
Furthermore, the thermoplastic resin constituting the sheet is preferably a polythylene terephthalate resin excellent in strength, heat resistance, and dimensional stability (Claim 2 ).
[0011]
According to the structure of the invention concerning Claim 1-Claim 2 , the thermoplastic resin excellent in heat resistance including the terephthalate resin and the dimensional stability is made by randomly orienting short carbon fibers having a small linear expansion coefficient. By forming the mixed sheet into the required cross-sectional shape and using it as a core material, the heat resistance and low stretchability of the laminated molded product are improved, and it can be applied directly to members used outdoors such as rain gutters. Deformation, cracking, warpage, and the like are unlikely to occur due to heat from sunlight, and the product can be highly reliable for long-term use.
[0012]
In addition, since the core sheet has carbon short fibers oriented randomly, the strength of the laminated molded product is uniformly reinforced in each direction, and the mechanical strength is also excellent.
[0013]
Furthermore, since the carbon short fibers have conductivity, by using a sheet randomly oriented using the carbon short fibers as a core material, even if the thermoplastic resin layer on the surface of the laminated molded product is charged. Since the core material has conductivity, the entire laminated molded product is not charged, and adhesion of dust, dust, etc. can be prevented.
[0014]
On the other hand, in the method for producing a laminated molded article of the invention according to claim 3 , the mat-like continuous composite in which the short fiber thermoplastic resin and the short carbon fiber are mixed is heated to melt the thermoplastic resin, In this way, a continuous sheet in which the carbon short fibers are oriented three-dimensionally in the thermoplastic resin is manufactured by heating / pressurizing and cooling, and then the continuous sheet is continuously shaped into the required cross-sectional shape. And it is characterized by extrusion-coating the 2nd thermoplastic resin on the front and back.
[0015]
According to the manufacturing method of the third aspect of the present invention, by continuously heating / pressurizing / cooling the mat-like continuous composite obtained by mixing the short carbon fibers and the short fiber thermoplastic resin . A continuous sheet in which short carbon fibers are randomly oriented is obtained. Moreover, the laminated sheet of the invention according to claim 1 is continuously formed by extrusion-coating a thermoplastic resin on both sides of the continuous sheet while continuously shaping the continuous sheet into a required cross-sectional shape required for the product. Obtainable.
[0016]
Here, as carbon short fibers used in the sheet constituting the core material in the present invention , the fiber length and fiber diameter are appropriately selected depending on the required performance of the core material, but the fiber length is 100 μm to 100 mm, The fiber diameter is often used in the range of 5 to 50 μm.
[0017]
Further, the thermoplastic resin used for the core material in the present invention is appropriately selected from the performance of the core material and the interfacial fusing property with the thermoplastic resin to be extrusion-coated thereon, including the above-described polyethylene terephthalate resin. Polyester resin, acrylic resin, polyethylene, nylon resin , vinyl chloride resin, or the like can be used.
[0018]
The content, basis weight, thickness, and specific gravity of the short carbon fiber in the core are appropriately selected depending on the required quality and moldability of the laminated molded product. For example, the content is 20 to 60% by volume, and the basis weight. Is preferably 200 to 700 g / m <2>, and the core material is often used in the range of 0.1 to 1.5 mm and specific gravity of 0.2 to 1.4.
[0019]
Moreover, as a material of the 2nd thermoplastic resin which covers a core material, it is preferable to use resin with good weather resistance, such as a vinyl chloride resin, an acrylic resin, those copolymers, and a nylon resin.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B are explanatory views of a manufacturing process of a laminated molded product to which the method of the present invention is applied. FIG. 1A shows a core material forming apparatus, and FIG. 1B shows a core material shaping extrusion coating apparatus.
[0021]
The core material forming apparatus 1 includes a feeding machine 11 for feeding a mat M formed by mixing randomly oriented short carbon fibers and a short fiber- shaped thermoplastic resin, and a mat M fed from the feeding machine 11. The heating furnace 12 for melting the thermoplastic resin in the mat M, the heating press roll 13 for heating and pressurizing the mat M passed through the heating furnace 12, and the heating press roll 13 are disposed adjacent to each other. A main component is a cooling press roll 14 and a winder 15 for winding the sheet S obtained through the cooling press roll 14.
