JPH04301382A - Connecting member - Google Patents

Connecting member

Info

Publication number
JPH04301382A
JPH04301382A JP6623891A JP6623891A JPH04301382A JP H04301382 A JPH04301382 A JP H04301382A JP 6623891 A JP6623891 A JP 6623891A JP 6623891 A JP6623891 A JP 6623891A JP H04301382 A JPH04301382 A JP H04301382A
Authority
JP
Japan
Prior art keywords
conductive particles
connection
adhesive
electrode
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6623891A
Other languages
Japanese (ja)
Other versions
JP2748713B2 (en
Inventor
Isao Tsukagoshi
功 塚越
Yasushi Goto
泰史 後藤
Atsuo Nakajima
中島 敦夫
Tomohisa Ota
共久 太田
Yutaka Yamaguchi
豊 山口
Tatsuo Ito
達夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP3066238A priority Critical patent/JP2748713B2/en
Publication of JPH04301382A publication Critical patent/JPH04301382A/en
Application granted granted Critical
Publication of JP2748713B2 publication Critical patent/JP2748713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate connection of a fine part by locally providing conductive grains in a part necessary for electrical connection, and using an insulating adhesive agent in a part necessary for insulation. CONSTITUTION:For instance, a polytetrafluoroethylene-made film is used for a base material 3, and in the same arrangement to an electrode of an IC chip connected to above this film, screen printing of insulating resin 5, mainly composed of a high molecular weight solid epoxy system adhesive agent of predetermined diameter, is performed in each electrode position. Next on the base material 3, deformation conductive grains 4, having a metal thin layer of Au in a surface of a polystyrene nuclear material, are scattered to remove the conductive grains not sticking to the insulating resin 5. Then, an insulating adhesive agent 1, mainly composed of a low molecular weight liquid-state epoxy systerm adhesive agent, is applied to form an adhesive agent layer of predetermined thickness. Thus, connection of a high density electrode can be relatively easily performed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、相対峙する微小電極を
電気的に接続すると共に接着固定するのに用いる接続部
材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connecting member used to electrically connect and adhesively fix opposing microelectrodes.

【0002】0002

【従来の技術】IC、LSI、チップコンデンサ等の半
導体チップの電極を、ガラスや剛性樹脂或いは金属等よ
りなる基板の表面に所定回路を形成してなる基板回路上
に直接接続する方法、あるいはこれら基板回路同士の接
続などの、いわゆる高密度電極の接続方法として、これ
らの相対峙する電極(もしくは回路)間に接着剤を主成
分とする接続部材を介して接続する方法が知られている
[Prior Art] A method of directly connecting the electrodes of a semiconductor chip such as an IC, LSI, or chip capacitor to a substrate circuit formed by forming a predetermined circuit on the surface of a substrate made of glass, rigid resin, metal, etc.; As a method for connecting so-called high-density electrodes, such as connecting substrate circuits to each other, a method is known in which these opposing electrodes (or circuits) are connected via a connecting member whose main component is an adhesive.

【0003】この接続部材としては、例えば実開昭62
−107444号公報にみられるように絶縁性接着剤中
にカーボン、ニッケル、半田及び表面に導電層を形成し
たプラスチック粒子などの導電粒子を混入した異方導電
性接着剤を用いて加圧により厚み方向に電気的接続を得
る場合と、導電材料を用いずに絶縁性接着剤のみで、接
続時の加圧で電極面の直接接触により電気的接続を得て
、残余の接着剤を回路外に排除して接続する方法とが知
られている。
[0003] As this connecting member, for example,
As seen in Japanese Patent No. 107444, an anisotropic conductive adhesive is used in which conductive particles such as carbon, nickel, solder, and plastic particles with a conductive layer formed on the surface are mixed into an insulating adhesive. In some cases, electrical connection is obtained by direct contact of the electrode surface by applying pressure at the time of connection, using only insulating adhesive without using conductive material, and removing the remaining adhesive from the circuit. A method of excluding and connecting is known.

【0004】高密度電極の代表例として半導体チップの
場合についてみると、チップ面にバンプと呼ばれる突出
電極が形成されている場合が多く、このバンプはまた基
板回路上に設ける場合もある。いずれの場合もバンプ形
成は、複雑な工程が必要であり不良の発生と歩留りの低
下や、バンプ材料であるAu、Ag、Cu及びはんだ等
の貴重な金属の消費により、製造コストが高い問題点を
有している。
[0004] In the case of a semiconductor chip as a typical example of high-density electrodes, protruding electrodes called bumps are often formed on the chip surface, and these bumps may also be provided on a circuit board. In either case, bump formation requires a complicated process, which leads to defects, lower yields, and the consumption of precious metals such as Au, Ag, Cu, and solder, which are bump materials, resulting in high manufacturing costs. have.

【0005】この為、半導体チップを回路材料である例
えばアルミ配線のまま、もしくはその上に金属の拡散防
止用バリヤメタル層を形成した状態で接続電極とするバ
ンプレスボンディングの試みも一部で行われているが、
特性が不十分なことから実用化が困難な状況にある。
[0005] For this reason, some attempts have been made to use bumpless bonding in which a semiconductor chip is used as a connection electrode using a circuit material such as aluminum wiring, or with a barrier metal layer formed thereon to prevent metal diffusion. Although,
Practical use is difficult due to insufficient properties.

【0006】[0006]

【発明が解決しようとする課題】導電粒子を用いた接着
剤による接続方式は、電気的接続の信頼性向上の為に電
極上の粒子数を増加させると、隣接電極間にも粒子が高
密度な状態で存在してしまい絶縁性が不十分となったり
、リークやショートを発生するなど絶縁性の保持に問題
を生じてしまう。逆に粒子数を減少すると電極上の粒子
数が不十分となり接続信頼性が低下する。この相反する
傾向は、接続時の加熱加圧などにより、導電粒子が接着
剤と共に電極上から流出する現象により更に助長され、
例えばピッチ90μm以下といった高密度な接続に対応
することが困難な状況となってきた。
[Problem to be Solved by the Invention] In the adhesive connection method using conductive particles, when the number of particles on the electrode is increased in order to improve the reliability of electrical connection, the particles also become denser between adjacent electrodes. This may cause problems in maintaining insulation, such as insufficient insulation or leaks or short circuits. On the other hand, if the number of particles is decreased, the number of particles on the electrode will be insufficient and the connection reliability will decrease. This contradictory tendency is further exacerbated by the phenomenon in which conductive particles flow out from the electrode together with the adhesive due to heat and pressure applied during connection.
For example, it has become difficult to support high-density connections such as pitches of 90 μm or less.