[0022]
By the core material forming apparatus 1 described above, the continuous mat M wound around the roll of the feeding machine 11 is continuously heated and pressurized, and then cooled and pressurized, so that the thermoplastic resin is contained in the thermoplastic resin. Sheet S which is a continuous composite in which short carbon fibers are randomly oriented is obtained.
[0023]
In the core material forming apparatus 1 described above, the heating press roll 13 and the cooling press roll 14 employ a heating pressurization / cooling pressurization method using a belt or a heating pressurization / cooling pressurization method using a caterpillar. It can also be selected as appropriate according to the material used.
[0024]
On the other hand, the core material forming extrusion coating apparatus 2 includes a feeding machine 21 for feeding the sheet S from a roll around which the sheet S manufactured by the core material shaping apparatus 1 is wound, and the feeding machine 21. A shaping device 22 for shaping the fed sheet S into a required cross-sectional shape, an extrusion coating mold 23 for extruding a second thermoplastic resin on both the front and back surfaces of the shaped sheet S, The main components are a cooling sizing device 24 for cooling and sizing the laminated body that has passed through the extrusion coating mold 23, and a take-up machine 25 for taking the product W obtained through the cooling sizing device 24.
[0025]
Here, the core material shaping device 22 is a device that gradually shapes the sheet S into a required cross-sectional shape using, for example, a roll or a block-like shoe. Depending on the material of the thermoplastic resin constituting the sheet S, In some cases, heat is applied locally or the material is shaped while heat is applied as a whole.
[0026]
Further, the extrusion coating die 23 continuously extrudes the second thermoplastic resin P in a molten state on both the front and back surfaces of the shaped sheet S which is a core material by a cross head die, and both surfaces of the sheet S are thermoplastic. It can be coated with resin P.
[0027]
【Example】
Next, an example of actually manufacturing a laminated product using the above manufacturing apparatus will be described together with a comparative example.
[0028]
Example 1
The mat M for the manufacture of a sheet S as a core material mixing short fibers (fiber length 1~40Mm, fiber diameter 10 [mu] m) of the carbon fiber, the air a material obtained by fiber shortening polyethylene terephthalate resin as the thermoplastic resin Then, a mat-like one was used. A sheet S was obtained by continuously applying heat and pressure to the mat M and cooling and pressing.
[0029]
The sheet S has a thickness of 0.5 mm and a carbon fiber content of 40% by volume. As shown in the schematic cross-sectional view of FIG. 2, the short carbon fibers C are randomly oriented in the thermoplastic resin P. It was confirmed that
[0030]
Also, a vinyl chloride resin is used as the thermoplastic resin for covering the core material, and the melted vinyl chloride resin is extrusion coated on both the front and back surfaces of the core material by the extrusion coating mold 23, whereby the schematic partially cut perspective view shown in FIG. As shown in the figure, a laminated molded article in which both front and back surfaces of the core material 100 were covered with a vinyl chloride resin layer (thermoplastic resin layer) 200 was obtained.
[0031]
(Comparative Example 1)
Using a unidirectionally reinforced sheet impregnated with polyethylene terephthalate resin in roving carbon fiber as a core material, it was shaped in the same manner as in the example and extrusion coated with vinyl chloride resin on both front and back surfaces.
[0032]
(Comparative Example 2)
By extruding the vinyl chloride resin, a molded product having a cross-sectional contour equivalent to that shown in FIG. 3 was integrally formed.
[0033]
(Evaluation of Examples and Comparative Examples)
(1) Molding stability of laminated molded product When comparing the stability of the core material used in Example and Comparative Example 1 at the time of molding, the core material of the example was not buckled or cracked during molding. On the other hand, the core material of Comparative Example 1 was buckled and broken during shaping. Further, in the examples, there was no deformation or strength change after extrusion coating, whereas in Comparative Example 1, deformation occurred after extrusion coating.
[0034]
(2) Lateral strength of laminated molded product due to difference in core material The product obtained in the example showed uniform strength as a whole, whereas the product obtained in Comparative Example 1 was not subjected to fiber orientation. The strength of was less than or equal to that of a single resin product.
[0035]
(3) Warpage and cracking due to thermal expansion and contraction of molded product The products obtained in Examples and the product obtained in Comparative Example 2 were evaluated for the presence or absence of thermal deformation in the field.
The presence or absence of thermal deformation has a case where it is displaced by 5% or more, and if it is less than that, the product of the example was not deformed, whereas the product of the comparative example 2 is the heat that the side portion falls to the outside. There was a deformation.
[0036]
(4) Molded product tensile strength [Table 1] shows the results of measuring the tensile strength of the product of Example and the product of Comparative Example 2.
[0037]
[Table 1]
Figure 0003884524
[0038]
As is clear from this [Table 1], in the example product using the core material in which short fiber carbon fibers are randomly oriented, the tensile elastic modulus is about 1.8 times that of the product of Comparative Example 2, It was confirmed that a laminated molded article having excellent rigidity could be obtained.
[0039]
(5) Chargeability When the chargeability of the product obtained in Example and the product obtained in Comparative Example 2 was investigated, dust and dirt adhered to the product of Comparative Example 2 due to the charge of the vinyl chloride resin. It is confirmed that the carbon fibers that are randomly oriented are electrically conductive, so the product as a whole is not electrically neutralized and charged, and the adhesion of dust and debris is greatly reduced. did it.
[0040]
【The invention's effect】
As described above, according to the laminated molded product of the present invention, a sheet in which short carbon fibers are randomly oriented in a thermoplastic resin is used as a core material, and both front and back surfaces are covered with a second thermoplastic resin layer. Therefore, it is possible to obtain a laminated molded product with high tensile strength in any direction and a homogeneous and high rigidity, and a highly heat-resistant laminated molded product due to the low stretchability of the short carbon fiber . Even if it is used, it becomes a laminated molded product that is not easily deformed by direct sunlight or the like. Furthermore, since the carbon short fibers have conductivity, a laminated molded product that is difficult to be charged and to which dust and dust are difficult to adhere can be obtained.
[0041]
In addition, according to the method for producing a laminated molded product of the present invention, a mat-like continuous composite in which short fiber thermoplastic resin and carbon short fiber are mixed is heated to melt the thermoplastic resin, and continuously By heating / pressing and cooling / pressing, a fiber reinforced thermoplastic resin sheet in which short carbon fibers are randomly oriented in the thermoplastic resin is continuously formed, and the sheet is shaped into a desired cross-sectional shape while forming both sides of the sheet. Since the second thermoplastic resin is extrusion coated, the laminated molded product of the present invention having an arbitrary cross-sectional shape and having the structure described above can be easily and efficiently manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of a production process of a laminated molded product to which the present invention is applied, in which (A) shows a core material forming apparatus, and (B) shows a core material shaped extrusion coating apparatus. Schematic cross-sectional view showing the structure of the sheet S obtained by the example [FIG. 3] Schematic partially cutaway perspective view showing the structure of the laminated molded product obtained by the example [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Core material shaping | molding apparatus 11 Feeder 12 Heating furnace 13 Heating press roll 14 Cooling press roll 15 Winding machine 2 Core material shaping | molding extrusion coating apparatus 21 Feeding machine 22 Shaping apparatus 23 Extrusion coating metal mold | die 24 Cooling sizing apparatus 25 Take-out machine 100 core material 200 vinyl chloride resin layer (thermoplastic resin layer)
M Matt S Sheet C Carbon fiber P Thermoplastic resin W Product

Claims (3)

短繊維状の熱可塑性樹脂と、ランダム配向したカーボン短繊維よりなり、所要断面形状に賦形されてなるシートの表裏に、第2の熱可塑性樹脂を押出被覆してなる積層成形品。 A laminated molded product obtained by extrusion-coating a second thermoplastic resin on the front and back of a sheet made of short fiber thermoplastic resin and randomly oriented carbon short fibers and shaped into a required cross-sectional shape . 上記シートを構成する熱可塑性樹脂がポリエチレンテレフタレート樹脂である請求項1に記載の積層成形品。The laminated molded product according to claim 1, wherein the thermoplastic resin constituting the sheet is a polyethylene terephthalate resin. 短繊維状の熱可塑樹脂とカーボン短繊維とを混合したマット状の連続複合体を加熱して熱可塑性樹脂を溶融させ、連続的に加熱加圧/冷却加圧することにより、前記カーボン短繊維が熱可塑性樹脂内に三次元状に配向してなる連続シートを製造し、次いでその連続シートを所要断面形状に連続的に賦形してその表裏に第2の熱可塑性樹脂を押出被覆することを特徴とする積層成形品の製造方法。By heating a mat-like continuous composite in which short fiber-like thermoplastic resin and carbon short fiber are mixed to melt the thermoplastic resin, and continuously heating / pressing / cooling and pressurizing, the carbon short fiber becomes Producing a three-dimensionally oriented continuous sheet in a thermoplastic resin, then continuously shaping the continuous sheet into the required cross-sectional shape and extruding a second thermoplastic resin on the front and back A method for producing a laminated molded product.