【0007】また絶縁性接着剤による接続方式では、隣
接電極間の絶縁性は良好であるが、バンプ高さにバラツ
キがあることから、確実な接続信頼性を得難い欠点を有
している。すなわち、1チップあたりのバンプ数は、例
えば10〜500個と多数であり、バンプの高さは1〜
50μm程度である。これら多数の電極を例えば0.5
μm以内のバラツキで形成管理することは極めて困難で
ある。バンプ高さが不均一であると、高さの大きいバン
プは容易に基板回路面に接触できるが、高さの低いバン
プは基板回路面との間に空隙を生じてしまい電気的な接
続が得られない。さらに、この方式は低コスト化の有望
方式であるバンプレス接続方式に対し、電極の接触が得
難いため原理的に対応することが出来ない欠点を有して
いる。
[0007] In addition, the connection method using an insulating adhesive has good insulation between adjacent electrodes, but has the disadvantage that it is difficult to obtain reliable connection because of variations in bump height. That is, the number of bumps per chip is large, for example 10 to 500, and the height of the bumps is 1 to 500.
It is about 50 μm. For example, 0.5
It is extremely difficult to control the formation due to variations within μm. If the bump heights are uneven, a bump with a large height can easily contact the circuit surface of the board, but a bump with a low height will create a gap between the bump and the circuit surface of the board, making it difficult to make an electrical connection. I can't do it. Furthermore, this method has a drawback that it cannot be used in principle to cope with the bumpless connection method, which is a promising method for reducing costs, because it is difficult to obtain electrode contact.

【0008】本発明は、微小面積の接続信頼性と絶縁性
に優れた高密度電極の接続が可能であり、また、半導体
チップおよび/または回路上へのバンプの形成の有無に
関わらず適用することの可能な接続部材に関する。
The present invention enables connection of high-density electrodes with excellent connection reliability and insulation properties in a small area, and can be applied regardless of whether or not bumps are formed on a semiconductor chip and/or circuit. The present invention relates to a possible connecting member.

【0009】[0009]

【課題を解決するための手段】本発明は、絶縁性接着フ
ィルムの必要部に導電粒子の密集領域を有してなり、密
集した導電粒子は接続時の条件下で、前記絶縁性接着フ
ィルムより高粘度であるが、流動可能な樹脂により少な
くともその一部が連結されており、導電粒子の密集領域
の平面上の中心点は接続すべき電極の中心点と一致する
ように配設されてなることを特徴とする接続部材に関す
る。
[Means for Solving the Problems] The present invention comprises an insulating adhesive film having a densely packed area of conductive particles in a necessary part, and the densely packed conductive particles are more densely packed than the insulating adhesive film under the conditions at the time of connection. At least some of them are connected by a highly viscous but flowable resin, and the center point of the dense region of conductive particles on the plane is arranged so as to coincide with the center point of the electrode to be connected. The present invention relates to a connecting member characterized in that:

【0010】本発明を以下実施例を示した図面を参照し
つつ説明する。図1(a)は本発明の一実施例を示す平
面模式図であり、(b)はそのX−X′の断面模式図、
(c)〜(e)はX−X′の他の実施例を示す断面模式
図である。図1(a)及び(b)は絶縁性接着フィルム
1の必要な部分に導電粒子密集領域2を配設してなる接
続部材11を示す。絶縁性接着フィルム1は、接着シー
ト等に用いられる熱可塑性材料や、熱や光により硬化性
を示す材料が広く適用できる。接続後の耐熱性や耐湿性
に優れることから、硬化性材料の適用が好ましい。中で
もエポキシ系接着剤は、短時間硬化が可能で接続作業性
が良く、また分子構造上、接着性に優れる等の特徴から
好ましく適用できる。
The present invention will be explained below with reference to the drawings showing embodiments. FIG. 1(a) is a schematic plan view showing an embodiment of the present invention, and FIG. 1(b) is a schematic cross-sectional view taken along line X-X'.
(c) to (e) are schematic cross-sectional views showing other embodiments along line X-X'. FIGS. 1A and 1B show a connecting member 11 in which conductive particle dense regions 2 are arranged in necessary parts of an insulating adhesive film 1. The insulating adhesive film 1 can be made of a wide variety of thermoplastic materials used in adhesive sheets and the like, and materials that are curable by heat or light. It is preferable to use a curable material because it has excellent heat resistance and moisture resistance after connection. Among them, epoxy adhesives can be preferably used because they can be cured in a short time, have good connection workability, and have excellent adhesive properties due to their molecular structure.

【0011】エポキシ系接着剤は、例えば高分子量エポ
キシ、固形エポキシと液状エポキシ、ウレタンやポリエ
ステル、NBR等で変性したエポキシを主成分とし、こ
れに潜在性硬化剤やカップリング剤などの各種変性剤、
触媒等を添加した系から成るものが一般的である。これ
らの接着剤は、室温近辺で接着性を有すると導電粒子の
配置固定を行い易い。接着フィルムの厚みは70μm以
下が好ましく、良好な接続信頼性を得るためには35μ
m以下とすることが更に好ましい。
Epoxy adhesives are mainly composed of, for example, high molecular weight epoxy, solid epoxy, liquid epoxy, epoxy modified with urethane, polyester, NBR, etc., and various modifiers such as latent curing agents and coupling agents. ,
Generally, it consists of a system to which a catalyst or the like is added. When these adhesives have adhesive properties near room temperature, it is easy to fix the arrangement of the conductive particles. The thickness of the adhesive film is preferably 70μm or less, and 35μm or less in order to obtain good connection reliability.
It is more preferable to set it to m or less.

【0012】基材3は必要に応じて用いる材料であり、
図1(b)、(d)、(e)の様に接続部材の片面に形
成しても、図1(c)に例示したように両面に設けても
良い。塵埃等の付着を防止する点から基材を用いること
が好ましい。基材3の使用にあたっては、接続部材の使
用時に剥離可能とすることが必要となり、その指標とし
てJISK−6768による濡れ張力を35dyn/c
m以下とすることが好ましい。この方法としては、ポリ
エチレンやポリテトラフルオロエチレン等の低表面張力
材料を用いることや、ポリエチレンテレフタレートやポ
リイミド等にあたっては、前記の低表面張力材料やシリ
コーンなどで表面処理するなどの一般的な方法を採用す
ることができる。
[0012] The base material 3 is a material used as necessary,
It may be formed on one side of the connecting member as shown in FIGS. 1(b), (d), and (e), or may be provided on both sides as illustrated in FIG. 1(c). It is preferable to use a base material from the viewpoint of preventing the adhesion of dust and the like. When using the base material 3, it is necessary to make it removable when using the connecting member, and as an index, the wet tension according to JISK-6768 is set at 35 dyn/c.
It is preferable to set it to m or less. This method involves using low surface tension materials such as polyethylene and polytetrafluoroethylene, and for polyethylene terephthalate and polyimide, general methods such as surface treatment with the above-mentioned low surface tension materials or silicone are used. Can be adopted.

【0013】必要な部分に導電粒子密集領域2を配置す
ることについて説明する。ここで必要な部分とは、接続
すべき電極配置のことをいい、その形状は電極の上部か
ら投影した電極形状とほぼ同じとすることが好ましく、
図1(a)に示したような正方形の他に図示してないが
、長方形、円形及び楕円形などが例示できる。この時、
導電粒子密集領域の面積と形を相似させた状態で電極面
積よりも小さくすると、後述(図3)の様に電極面積以
外に導電粒子が流出し難いことから接続信頼性が向上し
好ましい。密集領域2内の導電粒子の密集程度は、接続
すべき電極の大きさや導電粒子の粒径等で異るが、本発
明では密集領域2の領域内に導電粒子が2ケ以上存在す
れば良い。接続信頼性を向上する点から5ケ以上の高密
度充填が好ましい。図1(a)における導電粒子密集領
域2の平面上の中心点は、接続すべき電極の中心点と一
致するように配設することが、高密度な接続を可能とす
る為に必要となる。
[0013] The arrangement of the conductive particle dense region 2 in a necessary portion will be explained. The necessary part here refers to the electrode arrangement to be connected, and its shape is preferably approximately the same as the electrode shape projected from the top of the electrode.
In addition to the square shown in FIG. 1(a), although not shown, examples include a rectangle, a circle, and an ellipse. At this time,
It is preferable to make the conductive particle dense region smaller in area and shape than the electrode area while making it similar in area and shape, since the conductive particles are less likely to flow out to areas other than the electrode area, as will be described later (FIG. 3), thereby improving connection reliability. The degree of crowding of the conductive particles in the dense region 2 varies depending on the size of the electrode to be connected, the particle size of the conductive particles, etc., but in the present invention, it is sufficient that two or more conductive particles exist in the dense region 2. . From the viewpoint of improving connection reliability, high-density packing of 5 or more is preferable. In order to enable high-density connections, it is necessary to align the center point of the conductive particle dense region 2 on the plane in FIG. 1(a) with the center point of the electrode to be connected. .

【0014】密集領域2を接続部材の断面でみた場合、
図1(b)のように接着フィルムの厚み方向に貫通した
り、粒子が突出して良く、厚み方向の下層(c)、中間
層(d)、及び上層(e)のいずれの場合も適用でき、
これらは又適時混在しても良い。これらの構成において
、(b)の場合は接続時に導電粒子と電極とが接触し易
いので、高度な接続信頼性を得易く、(c)や(e)の
構成は、接着フィルムの積層により得られるので製造が
比較的容易である。また(d)の構成は、両面が接着剤
であるため、強固な接着と電気的接続とを合わせて得ら
れることから好ましい形態である。本発明では、密集し
た導電粒子は加熱、加圧、及び加熱加圧等の接続時の条
件下で、前記接着フィルムよりも高粘度であるが流動可
能な樹脂で連結されてなることを必要とする。
When the dense area 2 is viewed in cross section of the connecting member,
As shown in Figure 1(b), the particles may penetrate in the thickness direction of the adhesive film or the particles may protrude, and it can be applied to any of the lower layer (c), middle layer (d), and upper layer (e) in the thickness direction. ,
These may also be mixed as appropriate. In these configurations, in the case of (b), the conductive particles and electrodes easily come into contact during connection, so it is easy to obtain a high degree of connection reliability, and in the case of (c) and (e), it is easy to obtain high connection reliability by laminating adhesive films. It is relatively easy to manufacture. Further, the structure (d) is a preferable form because both sides are made of adhesive, and strong adhesion and electrical connection can be obtained at the same time. In the present invention, the densely packed conductive particles need to be connected by a resin that has a higher viscosity than the adhesive film but can flow under conditions during connection such as heating, pressurization, and heating and pressurization. do.

【0015】本発明に用いる導電粒子は、少なくとも粒
子の表面が導電性であれば適用できるが、接続時の加熱
、加圧、加熱加圧などの条件下で変形性を示す粒子が好
ましく適用できる。変形性粒子としては、例えばポリス
チレンやエポキシ樹脂などの高分子核材の表面をNi、
Ag、Au、Cu、半田などの導電性金属薄層で被覆し
た粒子や、低融点金属粒子などがある。
The conductive particles used in the present invention can be used as long as at least the surface of the particles is conductive, but particles that exhibit deformability under conditions such as heating, pressurization, and heating and pressurization during connection are preferably applicable. . As deformable particles, for example, the surface of a polymer core material such as polystyrene or epoxy resin can be
Examples include particles coated with a thin layer of conductive metal such as Ag, Au, Cu, and solder, and particles of low-melting metal.

【0016】接続時の条件としては、例えば温度250
℃以下、圧力100kgf/cm2以下、時間30秒以
下が一般的であり、高温高圧になるほど周辺材料に熱損
傷を与えることから、温度200℃以下、圧力50kg
f/cm2以下が好ましい。導電粒子の変形の確認は接
続体の断面を電子顕微鏡で観察するものとする。導電粒
子の平均粒径は、高密度な電極配置に対応する為に30
μm以下の小粒径が好ましく、3〜15μm程度とする
ことがより好ましい。
[0016] The conditions for connection include, for example, a temperature of 250°C.
℃ or less, pressure of 100 kgf/cm2 or less, and time of 30 seconds or less.The higher the temperature and pressure, the more thermal damage will be caused to surrounding materials, so the temperature is 200℃ or less and the pressure is 50 kg.
f/cm2 or less is preferable. To confirm the deformation of the conductive particles, the cross section of the connected body shall be observed using an electron microscope. The average particle diameter of the conductive particles is 30 mm to accommodate high-density electrode arrangement.
A small particle size of .mu.m or less is preferable, and a particle size of about 3 to 15 .mu.m is more preferable.

【0017】粒子を連結するための樹脂5としては、ポ
リビニルアセタール、フェノキシ、固形エポキシ、ナイ
ロン、ポリエチレン、SBS、SEBSなどの熱可塑性
材料が好ましいが、接続時に流動性を示すならば熱硬化
性材料も適用できる。接着フィルムよりも接続条件下で
高粘度とする理由は、接続時の加熱加圧などによっても
粒子相互が少なくともその一部で樹脂により連結される
ことで、密集領域から流出しないようにするためである
。また流動可能とすることで、接続時に導電粒子と電極
の接触を促進して電気的接続を可能とする。この為、接
続時には変形性導電粒子よりも低粘度であるが接着剤よ
りも高粘度とすることが好ましい。
The resin 5 for connecting the particles is preferably a thermoplastic material such as polyvinyl acetal, phenoxy, solid epoxy, nylon, polyethylene, SBS, SEBS, etc., but a thermosetting material may be used if it exhibits fluidity during connection. can also be applied. The reason why it has a higher viscosity under the connection conditions than the adhesive film is because the particles are at least partially connected by the resin even when heated and pressurized during connection, so that they do not flow out from the dense area. be. Moreover, by making it flowable, it promotes contact between the conductive particles and the electrode at the time of connection, thereby enabling electrical connection. For this reason, during connection, it is preferable that the viscosity is lower than that of the deformable conductive particles but higher than that of the adhesive.

【0018】粒子の連結状態を拡大した図2により、そ
の代表的な製造方法と共に以下説明する。樹脂5は、(
a)(c)(e)(f)のように必要部のみに形成して
も(b)(d)のように面方向に連続状でもよい。 (a)と(c)は、ほぼ必要部のみに樹脂5の存在する
場合である。
A typical manufacturing method will be described below with reference to FIG. 2 showing an enlarged view of the connected state of the particles. Resin 5 is (
It may be formed only in necessary parts as shown in a), (c), (e) and (f), or it may be continuous in the surface direction as shown in (b) and (d). (a) and (c) are cases where the resin 5 is present almost only in the necessary areas.

【0019】その製法例として、必要部に貫通孔を有す
るマスクを基材3上に密着し、(a)の場合は樹脂5を
配設後に導電粒子4を、(c)の場合は柔軟性の紫外線
(UV)硬化型の樹脂5と導電粒子4の混合物を各々例
えばスプレーガンで吹付けることで必要部のみに配設す
る。(c)の場合は更にマスク材により必要部のみをU
V硬化したあと、マスク材を除去し溶剤によるエッチン
グで硬化後の樹脂5により固定された粒子4を得る。 (a)(c)とも、この後で接着フィルムを積層するこ
とで図の構成を得ることができる。(b)及び(d)は
、導電粒子を必要部に配置し樹脂5は連続状の場合であ
る。連結の手段としては、例えば樹脂5のフィルムに必
要部に貫通孔を有するマスクを密着し、貫通孔から導電
粒子4を充填した後、平行板間で加熱加圧後にマスクを
除去すれば良い。(e)は、導電粒子4を樹脂5と混合
後に配設した場合であり、混合することで連結を得る。 その為に溶剤を用いて低粘度下で行うこともできる。(
f)は導電粒子4の表面を、例えば市販のコートマイザ
、スプレードライヤー、オングミル、ハイブリダイザー
などの装置を用いて、樹脂5で表面処理を行った場合を
示す。樹脂5は導電粒子の個々を絶縁しながら固定材料
としても作用することが可能なので最も好ましい手段で
ある。(e)(f)の場合は、接着剤5の必要部に孔を
設けて配設した。接着剤(5)の必要部に深さの一部ま
での孔もしくは貫通孔を形成する方法としては、レーザ
ーアブレーション、精密ドリル、プラズマやケミカルに
よるエッチングなどが好適である。以上の各手段は適宜
選択して組合わせることが可能であり、配設方法として
、シルクスクリーン法も採用できる。
As an example of the manufacturing method, a mask having through holes in necessary parts is closely attached to the base material 3, and in the case of (a), the conductive particles 4 are placed after disposing the resin 5, and in the case of (c), the conductive particles are A mixture of ultraviolet (UV) curable resin 5 and conductive particles 4 is applied only to the necessary areas by spraying the mixture with, for example, a spray gun. In the case of (c), only the necessary parts are covered with mask material.
After V-curing, the mask material is removed and the particles 4 fixed by the cured resin 5 are obtained by etching with a solvent. In both (a) and (c), the structure shown in the figure can be obtained by laminating an adhesive film after this. (b) and (d) are cases in which the conductive particles are arranged in necessary parts and the resin 5 is continuous. As a means of connection, for example, a mask having through-holes at necessary portions may be closely attached to the film of the resin 5, conductive particles 4 may be filled through the through-holes, and the mask may be removed after being heated and pressurized between parallel plates. (e) is a case where the conductive particles 4 are disposed after being mixed with the resin 5, and connection is obtained by mixing. For this purpose, it can also be carried out at low viscosity using a solvent. (
f) shows a case in which the surface of the conductive particles 4 is treated with the resin 5 using a commercially available apparatus such as a coat miser, a spray dryer, an ong mill, or a hybridizer. The resin 5 is the most preferable means because it can act as a fixing material while insulating the individual conductive particles. In the cases of (e) and (f), holes were provided in the necessary parts of the adhesive 5. Laser ablation, precision drilling, plasma or chemical etching, etc. are suitable as a method for forming a hole or a through hole to a certain depth in the required part of the adhesive (5). Each of the above means can be selected and combined as appropriate, and a silk screen method can also be adopted as the arrangement method.

【0020】本発明になる接続部材の使用方法を図3に
より説明する。図3(a)は半導体チップ6の絶縁層8
とほぼ同じ高さに存在する電極7と、基板9上に絶縁層
8′を有し、これとほぼ同じ高さに形成された回路10
との接続の場合であり、接続電極は両者ともに突出して
おらず、代表的なバンプレス接続の例である。電極7と
回路10との中心点(一点鎖線で表示)を結ぶ線上に、
接続部材中の導電粒子の密集領域の中心点を揃えるよう
に位置合わせする。この時、接続部材11は半導体チッ
プ側もしくは基板回路側に一度位置合わせして仮接続し
たものを用いると取扱いが簡単となり好ましい。また、
導電粒子の密集領域の面積は、電極形状より好ましくは
80%以下、より好ましくは50%以下と小さくするこ
とも接続後の密集領域の広がりに対処する上で有効であ
る。
A method of using the connecting member according to the present invention will be explained with reference to FIG. FIG. 3(a) shows the insulating layer 8 of the semiconductor chip 6.
A circuit 10 having an electrode 7 existing at approximately the same height as the electrode 7 and an insulating layer 8' on the substrate 9 and formed at approximately the same height as the electrode 7 and the insulating layer 8' on the substrate 9.
This is a typical example of a bumpless connection in which both connection electrodes do not protrude. On the line connecting the center point of the electrode 7 and the circuit 10 (indicated by a dashed line),
Alignment is performed so that the center points of the dense regions of conductive particles in the connection member are aligned. At this time, it is preferable to use a connecting member 11 that is temporarily connected to the semiconductor chip side or the substrate circuit side after being aligned once, because handling becomes easier. Also,
It is also effective to make the area of the dense region of conductive particles smaller than the shape of the electrode, preferably 80% or less, more preferably 50% or less, in order to deal with the spread of the dense region after connection.

【0021】この状態で加熱加圧することで、図3(b
)に示すように電極7と回路10間で導電粒子2は変形
して面接触状となり接触面積が増加し、ほぼ電極面積と
同じに広がる。この時、粒子を連結していた樹脂(図示
なし)は、粒子間や電極および回路間より加熱加圧で排
除されて接着剤に相容してしまい、加圧方向での導通接
続が可能である。また、絶縁性接着フィルム1は加熱加
圧により溶融して半導体チップ6と基板9とを接着し、
余剰の接着剤は半導体チップの周縁に流出して盛り上が
った状態となり、接続部の封止材料及び接着の補強材と
なる。
By applying heat and pressure in this state, FIG. 3(b)
), between the electrode 7 and the circuit 10, the conductive particles 2 are deformed and come into surface contact, increasing the contact area and expanding to approximately the same area as the electrode. At this time, the resin (not shown) that connects the particles is removed by heat and pressure from between the particles and between the electrodes and circuits and becomes compatible with the adhesive, making it possible to establish a conductive connection in the direction of pressure. be. Further, the insulating adhesive film 1 is melted by heating and pressurizing to bond the semiconductor chip 6 and the substrate 9,
The excess adhesive flows out to the periphery of the semiconductor chip and becomes a swollen state, and serves as a sealing material for the connection portion and a reinforcing material for adhesion.

【0022】本実施例では、バンプレス接続の場合で説
明したが、バンプが存在する場合も同様に適用できる。 この場合変形可能な導電粒子を用いることでバンプ高さ
の不均一を補って均一接続が可能である。
Although the present embodiment has been described in the case of bumpless connection, it can be similarly applied to the case where bumps are present. In this case, by using deformable conductive particles, unevenness in bump height can be compensated for and uniform connection can be achieved.

【0023】[0023]

【作用】本発明においては、絶縁性接着フィルムの必要
部のみに導電粒子の密集領域を形成し、この密集領域の
中心点と接続すべき電極の中心点とを一致するように配
設したことにより、導電性の必要な電極部と絶縁性の必
要な隣接電極間とで機能を分離して接着フィルムにより
接着することが出来るので、高密度電極の接続が比較的
簡単に行えるようになる。
[Operation] In the present invention, a dense region of conductive particles is formed only in necessary parts of the insulating adhesive film, and the center point of this dense region is arranged so as to coincide with the center point of the electrode to be connected. This makes it possible to separate the functions of an electrode part that needs to be conductive and an adjacent electrode that needs to be insulated and to bond them together using an adhesive film, making it possible to connect high-density electrodes relatively easily.

【0024】また密集した導電粒子は、加熱、加圧及び
加熱加圧による接続時の条件下で、接着フィルムよりも
高粘度である樹脂により少なくともその一部が連結され
ることで流動し難くなっており、接続時の加熱加圧等に
より接着フィルムが低粘度な状態となっても、電極部か
らの導電粒子の流出がなく、電極上に高密度に存在した
まま接続でき、接続信頼性が向上する。
[0024] In addition, the densely packed conductive particles become difficult to flow under the conditions of heating, pressurization, and connection by heating and pressurization because at least a portion of them is connected by a resin that has a higher viscosity than the adhesive film. Even if the adhesive film becomes low in viscosity due to heat and pressure during connection, conductive particles do not flow out from the electrode, allowing connection to be made while remaining densely present on the electrode, improving connection reliability. improves.

【0025】さらに必要部に配設した導電粒子の密集領
域は、接続時においてバンプに相当した凸出電極として
作用するので、半導体チップや基板回路上にバンプを形
成しないバンプレス接続が可能となる。加えて導電粒子
が接続時に変形性を有する導電粒子の場合、接続時に任
意に変形可能なことからバンプ接続時のバンプ高さの不
均一に起因する接続不良が解消して、低コストで信頼性
に優れた接続が可能となる。
[0025]Furthermore, the densely packed regions of conductive particles arranged in necessary parts act as protruding electrodes corresponding to bumps during connection, so bumpless connection is possible without forming bumps on the semiconductor chip or circuit board. . In addition, if the conductive particles are deformable during connection, they can be arbitrarily deformed during connection, which eliminates connection failures caused by uneven bump heights during bump connection, resulting in low cost and reliability. This allows for excellent connectivity.

【0026】以下に、図2に示す導電部材の実施例につ
き、さらに具体的に説明する。ポリテトラフルオロエチ
レン製フイルムを基材3に使用し、この上に接続するテ
スト用ICチップの電極と同じ配列で、各電極位置に直
径80μmの大きさで高分子量の固形エポキシ系接着剤
を主成分にした絶縁性樹脂5をスクリーン印刷した。次
に、この基材3上にポリスチレンからなる核材の表面に
Auの金属薄層を持った変形性の導電粒子4(平均粒径
10μm)を散布した後、圧縮空気を吹き付けるかブラ
シを用いて絶縁性樹脂5に粘着していない余剰の導電粒
子4を取り除いた。ついで低分子量の液状エポキシ系接
着剤を主成分とした絶縁性接着剤1を塗布し、厚さ約2
0μmの接着剤1の層を設け図2(a)にしめす接続部
材を得た。(実施例1)
The embodiment of the conductive member shown in FIG. 2 will be described in more detail below. A polytetrafluoroethylene film is used as the base material 3, and a solid epoxy adhesive with a diameter of 80 μm and a high molecular weight is mainly applied to each electrode position in the same arrangement as the electrodes of the test IC chip to be connected on this film. Insulating resin 5 as a component was screen printed. Next, after scattering deformable conductive particles 4 (average particle size 10 μm) having a thin Au metal layer on the surface of a core material made of polystyrene on this base material 3, compressed air is blown or a brush is used. The excess conductive particles 4 not adhering to the insulating resin 5 were removed. Next, an insulating adhesive 1 mainly composed of a low molecular weight liquid epoxy adhesive is applied to a thickness of approximately 2.
A layer of adhesive 1 with a thickness of 0 μm was provided to obtain a connecting member shown in FIG. 2(a). (Example 1)

【0027】ポリテトラフルオロエチレン製フイルム上
に高分子量のエポキシ系接着剤を主成分とした絶縁性樹
脂5を約5μmの厚さに設け、接続するテスト用ICチ
ップの電極と同じ配列に、直径80μmの貫通孔を設け
た厚さ30μmのステンレス製メタルマスクを絶縁性樹
脂5に密着させた。密着させるためにゴムロールを使用
したラミネータを用い、メタルマスクと接着剤間の浮き
を極力防止した。次に実施例1と同じ導電粒子4をメタ
ルマスクの上に散布した後、ゴム製のスキージかブラシ
を用いてメタルマスクの貫通孔に導電粒子4を押し込む
とともに、余剰の導電粒子4をメタルマスク上から除去
した。次いでメタルマスクを絶縁性樹脂から剥離した。 このようにして得た導電粒子4が配列した絶縁性樹脂フ
イルムの他に、ポリテトラフルオロエチレン製フイルム
上に低分子量の液状エポキシ系接着剤を主成分にした絶
縁性接着剤1を塗布し、厚さ約10μmの絶縁性接着剤
の層を設けたものを作製した。前記の絶縁性樹脂フイル
ム5と絶縁性接着剤1のフイルムをラミネータで加圧し
て密着させ、絶縁性樹脂フイルム5の両面に絶縁性接着
剤1の層を設け図2(b)に示すような接続部材をえた
。(実施例2)
An insulating resin 5 containing a high molecular weight epoxy adhesive as a main component is provided on a polytetrafluoroethylene film to a thickness of about 5 μm, and the diameter is set in the same arrangement as the electrodes of the test IC chip to be connected. A stainless steel metal mask with a thickness of 30 μm provided with a through hole of 80 μm was brought into close contact with the insulating resin 5. A laminator with rubber rolls was used to ensure close contact, and floating between the metal mask and adhesive was prevented as much as possible. Next, after scattering the same conductive particles 4 as in Example 1 onto the metal mask, use a rubber squeegee or brush to push the conductive particles 4 into the through holes of the metal mask, and remove excess conductive particles 4 from the metal mask. removed from above. Next, the metal mask was peeled off from the insulating resin. In addition to the insulating resin film in which the conductive particles 4 thus obtained are arranged, an insulating adhesive 1 mainly composed of a low molecular weight liquid epoxy adhesive is applied onto the polytetrafluoroethylene film. An insulating adhesive layer with a thickness of approximately 10 μm was provided. The insulating resin film 5 and the film of the insulating adhesive 1 are pressed together with a laminator, and a layer of the insulating adhesive 1 is formed on both sides of the insulating resin film 5 as shown in FIG. 2(b). I got the connecting parts. (Example 2)

【0028】紫外線硬化型で硬化後の弾性率が0.1k
gf/cm2の絶縁性樹脂5に導電粒子4を約20体積
%混合したものを、ポリテトラフルオロエチレン製フイ
ルム上に塗布し、厚さ約20μmの絶縁性樹脂5の層を
もうけたものを作製した。この紫外線硬化型絶縁性樹脂
5に、接続するテスト用ICチップの電極と同じ配列に
直径80μmの紫外線透過部を設けた石英製のガラスマ
スクを用いて、露光現像し、ポリテトラフルオロエチレ
ン製フイルム上に導電粒子5を配列させた。その後、さ
らに低分子量の液状エポキシ系接着剤1を塗布し、厚さ
20μmの絶縁性接着剤1の層を設けたものを作製し、
図2(c)に示す接続部材をえた。(実施例3)
[0028] Ultraviolet curing type with elastic modulus of 0.1k after curing
A mixture of about 20% by volume of conductive particles 4 in insulating resin 5 of gf/cm2 was applied onto a polytetrafluoroethylene film to form a layer of insulating resin 5 with a thickness of about 20 μm. did. This ultraviolet curable insulating resin 5 is exposed and developed using a quartz glass mask with ultraviolet transmitting parts of 80 μm in diameter in the same arrangement as the electrodes of the test IC chip to be connected, and then a polytetrafluoroethylene film is formed. Conductive particles 5 were arranged on top. After that, a low molecular weight liquid epoxy adhesive 1 was further applied to create a layer of insulating adhesive 1 with a thickness of 20 μm,
A connecting member shown in FIG. 2(c) was obtained. (Example 3)

【00
29】ポリテトラフルオロエチレン製フイルム上に高分
子量の固形エポキシ系接着剤を主成分にした絶縁性樹脂
5を約10μmの厚さに設け、接続するテスト用ICチ
ップの電極と同じ配列に、直径80μmの貫通孔を設け
た厚さ30μmのステンレス製メタルマスクを絶縁性樹
脂5に密着させた。密着させるためにゴムロールを使用
したラミネータを用い、メタルマスクと接着剤間の浮き
を極力防止した。次に実施例1と同じ導電粒子4をメタ
ルマスクの上に散布した後、ゴム製のスキージかブラシ
を用いてメタルマスクの貫通孔に導電粒子4を押し込む
とともに、余剰の導電粒子4をメタルマスク上から除去
した。次いでメタルマスクを絶縁性樹脂から剥離した。 このようにして得た導電性粒子4が配列した絶縁性樹脂
フイルム5の他に、ポリテトラフルオロエチレン製フイ
ルム上に低分子量の液状エポキシ系接着剤を主成分にし
た絶縁性接着剤1を塗布し、厚さ約10μmの絶縁性接
着剤の層を設けたものを作製した。前記の絶縁性樹脂フ
イルム5と絶縁性接着剤1のフイルムをラミネータで加
圧して密着させ、絶縁性樹脂フイルム5の導電性粒子4
が粘着した面に絶縁性接着剤1の層を設け図2(d)に
示すような接続部材をえた。(実施例4)
00
29] An insulating resin 5 made of a high molecular weight solid epoxy adhesive as a main component is provided on a polytetrafluoroethylene film to a thickness of approximately 10 μm, and the diameter is placed in the same arrangement as the electrodes of the test IC chip to be connected. A stainless steel metal mask with a thickness of 30 μm provided with a through hole of 80 μm was brought into close contact with the insulating resin 5. A laminator with rubber rolls was used to ensure close contact, and floating between the metal mask and adhesive was prevented as much as possible. Next, after scattering the same conductive particles 4 as in Example 1 onto the metal mask, use a rubber squeegee or brush to push the conductive particles 4 into the through holes of the metal mask, and remove excess conductive particles 4 from the metal mask. removed from above. Next, the metal mask was peeled off from the insulating resin. In addition to the insulating resin film 5 on which the conductive particles 4 thus obtained are arrayed, an insulating adhesive 1 mainly composed of a low molecular weight liquid epoxy adhesive is applied onto the polytetrafluoroethylene film. Then, an insulating adhesive layer with a thickness of about 10 μm was provided. The insulating resin film 5 and the film of the insulating adhesive 1 are pressed together with a laminator, and the conductive particles 4 of the insulating resin film 5 are pressed together.
A layer of insulating adhesive 1 was provided on the adhesive surface to obtain a connecting member as shown in FIG. 2(d). (Example 4)

【0030】
ポリテトラフルオロエチレン製フイルム上に低分子量の
液状エポキシ系接着剤を主成分にした絶縁性接着剤1を
約20μmの厚さに設け、接続するテスト用ICチップ
の電極と同じ配列に、直径80μmの貫通孔を設けた厚
さ30μmのステンレス製メタルマスクを絶縁性接着剤
1に密着させた。密着させるためにゴムロールを使用し
たラミネータを用い、メタルマスクと接着剤間の浮きを
極力防止した。次に、このメタルマスクの面に波長が2
48nmのエキシマレーザを照射し、接着剤1に15μ
mの深さを持った孔を設けた。次に導電粒子4を20体
積%混合した高分子量の固形エポキシ系接着剤を主成分
にした絶縁性樹脂5を、ゴム製のスキージを用いて孔に
押し入れると共に、余剰の絶縁性樹脂と導電粒子を絶縁
性接着剤上から取り除き、図2(e)に示した接続部材
をえた。(実施例5)
[0030]
An insulating adhesive 1 mainly composed of a low molecular weight liquid epoxy adhesive was applied to a thickness of about 20 μm on a polytetrafluoroethylene film, and the electrodes with a diameter of 80 μm were placed in the same arrangement as the electrodes of the test IC chip to be connected. A stainless steel metal mask with a thickness of 30 μm provided with through holes was brought into close contact with the insulating adhesive 1. A laminator with rubber rolls was used to ensure close contact, and floating between the metal mask and adhesive was prevented as much as possible. Next, the wavelength of 2 is placed on the surface of this metal mask.
Irradiate 48nm excimer laser and apply 15μ to adhesive 1.
A hole with a depth of m was made. Next, an insulating resin 5 mainly composed of a high molecular weight solid epoxy adhesive mixed with 20% by volume of conductive particles 4 is pushed into the hole using a rubber squeegee, and the excess insulating resin and conductive The particles were removed from the insulating adhesive to obtain the connecting member shown in FIG. 2(e). (Example 5)

【0031】ポリテトラフルオロエチレン製フイルム上
に低分子量の液状エポキシ系接着剤を主成分にした絶縁
性接着剤1を約20μmの厚さに設け、接続するテスト
用ICチップの電極と同じ配列に、直径80μmの貫通
孔を設けた厚さ30μmのステンレス製メタルマスクを
絶縁性接着剤1に密着させた。密着させるためにゴムロ
ールを使用したラミネータを用い、メタルマスクと接着
剤間の浮きを極力防止した。次に、このメタルマスクの
面に波長が248nmのエキシマレーザを照射し、接着
剤1に15μmの深さを持った孔を設けた。次に導電粒
子4の表面に高分子量の固形エポキシ系接着剤を主成分
とした絶縁性樹脂5の層をもった導電粒子4をコートマ
イザー(フロイント産業株製)を用いて作製し、この導
電粒子4を絶縁性接着剤1の上に散布した後、ゴム製の
スキージかブラシを用いて絶縁性接着剤1の孔に導電性
粒子を押し入れると共に、余剰の導電粒子を絶縁性接着
剤上から取り除き図2(f)に示す接続部材を得た。 (実施例6)
An insulating adhesive 1 mainly composed of a low molecular weight liquid epoxy adhesive is provided on a polytetrafluoroethylene film to a thickness of about 20 μm, and arranged in the same arrangement as the electrodes of the test IC chip to be connected. A stainless steel metal mask with a thickness of 30 μm and having a through hole with a diameter of 80 μm was brought into close contact with the insulating adhesive 1. A laminator with rubber rolls was used to ensure close contact, and floating between the metal mask and adhesive was prevented as much as possible. Next, the surface of this metal mask was irradiated with an excimer laser having a wavelength of 248 nm, and holes with a depth of 15 μm were formed in the adhesive 1. Next, conductive particles 4 having a layer of insulating resin 5 mainly composed of a high molecular weight solid epoxy adhesive on the surface of the conductive particles 4 are prepared using Coatmizer (manufactured by Freund Sangyo Co., Ltd.). After scattering the particles 4 onto the insulating adhesive 1, use a rubber squeegee or brush to push the conductive particles into the holes of the insulating adhesive 1, and remove the excess conductive particles onto the insulating adhesive. The connecting member shown in FIG. 2(f) was obtained. (Example 6)

【0032】上記実施例で得られた接続部材を用い、電
極径80μm、電極間距離40μmのバンプが配列した
テスト用ICと同様な配列のITO電極をもったガラス
基板とを接続し、接続抵抗と隣接する電極間の絶縁抵抗
を測定した結果を表1に示す。なお、接続抵抗は60ヵ
所の電極についての平均値、絶縁抵抗は56ヵ所の測定
値の最低値を示した。
Using the connecting member obtained in the above example, a test IC with bumps arranged with an electrode diameter of 80 μm and an inter-electrode distance of 40 μm was connected to a glass substrate with ITO electrodes arranged in the same manner, and the connection resistance was determined. Table 1 shows the results of measuring the insulation resistance between and adjacent electrodes. Note that the connection resistance was the average value of the electrodes at 60 locations, and the insulation resistance was the lowest value of the measured values at 56 locations.

【0033】[0033]

【発明の効果】本発明によれば、電気的接続を必要とす
る部分に導電粒子を局在させ、絶縁性の必要部は絶縁性
接着剤を用いることから、微小部分の接続が簡単に得ら
れる接続部材を容易に提供できることが可能となった。 また半導体チップ接続用とした場合には、バンプ形成が
不要となり、貴金属の使用量を削減することもできる。
[Effects of the Invention] According to the present invention, conductive particles are localized in areas that require electrical connection, and insulating adhesive is used in areas that require insulation, making it easy to connect minute areas. It has now become possible to easily provide a connecting member that can be used. Further, when used for connecting semiconductor chips, bump formation is not necessary, and the amount of precious metal used can be reduced.

【0034】[0034]

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  (a)は本発明の一実施例を示す接続部材
の平面模式図であり、(b)〜(e)はその断面模式図
である。
FIG. 1 (a) is a schematic plan view of a connecting member showing one embodiment of the present invention, and (b) to (e) are schematic cross-sectional views thereof.

【図2】  (a)〜(f)は本発明の一実施例を示す
断面模式図である。
FIG. 2 (a) to (f) are schematic cross-sectional views showing one embodiment of the present invention.

【図3】  (a)、(b)は本発明になる接続部材を
用いた接続工程を示す断面模式図である。
FIGS. 3(a) and 3(b) are schematic cross-sectional views showing a connecting process using the connecting member according to the present invention.

【符号の説明】[Explanation of symbols]

1    絶縁性接着フィルム          2
    導電粒子密集領域 3    基材                  
      4    導電粒子5    樹脂   
                     6   
 半導体チップ 7    電極                  
      8    絶縁層9    基板    
                  10    回
路11    接続部材
1 Insulating adhesive film 2
Conductive particle dense region 3 base material
4 Conductive particles 5 Resin
6
Semiconductor chip 7 electrode
8 Insulating layer 9 Substrate
10 Circuit 11 Connection member

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  絶縁性接着フィルムの必要部に導電粒
子の密集領域を有してなり、密集した導電粒子は接続時
の条件下で、前記絶縁性接着フィルムより高粘度である
が流動可能な樹脂により少なくともその一部が連結され
ており、導電粒子の密集領域の平面上の中心点は接続す
べき電極の中心点と一致するように配設されてなること
を特徴とする接続部材。
Claim 1: An insulating adhesive film has a densely packed region of conductive particles in a necessary part, and the densely packed conductive particles have a higher viscosity than the insulating adhesive film but are flowable under conditions during connection. 1. A connecting member characterized in that at least a part of the connecting member is connected by a resin, and the center point of a dense region of conductive particles on a plane coincides with the center point of an electrode to be connected.
JP3066238A 1991-03-29 1991-03-29 Connection member Expired - Lifetime JP2748713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3066238A JP2748713B2 (en) 1991-03-29 1991-03-29 Connection member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3066238A JP2748713B2 (en) 1991-03-29 1991-03-29 Connection member

Publications (2)

Publication Number Publication Date
JPH04301382A true JPH04301382A (en) 1992-10-23
JP2748713B2 JP2748713B2 (en) 1998-05-13

Family

ID=13310081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3066238A Expired - Lifetime JP2748713B2 (en) 1991-03-29 1991-03-29 Connection member

Country Status (1)

Country Link
JP (1) JP2748713B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153208A (en) * 2007-11-19 2008-07-03 Hitachi Chem Co Ltd Connecting member, and electrode-connecting construction using the same
JP2011155009A (en) * 2011-02-21 2011-08-11 Asahi Kasei E-Materials Corp Circuit connection film
JP2015154066A (en) * 2014-02-19 2015-08-24 パイオニア株式会社 Electronic equipment and resin film
JP2018186090A (en) * 2012-08-29 2018-11-22 デクセリアルズ株式会社 Anisotropic conductive film and manufacturing method thereof
JP2019029135A (en) * 2017-07-27 2019-02-21 日立化成株式会社 Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof
JP2020202409A (en) * 2015-01-13 2020-12-17 デクセリアルズ株式会社 Multilayer substrate
JP2020202410A (en) * 2015-01-13 2020-12-17 デクセリアルズ株式会社 Multilayer substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306588A (en) * 1989-05-22 1990-12-19 Hitachi Chem Co Ltd Target for thin film electroluminescence element and its manufacture
JPH02306558A (en) * 1989-05-19 1990-12-19 Sharp Corp Arrangement of conductive particles on electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306558A (en) * 1989-05-19 1990-12-19 Sharp Corp Arrangement of conductive particles on electrode
JPH02306588A (en) * 1989-05-22 1990-12-19 Hitachi Chem Co Ltd Target for thin film electroluminescence element and its manufacture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153208A (en) * 2007-11-19 2008-07-03 Hitachi Chem Co Ltd Connecting member, and electrode-connecting construction using the same
JP2011155009A (en) * 2011-02-21 2011-08-11 Asahi Kasei E-Materials Corp Circuit connection film
JP2018186090A (en) * 2012-08-29 2018-11-22 デクセリアルズ株式会社 Anisotropic conductive film and manufacturing method thereof
US10412837B2 (en) 2012-08-29 2019-09-10 Dexerials Corporation Anisotropic conductive film and method of producing the same
JP2015154066A (en) * 2014-02-19 2015-08-24 パイオニア株式会社 Electronic equipment and resin film
JP2020202409A (en) * 2015-01-13 2020-12-17 デクセリアルズ株式会社 Multilayer substrate
JP2020202410A (en) * 2015-01-13 2020-12-17 デクセリアルズ株式会社 Multilayer substrate
US11901325B2 (en) 2015-01-13 2024-02-13 Dexerials Corporation Multilayer substrate
JP2019029135A (en) * 2017-07-27 2019-02-21 日立化成株式会社 Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2748713B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
US6034331A (en) Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
US6841022B2 (en) Adhesive-coated electronic parts on a connection sheet
EP0691660B1 (en) Anisotropically electroconductive resin film
US8035202B2 (en) Electronic device having a wiring substrate
JP3801666B2 (en) Electrode connection method and connection member used therefor
US20060103788A1 (en) Method for mounting electronic element, method for producing electronic device, circuit board, and electronic instrument
US5279711A (en) Chip attach and sealing method
JPH03131089A (en) Connecting method for circuit board
KR100563502B1 (en) A cof semiconductor device and a manufacturing method for the same
JPH08279371A (en) Connecting member and connecting structure and connecting method of electrode by using the connecting member
JPH04301382A (en) Connecting member
JP3856233B2 (en) Electrode connection method
JPH07226569A (en) Circuit board and electrode connection member and its manufacture
JP3562615B2 (en) Anisotropic conductive film-like connecting member and method of manufacturing the same
JP2001127194A (en) Flip chip semiconductor device and its manufacturing method
JPH04301383A (en) Manufacture of connecting member
US7735717B2 (en) Method of manufacturing semiconductor apparatus and method of forming viscous liquid layer
JP2004111993A (en) Method for connecting electrode and connecting member for use in the same
JP2002075488A (en) Anisotropic electroconductive film and its manufacturing method
JP4032320B2 (en) Electrode connection method
KR980013552A (en) A connection sheet for mutually connecting the electrodes facing each other, and an electrode connection structure and a connection method using the connection sheet
JPH0955279A (en) Electrode connecting method and connection structure of electrode obtained by the method
JPH05251505A (en) Method of connecting ic chip to area tape
JPH1084178A (en) Arrangement method of minute substances and forming method of connection structure employing the arrangement method
JP3900314B2 (en) Electrode connection method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 14