JP13123197A 1997-05-21 1997-05-21 Laminated molded product and manufacturing method thereof Expired - Fee Related JP3884524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13123197A JP3884524B2 (en) 1997-05-21 1997-05-21 Laminated molded product and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13123197A JP3884524B2 (en) 1997-05-21 1997-05-21 Laminated molded product and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10315366A JPH10315366A (en) 1998-12-02
JP3884524B2 true JP3884524B2 (en) 2007-02-21

Family

ID=15053091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13123197A Expired - Fee Related JP3884524B2 (en) 1997-05-21 1997-05-21 Laminated molded product and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3884524B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346332A (en) * 2004-07-26 2004-12-09 Sekisui Chem Co Ltd Method for producing fiber-reinforced thermoplastic sheet
US8617445B2 (en) 2005-03-15 2013-12-31 Sekisui Chemical Co., Ltd. Process for producing oriented thermoplastic polyester resin sheet, and laminate-molded body
JP7385488B2 (en) * 2020-02-13 2023-11-22 日立造船株式会社 Method for manufacturing fiber-containing sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036454Y2 (en) * 1980-06-07 1985-10-29 日本スチレンペ−パ−株式会社 Thermoplastic synthetic resin sheet
JPS60231896A (en) * 1984-04-25 1985-11-18 三島製紙株式会社 Conductive laminated sheet and its production
JP3456853B2 (en) * 1997-01-16 2003-10-14 積水化学工業株式会社 Composite

Also Published As

Publication number Publication date
JPH10315366A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
JP3884524B2 (en) Laminated molded product and manufacturing method thereof
JP3396401B2 (en) Composite molded products
IE830338L (en) Fibre reinforced thermoplastics material
JPH07164462A (en) Extruded impregnated article having metal surface and its production
JPS5989148A (en) Reinforcing synthetic resin shape for building material
GB2073658A (en) Preparation of composite laminated sheet
EP0847845A1 (en) Thermoformable sheets having core layer with unmatted, oriented fibers and fiber-free cap layer
JPH02220841A (en) Composite formed body in continuous form and manufacture thereof
JPH02217231A (en) Fiber reinforced synthetic resin molded form and production thereof
JP2579568B2 (en) Method for producing glass fiber reinforced sheet
JPH02258255A (en) Long-sized composite molded body and manufacture thereof
JP3456853B2 (en) Composite
JP2904608B2 (en) Fiber composite rain gutter and method of manufacturing the same
JP2001277389A (en) Laminated molding and manufacturing method therefor
JP2904602B2 (en) Fiber composite rain gutter and method of manufacturing the same
JPH08197644A (en) Production of composite eaves trough
JPH0822566B2 (en) Method for manufacturing long composite molded body
JPH02220842A (en) Composite formed body in continuous form and manufacture thereof
JPH02276625A (en) Composite formed body in continuous form and manufacture thereof
JP2531127Y2 (en) Eaves gutter
JPH0153187B2 (en)
JPH0698691B2 (en) Manufacturing method of long composite moldings
JPH0494932A (en) Long composite molded form and manufacture thereof
JPH02265744A (en) Continuous composite molding and manufacture thereof
JP2001232680A (en) Method for manufacturing fiber reinforced decorative molded object and fiber reinforced decorative molded object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees