JPH04297314A - Attitude control device for car body - Google Patents

Attitude control device for car body

Info

Publication number
JPH04297314A
JPH04297314A JP41587690A JP41587690A JPH04297314A JP H04297314 A JPH04297314 A JP H04297314A JP 41587690 A JP41587690 A JP 41587690A JP 41587690 A JP41587690 A JP 41587690A JP H04297314 A JPH04297314 A JP H04297314A
Authority
JP
Japan
Prior art keywords
vehicle body
oil
calculation means
displacement
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41587690A
Other languages
Japanese (ja)
Other versions
JP2956221B2 (en
Inventor
Kenichi Kohata
健一 降幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP41587690A priority Critical patent/JP2956221B2/en
Publication of JPH04297314A publication Critical patent/JPH04297314A/en
Application granted granted Critical
Publication of JP2956221B2 publication Critical patent/JP2956221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To prevent the floating of a car body from the road surface at the time of turning by determining controlling forces corresponding to lateral accelerations of the front and rear parts of the body for every wheel, and applying the forces to respective hydraulic suspension mechanisms. CONSTITUTION:From the ground clearances of respective wheels detected by sensors 28, roll displacement, pitch displacement, and vertical displacement are determined by means of a relative displacement calculating means 35, forward and backward accelerations detected by a sensor 29 are corrected by a forward and backward acceleration correcting means 34, and the ratio of cornering forces of the front and rear axles is determined by a moving load distribution calculating means 33 from steering angle, car speed, lateral acceleration detected by respective sensors 30,31,32a, 32b. From the above results, the vibration controlling quantities of respective wheels, that is, roll controlling torque, pitch controlling torque, vertical controlling force, body lowering force are determined by a vibration controlling quantity calculating means 39 and a body lowering force calculating means 38 to drive an oil quantity control valve 16 in response to the vibration controlling quantity of each wheel and to adjust the oil quantities of hydraulic suspension mechanisms 19 of the respective wheels, and thus keep the car body flat.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は加減速を伴う車両の旋回
走行(コーナリング)時、遠心力が車体に及ぼす突上げ
力を抑え、車体をフラツトに保つ車体の姿勢制御装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle body attitude control device that suppresses the uplift force exerted on the vehicle body by centrifugal force and keeps the vehicle body flat when the vehicle is cornering with acceleration or deceleration.

【0002】0002

【従来の技術】特開昭62−198511 号公報に開
示される車体の姿勢制御装置では、旋回走行時遠心力に
よる車体の姿勢変化を抑えるために、横加速度に比例し
た制御力を油圧式懸架機構へ作用させて、車体を一定の
姿勢に保持している。しかし、上述の姿勢制御装置では
、車体のロールを抑えることはできても、油圧式懸架機
構の幾何学的構造と旋回走行時のコーナリングフオース
が左右の車輪で異なることとに起因する、車体を浮上さ
せるような突上げ力(ジヤツキングアツプフオース)を
抑えることは不可能である。
[Prior Art] A vehicle body attitude control device disclosed in Japanese Patent Application Laid-open No. 198511/1983 applies a control force proportional to lateral acceleration to a hydraulic suspension in order to suppress changes in vehicle body attitude caused by centrifugal force during turning. It acts on the mechanism to hold the vehicle body in a fixed position. However, although the above-mentioned attitude control device can suppress the roll of the vehicle body, it is possible to suppress the roll of the vehicle body due to the geometric structure of the hydraulic suspension mechanism and the difference in cornering force between the left and right wheels during cornering. It is impossible to suppress the jacking up force that causes the surface to rise.

【0003】0003

【発明が解決しようとする問題点】本発明の目的は上述
の問題に鑑み、前後1対の横加速度センサの検出値に比
例した制御力を左右の車輪の油圧式懸架機構へ加え、旋
回走行時の車体の浮上りを防止する、車体の姿勢制御装
置を提供することにある。
[Problems to be Solved by the Invention] In view of the above-mentioned problems, an object of the present invention is to apply a control force proportional to the detected value of a pair of front and rear lateral acceleration sensors to the hydraulic suspension mechanism of the left and right wheels, thereby improving the turning performance. An object of the present invention is to provide a vehicle body attitude control device that prevents the vehicle body from floating during operation.

【0004】0004

【問題を解決するための手段】上記目的を達成するため
に、本発明の構成は各車輪の車高変化から車体のロール
変位量、ピツチ変位量、上下変位量を求める相対変位量
算出手段と、舵角、車速、前後加速度、車体前後部の横
加速度から前後軸のコーナリングフオースの割合を求め
る移動荷重配分算出手段と、相対変位量算出手段と前後
加速度と移動荷重配分算出手段との演算結果から車体を
フラツトに保つためのロール制御トルク、ピツチ制御ト
ルク、上下変位力を求める振動制御量算出手段と、車体
前後部の横加速度とコーナリングフオースの割合とから
車体引下げ力を求める車体引下げ力算出手段と、振動制
御量算出手段と車体引下げ力算出手段との演算結果から
油圧式懸架機構の制御油量を求める油量算出手段と、油
量算出手段の演算結果から各油圧式懸架機構の油量を加
減する油量制御弁とを備えたものである。
[Means for Solving the Problem] In order to achieve the above object, the present invention includes a relative displacement calculation means for calculating the roll displacement, pitch displacement, and vertical displacement of the vehicle body from the change in the vehicle height of each wheel. , a moving load distribution calculating means for calculating the cornering force ratio of the front and rear axes from the steering angle, vehicle speed, longitudinal acceleration, and lateral acceleration of the front and rear of the vehicle body; calculations between the relative displacement amount calculating means and the longitudinal acceleration and the moving load distribution calculating means; A vibration control amount calculation means that calculates the roll control torque, pitch control torque, and vertical displacement force to keep the car body flat from the results, and a car body pull-down method that calculates the car body pull-down force from the lateral acceleration of the front and rear of the car body and the ratio of cornering force. A force calculation means, an oil amount calculation means for calculating the control oil amount of the hydraulic suspension mechanism from the calculation results of the vibration control amount calculation means and the vehicle body pulling force calculation means, and an oil amount calculation means for calculating the control oil amount of the hydraulic suspension mechanism from the calculation results of the oil amount calculation means. It is equipped with an oil amount control valve that adjusts the amount of oil.

【0005】[0005]

【作用】本発明では車体の前後部に配設した1対の横加
速度センサの検出値からコーナリグフオースの割合を求
め、コーナリグフオースの割合から求めた車体引下げ力
を各車輪の油圧式懸架機構に加え、左右の車輪の相対的
横移動による車体の浮上を抑える。
[Operation] In the present invention, the ratio of cornering force is determined from the detected values of a pair of lateral acceleration sensors installed at the front and rear of the vehicle body, and the vehicle body pulling force determined from the ratio of cornering force is calculated using the hydraulic pressure of each wheel. In addition to the suspension mechanism, this system prevents the vehicle from floating due to relative lateral movement of the left and right wheels.

【0006】各車輪の車高変化から相対変位量算出手段
により車体と車軸との間の相対的なロール変位量、ピツ
チ変位量、上下変位量を求め、舵角、車速、車体前後部
の横加速度、前後加速度から移動荷重配分算出手段によ
りコーナリングフオースの割合(左右の車輪への荷重配
分量)を求め、振動制御量算出手段によりロール制御ト
ルク、ピツチ制御トルク、上下制御力についての振動制
御量を求め、車体前後部の横加速度とコーナリングフオ
ースの割合から車体引下げ力算出手段により車体引下げ
力を求め、振動制御量と車体引下げ力から油量算出手段
により各車輪の制御油量を求め、各車輪の分担する制御
油量に対応して油量制御弁を駆動し、各車輪の油圧式懸
架機構の油量を加減し、これにより車体をほぼフラツト
に保つ。
[0006] The relative roll displacement, pitch displacement, and vertical displacement between the vehicle body and the axle are determined by the relative displacement calculation means from the vehicle height change of each wheel, and the steering angle, vehicle speed, and lateral displacement of the front and rear of the vehicle body are calculated. The cornering force ratio (amount of load distributed to the left and right wheels) is determined from the acceleration and longitudinal acceleration using the moving load distribution calculation means, and the vibration control amount calculation means performs vibration control for roll control torque, pitch control torque, and vertical control force. From the ratio of the lateral acceleration and cornering force of the front and rear of the vehicle body, the vehicle body pulling force is determined by the vehicle body pulling force calculation means, and the control oil amount for each wheel is determined from the vibration control amount and the vehicle body pulling force by the oil amount calculation means. The oil amount control valve is driven in accordance with the amount of control oil shared by each wheel to adjust the amount of oil in the hydraulic suspension mechanism of each wheel, thereby keeping the vehicle body approximately flat.

【0007】[0007]

【発明の実施例】図1は本発明に係る車体の姿勢制御装
置のブロツク図、図2は油圧式懸架機構の油圧回路図で
ある。図2に示すように、機関により駆動される油圧ポ
ンプ4は、油槽2から油を吸い込み、管5から逆止弁6
を経て管7の蓄圧器8へ供給する。管7への油圧を所定
値に保つために、油圧監視手段Aが備えられる。つまり
、管5の油圧を検出する油圧センサ9の検出値が所定値
を超えると、圧力制御弁12が切り換わり、管5の圧油
の一部が管10、圧力制御弁12、管13、フイルタ2
7を経て油槽2へ戻される。また、油圧ポンプ4の吐出
口の油圧が異常に高くなると、管5の圧油の一部が公知
の逃し弁26、フイルタ27を経て油槽2へ戻される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of a vehicle attitude control system according to the present invention, and FIG. 2 is a hydraulic circuit diagram of a hydraulic suspension mechanism. As shown in FIG. 2, a hydraulic pump 4 driven by an engine sucks oil from an oil tank 2 and a check valve 6 from a pipe 5.
It is supplied to the pressure accumulator 8 of the pipe 7 through the . In order to maintain the oil pressure to the pipe 7 at a predetermined value, oil pressure monitoring means A is provided. In other words, when the detected value of the oil pressure sensor 9 that detects the oil pressure in the pipe 5 exceeds a predetermined value, the pressure control valve 12 is switched, and a part of the pressure oil in the pipe 5 is transferred to the pipe 10, the pressure control valve 12, the pipe 13, Filter 2
7 and then returned to the oil tank 2. Further, when the oil pressure at the discharge port of the hydraulic pump 4 becomes abnormally high, a part of the pressure oil in the pipe 5 is returned to the oil tank 2 through a well-known relief valve 26 and a filter 27.

【0008】管7の圧油は左右の前輪と左右の後輪(図
2には左後輪だけを代表して示す)25の各油圧式懸架
機構19へそれぞれ供給される。油圧式懸架機構19は
シリンダ23にピストン22を嵌装し、ピストン22か
ら上方へ突出するロツド24を車体20に結合する一方
、シリンダ23から下方へ突出するロツドを車輪25の
ナツクルに連結してなる。シリンダ23の壁部と車体2
0との間にばね21が介装される。車体20とナツクル
との間に、車体20と車輪25との上下変位量を検出す
る車高センサ28が配設される。なお、左右の前輪、左
右の後輪の各懸架機構19を特定する場合は、FL,F
R,RL,RR の添字を付けることにする。
The pressure oil in the pipe 7 is supplied to each hydraulic suspension mechanism 19 of the left and right front wheels and the left and right rear wheels (only the left rear wheel is shown as a representative in FIG. 2) 25. The hydraulic suspension mechanism 19 has a piston 22 fitted into a cylinder 23, a rod 24 projecting upward from the piston 22 is connected to the vehicle body 20, and a rod projecting downward from the cylinder 23 is connected to a knuckle of a wheel 25. Become. The wall of the cylinder 23 and the car body 2
A spring 21 is interposed between the 0 and 0. A vehicle height sensor 28 that detects the amount of vertical displacement between the vehicle body 20 and the wheels 25 is disposed between the vehicle body 20 and the knuckle. In addition, when specifying each suspension mechanism 19 of the left and right front wheels and the left and right rear wheels, FL, F
Let's add subscripts R, RL, and RR.

【0009】管7の圧油は逆止弁14、一般的な中立位
置閉鎖型の電磁比例圧力制御弁からなる油量制御弁16
、絞り18aを経て蓄圧器18へ供給され、さらに油圧
式懸架機構19のロツド24とピストン22の内部通路
を経てシリンダ23の下端室へ供給される。シリンダ2
3の下端室へ供給される油圧は、油圧センサ17により
検出される。油量制御弁16が切り換わると、シリンダ
23の下端室の油は油量制御弁16、逆止弁15、管1
3、フイルタ27を経て油槽2へ戻される。
The pressure oil in the pipe 7 is controlled by a check valve 14 and an oil amount control valve 16 which is a typical neutral position closing type electromagnetic proportional pressure control valve.
, through the throttle 18a, to the pressure accumulator 18, and further through the rod 24 of the hydraulic suspension mechanism 19 and the internal passage of the piston 22 to the lower end chamber of the cylinder 23. cylinder 2
The oil pressure supplied to the lower end chamber 3 is detected by the oil pressure sensor 17. When the oil amount control valve 16 is switched, the oil in the lower end chamber of the cylinder 23 is transferred to the oil amount control valve 16, the check valve 15, and the pipe 1.
3. The oil is returned to the oil tank 2 through the filter 27.

【0010】前後・左右の車輪を支持する各油圧式懸架
機構19は独立に、逆止弁14,15、油量制御弁16
、絞り18a、蓄圧器18、油圧センサ17、車高セン
サ28を備えている。
Each hydraulic suspension mechanism 19 that supports the front and rear, left and right wheels independently has check valves 14, 15 and an oil amount control valve 16.
, a throttle 18a, a pressure accumulator 18, an oil pressure sensor 17, and a vehicle height sensor 28.

【0011】車体(ばね上)のロール量(角度)、車体
のピツチ量(角度)、車体重心の上下位置をそれぞれφ
2 ,θ2 ,x2 とし、車軸(ばね下)のロール量
、車軸のピツチ量、車軸(左右中心)の上下位置をそれ
ぞれφ1 ,θ1 ,x1 とすると、車体と車軸との
間の相対的なロール変位量Δφ、ピツチ変位量Δθ、車
軸の上下変位量Δxは、次式で表される。
[0011] The roll amount (angle) of the vehicle body (sprung mass), the pitch amount (angle) of the vehicle body, and the vertical position of the vehicle center of gravity are each expressed as φ.
2, θ2, x2, and the roll amount of the axle (unsprung), the pitch amount of the axle, and the vertical position of the axle (left and right center) are respectively φ1, θ1, x1, then the relative roll between the vehicle body and the axle is The displacement amount Δφ, the pitch displacement amount Δθ, and the vertical displacement amount Δx of the axle are expressed by the following equations.

【0012】φ2 =φ1 +Δφ θ2 =θ1 +Δθ x2 =x1 +Δx 停車中の平均的な車高をh、各車輪の車高センサ28の
検出値をhFL,hFR,hRL,hRR、各車輪の車
高変化がロール変位量Δφ、ピツチ変位量Δθに及ぼす
影響度を表す係数をk11,k12,k21,k22と
すると、ロール変位量Δφ、ピツチ変位量Δθ、車軸の
上下変位量Δxは、式1になる。
[0012] φ2 = φ1 +Δφ θ2 = θ1 +Δθ x2 = x1 +Δx The average vehicle height while stopped is h, the detected values of the vehicle height sensor 28 of each wheel are hFL, hFR, hRL, hRR, and the vehicle height of each wheel. Let k11, k12, k21, k22 be the coefficients representing the degree of influence of changes on the roll displacement amount Δφ and the pitch displacement amount Δθ, then the roll displacement amount Δφ, the pitch displacement amount Δθ, and the vertical displacement amount Δx of the axle can be calculated using Equation 1. Become.

【0013】     Δφ=kφ{k11(hFL−hFR)+k1
2(hRL−hRR)}    Δθ=kθ{k21(
hFL+hFR)−k22(hRL+hRR)}   
 Δx=kx(hFL+hFR+hRL+hRR−4h
)            ……(式1)ただし、kφ
,kθ,kxはゲインである。各係数k11,k12,
k21,k22は前後軸の荷重負担、ばね21のばね定
数などを勘案して実験的に求める。
Δφ=kφ{k11(hFL−hFR)+k1
2(hRL-hRR)} Δθ=kθ{k21(
hFL+hFR)-k22(hRL+hRR)}
Δx=kx(hFL+hFR+hRL+hRR−4h
)...(Formula 1) However, kφ
, kθ, kx are gains. Each coefficient k11, k12,
k21 and k22 are determined experimentally by taking into account the load on the front and rear axes, the spring constant of the spring 21, and the like.

【0014】一般に、路面入力に対し車体をフラツトに
保つ条件は、極低周波入力に対しては、Δφ→0   
   Δφ/φ1 →0Δθ→0      Δθ/θ
1 →0Δx→0      Δx/x1 →0高周波
入力に対しては、 Δφ→−φ1       Δφ/φ1 →−1Δθ→
−θ1       Δθ/θ1 →−1Δx→−x1
       Δx/x1 →−1と考えられる。
Generally, the condition for keeping the vehicle body flat against road surface input is Δφ→0 for extremely low frequency input.
Δφ/φ1 →0Δθ→0 Δθ/θ
1 →0Δx→0 Δx/x1 →0For high frequency input, Δφ→−φ1 Δφ/φ1 →−1Δθ→
-θ1 Δθ/θ1 →-1Δx→-x1
It is considered that Δx/x1 →-1.

【0015】そこで、路面入力に対し車体をフラツトに
保つための振動制御量、すなわちロール制御トルクF1
2、ピツチ制御トルクF22、上下制御力F32は、
[0015] Therefore, the amount of vibration control to keep the vehicle body flat against road surface input, that is, the roll control torque F1
2. Pitch control torque F22 and vertical control force F32 are:


0016】
[
0016

【式2】 ただし、k1 〜k6 は定数で与えられると仮定する
と、次の運動方程式が成り立つ。
[Equation 2] However, assuming that k1 to k6 are given as constants, the following equation of motion holds true.

【0017】[0017]

【式2a】 ただし、 IX :車体ロールに対する慣性モーメントIY :車
体ピツチに対する慣性モーメントm2 :車体質量 上の方程式を変形し、ラプラス変換し、ラプラス演算子
をsで表すと、式3になる。
[Equation 2a] Where, IX: Moment of inertia relative to vehicle body roll IY: Moment of inertia relative to vehicle body pitch m2: Transforming the equation on vehicle body mass, performing Laplace transform, and expressing the Laplace operator by s, formula 3 is obtained.

【0018】[0018]

【式3】 ここで、極低周波の入力に対する応答は上の伝達関数に
おいてs→0とした場合に相当し、高周波の入力にに対
する応答は上の伝達関数においてs→∞とした場合に相
当するから、 s→0の時  Δφ/φ1 →−1+1→0Δθ/θ1
 →−1+1→0 Δx/x1 →−1+1→0 s→∞の時  Δφ/φ1 →−1+0→−1Δθ/θ
1 →−1+0→−1 Δx/x1 →−1+0→−1 となり、車体がフラツトとなる条件を満していることが
分る。
[Formula 3] Here, the response to an extremely low frequency input corresponds to the case where s→0 in the above transfer function, and the response to a high frequency input corresponds to the case when s→∞ in the above transfer function. Therefore, when s→0, Δφ/φ1 →−1+1→0Δθ/θ1
→-1+1→0 Δx/x1 →-1+1→0 When s→∞ Δφ/φ1 →-1+0→-1Δθ/θ
1→-1+0→-1 Δx/x1→-1+0→-1, and it can be seen that the conditions for the vehicle body to be flat are satisfied.

【0019】しかし、式2のみにより制御を行う場合は
、定数k1 〜k6 の値をある程度大きくしないと、
車両停止時の姿勢をフラツトに維持できなくなる恐れが
ある。また、定数k1 〜k6 の値が大きすぎると、
低周波入力での乗り心地に悪影響を及ぼす恐れがある。
However, when controlling only using equation 2, the values of the constants k1 to k6 must be increased to a certain extent.
There is a risk that the vehicle will not be able to maintain a flat posture when stopped. Also, if the values of the constants k1 to k6 are too large,
This may adversely affect the ride comfort at low frequency input.

【0020】そこで、式4で表すように、積分項を追加
することにより、定常偏差を取り除く。つまり、
[0020] Therefore, by adding an integral term as expressed in equation 4, the steady-state deviation is removed. In other words,

【00
21】
00
21]

【式4】 ただし、k7 〜k9 は定数 上述のフイードバツク制御を行えば、車速一定の直進走
行での路面入力に対して車体をフラツトに保つことがで
きる。
[Equation 4] However, k7 to k9 are constants. By performing the above-mentioned feedback control, the vehicle body can be kept flat against road surface input when the vehicle is traveling straight at a constant speed.

【0022】しかし、旋回走行時の横加速度と加減速時
の前後加速度に対しては応答が間に合わず、車体に姿勢
変化が生じる。そこで、次のような横加速度、前後加速
度に対応した比例制御を付加する。車両が凹凸のない平
坦な路面を走行していると仮定すると、車体のロールと
ピツチについて、次の運動方程式が成り立つ。
However, the response to the lateral acceleration during turning and the longitudinal acceleration during acceleration and deceleration is not enough, resulting in a change in attitude of the vehicle body. Therefore, the following proportional control corresponding to lateral acceleration and longitudinal acceleration is added. Assuming that the vehicle is traveling on a flat road surface with no unevenness, the following equation of motion holds true regarding the roll and pitch of the vehicle body.

【0023】[0023]

【式5】 ただし、hR :車体重心とロール中心の高低差hP 
:車体重心とピツチ中心の高低差F11:ロール制御ト
ルク F21:ピツチ制御トルク kS1:ばね21のロール剛性係数 kS2:ばね21のピツチ剛性係数 GYS:横加速度センサの検出値 GXS:前後加速度センサの検出値 式5において、右辺の第1項は車体重心に作用する横加
速度(前後加速度)が車体をロール(ピツチ)させるモ
ーメント、第2項は車体のロール(ピツチ)に伴う車体
重心に作用する重力加速度が車体をロール(ピツチ)さ
せるモーメント(m2 gとhRsinφの積、m2 
gとhPsinθの積)である。
[Formula 5] Where, hR: Height difference hP between vehicle center of gravity and roll center
: Height difference between vehicle center of gravity and pitch center F11: Roll control torque F21: Pitch control torque kS1: Roll stiffness coefficient of spring 21 kS2: Pitch stiffness coefficient of spring 21 GYS: Detection value of lateral acceleration sensor GXS: Detection of longitudinal acceleration sensor In Equation 5, the first term on the right side is the moment when the lateral acceleration (longitudinal acceleration) acting on the vehicle's center of gravity causes the vehicle to roll (pitch), and the second term is the gravitational force acting on the vehicle's center of gravity as the vehicle rolls (pitch). The moment when acceleration causes the vehicle body to roll (pitch) (m2 product of g and hRsinφ, m2
g and hPsinθ).

【0024】したがつて、車体のロール、ピツチをそれ
ぞれ0とするためのロール制御トルクF11、ピツチ制
御トルクF21は、次式で表される。
Therefore, the roll control torque F11 and the pitch control torque F21 for setting the roll and pitch of the vehicle body to zero are expressed by the following equations.

【0025】     −F11=m2 ・hR ・GYS+m2 ・
g・hR ・φ−kS1・φ    −F21=m2 
・hP ・GXS+m2 ・g・hP ・θ−kS2・
θ凹凸のない平坦な路面では路面入力はないから、タイ
ヤの上下方向の撓みを無視し、φ=Δφ,θ=Δθとお
くと、ロール制御トルクF11、ピツチ制御トルクF2
1は、次式で表される。
-F11=m2 ・hR ・GYS+m2 ・
g・hR・φ−kS1・φ−F21=m2
・hP ・GXS+m2 ・g・hP ・θ−kS2・
θ Since there is no road surface input on a flat road surface with no unevenness, ignoring the vertical deflection of the tire and setting φ = Δφ and θ = Δθ, the roll control torque F11 and the pitch control torque F2
1 is expressed by the following formula.

【0026】     −F11=m2 ・hR ・GYS+m2 ・
g・hR ・Δφ−kS1・Δφ    −F21=m
2 ・hP ・GXS+m2 ・g・hP ・Δθ−k
S2・Δθ    −F11=k13・GYS+k14
・Δφ−kS1・Δφ    −F21=k23・GX
S+k24・Δθ−kS2・Δθ          
  ……(式6)  ただし、k13,k14,k23
,k24は定数したがつて、ロール制御トルクF11を
後述のように前後軸に配分すれば良好なステア特性が得
られる。
-F11=m2 ・hR ・GYS+m2 ・
g・hR・Δφ−kS1・Δφ−F21=m
2 ・hP ・GXS+m2 ・g・hP ・Δθ−k
S2・Δθ −F11=k13・GYS+k14
・Δφ−kS1・Δφ −F21=k23・GX
S+k24・Δθ−kS2・Δθ
...(Formula 6) However, k13, k14, k23
, k24 are constants. Therefore, good steering characteristics can be obtained by distributing the roll control torque F11 to the front and rear axes as described later.

【0027】車両が車速一定の旋回走行中で、舵角が小
さいと仮定すると、ヨー角速度r、前輪コーナリングフ
オースCF 、後輪コーナリングフオースCR は、次
のようになる。
Assuming that the vehicle is turning at a constant speed and the steering angle is small, the yaw angular velocity r, front wheel cornering force CF, and rear wheel cornering force CR are as follows.

【0028】β=(GY /V−r)/sCF =−k
F (β+lF ・r/V−δ)CR =−kR (β
−lR ・r/V)ただし、  V:車速 β:車体の横すべり角 GY :旋回による横加速度 kF :前輪コーナリングパワー kR :後輪コーナリングパワー lF :前軸・車体重心間距離 lR :後軸・車体重心間距離 δ:実舵角 が成り立つ。ここで、     GY =GYS=(b・GYSF  −a・G
YSR  )/(a+b)r={(YSF  −GYS
R  )/(a+b)}sただし、GYSF  :前部
横加速度センサの検出値GYSR  :後部横加速度セ
ンサの検出値a:車体重心・前部横加速度センサ間の距
離b:車体重心・後部横加速度センサ間の距離(図3を
参照) により求めることができる。
β=(GY/V-r)/sCF=-k
F (β+lF ・r/V−δ)CR =−kR (β
-lR ・r/V) However, V: Vehicle speed β: Side slip angle of the vehicle body GY: Lateral acceleration due to turning kF: Front wheel cornering power kR: Rear wheel cornering power lF: Distance between front axle and vehicle center of gravity lR: Rear axle and vehicle body Distance between centers of gravity δ: actual steering angle. Here, GY = GYS = (b・GYSF −a・G
YSR )/(a+b)r={(YSF −GYS
R)/(a+b)}s However, GYSF: Detection value of the front lateral acceleration sensor GYSR: Detection value of the rear lateral acceleration sensor a: Vehicle center of gravity/distance between front lateral acceleration sensors b: Vehicle center of gravity/rear lateral acceleration It can be determined by the distance between the sensors (see Figure 3).

【0029】全体のコーナリングフオースに対する前・
後軸のコーナリングフオースの割合kCF,kCRは、
次式のようになる。
[0029] Before and after the overall cornering force
The cornering force ratios kCF and kCR of the rear axle are:
It becomes as follows.

【0030】kCF=CF /(CF +CR )kC
R=CR /(CF +CR ) したがつて、車体のロールを0とするためのロール制御
トルクF11を、前軸のロール制御トルクF11F と
後軸のロール制御トルクF11R に配分すると、次式
のようになる。
kCF=CF/(CF+CR)kC
R=CR/(CF +CR) Therefore, if the roll control torque F11 for zeroing the roll of the vehicle body is distributed to the front axle roll control torque F11F and the rear axle roll control torque F11R, the following equation is obtained. become.

【0031】F11F =kV6・kCR・F11  
  F11R =kV7・kCF・F11      
                        …
…(式7)ただし、kV6,kV7は調整ゲイン 以上により、ロール制御トルクF11F  ,F11R
  はコーナ進入時には、F11F  <F11R  
となり、後軸の移動荷重が前軸の移動荷重よりも大きく
なり、オーバステア気味となり、コーナ離脱時には、反
対の特性となり、アンダステア気味となる。
[0031]F11F =kV6・kCR・F11
F11R = kV7・kCF・F11

...(Formula 7) However, kV6 and kV7 are roll control torques F11F and F11R due to the adjustment gain or higher.
When entering a corner, F11F < F11R
As a result, the moving load on the rear axle becomes larger than the moving load on the front axle, resulting in a tendency to oversteer, and when exiting a corner, the opposite characteristics occur, resulting in a tendency to understeer.

【0032】車両の旋回走行中に速度変化が生じた時の
車体のピツチを抑えるために、ピツチ制御トルクF21
を前後軸の車輪に適当に配分する。
In order to suppress the pitch of the vehicle body when a speed change occurs while the vehicle is turning, the pitch control torque F21 is
is distributed appropriately to the front and rear axle wheels.

【0033】     F21F =kV8F21     F21R =kV9F21         
                         
    ……(式8)  ただし、kV8,kV9は調
整ゲイン、車両の旋回走行時、遠心力により左右の車輪
の荷重(上下方向の荷重)に差が生じる。図4に示すよ
うに、旋回外側の車輪のコーナリングフオースが旋回内
側の車輪のコーナリングフオースよりも大きくなり、こ
の結果油圧式懸架機構の幾何学的リンク構成から、左右
の車輪の間隔が狭められ、車体を浮上させる突上げ力が
発生する。 左右の車輪の荷重の差は遠心力に比例し、遠心力は車両
の横加速度に比例するので、突上げ力は車両の横加速度
に比例する。車両の旋回走行時、遠心力が車体に及ぼす
突上げ力をキヤンセルするために、車体引下げ力算出手
段により車体引下げ力F31F ,F31R を求めて
油圧式懸架機構19へ加える。
F21F = kV8F21 F21R = kV9F21

...(Equation 8) However, kV8 and kV9 are adjustment gains, and when the vehicle is turning, a difference occurs in the loads on the left and right wheels (loads in the vertical direction) due to centrifugal force. As shown in Figure 4, the cornering force of the wheel on the outside of the turn is larger than the cornering force of the wheel on the inside of the turn, and as a result, due to the geometrical linkage configuration of the hydraulic suspension mechanism, the distance between the left and right wheels becomes narrower. This generates an upward force that lifts the vehicle body. The difference in load between the left and right wheels is proportional to the centrifugal force, and the centrifugal force is proportional to the lateral acceleration of the vehicle, so the thrust force is proportional to the lateral acceleration of the vehicle. When the vehicle is turning, the vehicle body pulling forces F31F and F31R are determined and applied to the hydraulic suspension mechanism 19 by the vehicle body pulling force calculating means in order to cancel the uplifting force exerted on the vehicle body by the centrifugal force.

【0034】F31F =−kV10 ・FYSRF3
1R =−kV11 ・FYSF または、 F31F =−kV10 ・CR F31R =−kV11 ・CF ただし、kV10 ,kV11 は調整ゲイン以上の結
果から各車輪へ加えるべき制御量(油圧式懸架機構の制
御油量)VFL,VFR,VRL,VRRは、次式で表
される。
[0034]F31F=-kV10・FYSRF3
1R = -kV11 ・FYSF or F31F = -kV10 ・CR F31R = -kV11 ・CF However, kV10 and kV11 are the control amount (control oil amount of the hydraulic suspension mechanism) that should be applied to each wheel from the result of the adjustment gain or more VFL , VFR, VRL, and VRR are expressed by the following equations.

【0035】     VFL=−kV1・F12−kV2・F22+
kV5・F32+F11F −F21F +F31F 
   VFR=+kV1・F12−kV2・F22+k
V5・F32+F11F −F21F +F31F  
   VRL=−kV3・F12+kV4・F22+k
V5・F32+F11R +F21R +F31R  
   VRR=+kV3・F12+kV4・F22+k
V5・F32+F11R +F21R +F31R  
                         
                         
     ……(式10)  ただし、kV1〜kV5
は定数 本発明は上述の原理により、図1に示すように、各車輪
の車高センサ28の検出値から相対変位量算出手段35
により車体と車軸との間の相対的なロール変位量、ピツ
チ変位量、上下変位量を求め、舵角センサ30、車速セ
ンサ31、横加速度センサ32a,32bの各検出値か
ら移動荷重配分算出手段33により前後軸のコーナリン
グフオースの割合を求め、ロール変位量、ピツチ変位量
、上下変位量、前後加速度センサ29、横加速度センサ
32a,32bの各検出値、前後軸のコーナリングフオ
ースの割合から振動制御量算出手段39によりロール制
御トルク、ピツチ制御トルク、上下制御力を求め、横加
速度センサ32a,32bの検出値とコーナリングフオ
ースの割合から車体引下げ力算出手段38により車体引
下げ力を求め、以上の結果に基づき各車輪の分担する制
御油量を求め、各車輪の制御油量に対応して油量制御弁
16を駆動し、各車輪の油圧式懸架機構19の油量を加
減し、これにより旋回走行時遠心力が車体に及ぼす突上
げ力を抑え、車体をほぼフラツトに保つものである。
[0035] VFL=-kV1・F12−kV2・F22+
kV5・F32+F11F -F21F +F31F
VFR=+kV1・F12−kV2・F22+k
V5・F32+F11F -F21F +F31F
VRL=-kV3・F12+kV4・F22+k
V5・F32+F11R +F21R +F31R
VRR=+kV3・F12+kV4・F22+k
V5・F32+F11R +F21R +F31R


...(Formula 10) However, kV1 to kV5
is a constant Based on the above-mentioned principle, the present invention calculates the relative displacement amount calculation means 35 from the detected value of the vehicle height sensor 28 of each wheel, as shown in FIG.
The relative roll displacement amount, pitch displacement amount, and vertical displacement amount between the vehicle body and the axle are determined by the following steps, and the moving load distribution calculation means uses the detection values of the steering angle sensor 30, vehicle speed sensor 31, and lateral acceleration sensors 32a and 32b. 33, calculate the cornering force ratio of the front and rear axes, and use the roll displacement amount, pitch displacement amount, vertical displacement amount, each detected value of the longitudinal acceleration sensor 29, lateral acceleration sensor 32a, 32b, and the ratio of the cornering force of the front and rear axes. The vibration control amount calculation means 39 calculates the roll control torque, the pitch control torque, and the vertical control force, and the car body pulling force calculation means 38 calculates the car body pulling force from the detection values of the lateral acceleration sensors 32a and 32b and the ratio of the cornering force. Based on the above results, determine the amount of control oil shared by each wheel, drive the oil amount control valve 16 in accordance with the amount of control oil for each wheel, adjust the amount of oil in the hydraulic suspension mechanism 19 of each wheel, This suppresses the uplifting force exerted on the vehicle body by centrifugal force during turning, and keeps the vehicle body substantially flat.

【0036】図5はマイクロコンピユ―タからなる電子
制御装置により、上述の制御を行う制御プログラムの流
れ図である。この制御プログラムは所定時間ごとに繰り
返し実行する。p11〜p21は制御プログラムのステ
ツプを表す。p11で制御プログラムを開始し、p12
で初期化を行い、p13で割込プログラムに移り、油圧
監視手段Aにより油圧ポンプ4の出力油圧pm を読み
込み、出力油圧pm が所定値pc よりも大きい場合
は、圧力制御弁12を開いて圧力を下げ、出力油圧pm
 が所定値pc よりも小さい場合は、圧力制御弁12
を閉じて出力油圧pm を上げ、これにより所定値に保
ち、本プログラムへ戻る。
FIG. 5 is a flowchart of a control program that performs the above-mentioned control by an electronic control device consisting of a microcomputer. This control program is repeatedly executed at predetermined time intervals. p11 to p21 represent steps of the control program. Start the control program on p11, and p12
Initializes the program in p13, moves to the interrupt program in p13, reads the output oil pressure pm of the hydraulic pump 4 using the oil pressure monitoring means A, and if the output oil pressure pm is larger than the predetermined value pc, opens the pressure control valve 12 to control the pressure. lower the output oil pressure pm
is smaller than the predetermined value pc, the pressure control valve 12
Close and increase the output oil pressure pm, thereby keeping it at a predetermined value, and return to this program.

【0037】p14で各車輪の荷重を油圧センサ17か
ら、各車輪の車高を車高センサ28から、前後加速度を
前後加速度センサ29から、横加速度を前後1対の横加
速度センサ32a,32bから、車速を車速センサ31
から、舵角を舵角センサ30からそれぞれ読み込み、p
15で相対変位量算出手段35により車体重心と車軸中
心との相対的なロール変位量Δφ、ピツチ変位量Δθ、
上下変位量Δxを求める。
At p14, the load of each wheel is determined from the oil pressure sensor 17, the vehicle height of each wheel is determined from the vehicle height sensor 28, the longitudinal acceleration is obtained from the longitudinal acceleration sensor 29, and the lateral acceleration is obtained from the pair of lateral acceleration sensors 32a and 32b. , the vehicle speed is detected by the vehicle speed sensor 31
, the rudder angles are read from the rudder angle sensor 30, and p
In step 15, the relative displacement amount calculating means 35 calculates the relative roll displacement amount Δφ, pitch displacement amount Δθ,
Find the amount of vertical displacement Δx.

【0038】p16で車速、舵角、車体前後部の横加速
度、前後加速度から移動荷重配分算出手段33により全
体のコーナリングフオースに対する前後軸のコーナリン
グフオースの割合kCF,kCRを求める。
At p16, the moving load distribution calculation means 33 calculates the ratios kCF and kCR of the cornering force of the front and rear axes to the entire cornering force from the vehicle speed, steering angle, lateral acceleration of the front and rear of the vehicle body, and longitudinal acceleration.

【0039】p17でロール変位量Δφ、ピツチ変位量
Δθ、上下変位量Δx、横加速度、コーナリングフオー
スの割合kCF,kCRから振動制御量算出手段39に
より、車体をフラツトに保つためのロール制御トルクF
11F ,F11R ,F12、ピツチ制御トルクF2
1F ,F21R ,F22、上下制御力F32を求め
る。
At p17, the vibration control amount calculation means 39 calculates the roll control torque for keeping the vehicle body flat from the roll displacement amount Δφ, pitch displacement amount Δθ, vertical displacement amount Δx, lateral acceleration, and cornering force ratios kCF and kCR. F
11F, F11R, F12, pitch control torque F2
1F, F21R, F22, and vertical control force F32 are determined.

【0040】p18で車体引下げ力算出手段38により
車体引下げ力F31F ,F31R を求め、p19で
油量算出手段40により、各車輪の油圧式懸架機構19
の制御油量VFL,VFR,VRL,VRRを求める。 p20で制御油量VFL,VFR,VRL,VRRに基
づき各油量制御弁16を駆動し、各油圧式懸架機構19
の油量を加減し、p21で終了する。
In p18, the vehicle body pulling force calculation means 38 calculates the vehicle body pulling forces F31F, F31R, and in p19, the oil amount calculation means 40 determines the hydraulic suspension mechanism 19 of each wheel.
Find the control oil amounts VFL, VFR, VRL, and VRR. At p20, each oil amount control valve 16 is driven based on the control oil amount VFL, VFR, VRL, VRR, and each hydraulic suspension mechanism 19 is activated.
Adjust the oil amount and finish at p21.

【0041】図6に示すように、実際には、各車輪の油
圧式懸架機構19(図6には左前輪の場合を示す)へ加
えられる油量信号は、制御油量に対応する直流電圧また
はデユーテイ比のパルス電圧として各油量制御弁16の
電磁コイルへ加えられ、車高を加減する。この時各車輪
の油圧式懸架機構19へ加えられる油圧pは油圧センサ
17により検出され、電圧として油量制御弁16の電磁
コイルへフイードバツクされる。図6において、kVL
1 〜kVL3 はゲイン、kS は油圧センサ17の
ゲイン、GVLは油量制御弁16の伝達関数、GACT
 は油圧式懸架機構の伝達関数である。
As shown in FIG. 6, in reality, the oil amount signal applied to the hydraulic suspension mechanism 19 of each wheel (FIG. 6 shows the case of the left front wheel) is a DC voltage corresponding to the controlled oil amount. Alternatively, it is applied as a duty ratio pulse voltage to the electromagnetic coil of each oil amount control valve 16 to adjust the vehicle height. At this time, the oil pressure p applied to the hydraulic suspension mechanism 19 of each wheel is detected by the oil pressure sensor 17, and is fed back to the electromagnetic coil of the oil amount control valve 16 as a voltage. In Figure 6, kVL
1 to kVL3 is the gain, kS is the gain of the oil pressure sensor 17, GVL is the transfer function of the oil amount control valve 16, and GACT
is the transfer function of the hydraulic suspension mechanism.

【0042】[0042]

【発明の効果】本発明は上述のように、各車輪の車高変
化から車体のロール変位量、ピツチ変位量、上下変位量
を求める相対変位量算出手段と、舵角、車速、前後加速
度、車体前後部の横加速度から前後軸のコーナリングフ
オースの割合を求める移動荷重配分算出手段と、相対変
位量算出手段と前後加速度と移動荷重配分算出手段との
演算結果から車体をフラツトに保つためのロール制御ト
ルク、ピツチ制御トルク、上下変位力を求める振動制御
量算出手段と、車体前後部の横加速度とコーナリングフ
オースの割合から車体引下げ力を求める車体引下げ力算
出手段と、振動制御量算出手段と車体引下げ力算出手段
との演算結果から油圧式懸架機構の制御油量を求める油
量算出手段と、油量算出手段の演算結果から各油圧式懸
架機構の油量を加減する油量制御弁とを備えたものであ
るから、車体姿勢を精度よく検出して、車体を常にほぼ
フラツトに保つことができ、乗り心地と操縦安定性を向
上させる。
Effects of the Invention As described above, the present invention includes a relative displacement calculation means for calculating roll displacement, pitch displacement, and vertical displacement of the vehicle body from changes in the vehicle height of each wheel, and a means for calculating the amount of roll displacement, pitch displacement, and vertical displacement of the vehicle body from changes in the vehicle height of each wheel; A moving load distribution calculation means that calculates the cornering force ratio of the front and rear axes from the lateral acceleration of the front and rear of the vehicle body, a relative displacement amount calculation means, a longitudinal acceleration, and a moving load distribution calculation means that calculates the ratio of cornering force to the front and rear of the vehicle body. Vibration control amount calculation means for calculating roll control torque, pitch control torque, and vertical displacement force, Vehicle body pulling force calculation means for calculating vehicle body pulling force from the ratio of lateral acceleration and cornering force of the front and rear of the vehicle body, and Vibration control amount calculation means an oil amount calculation means for calculating the control oil amount of the hydraulic suspension mechanism from the calculation results of the vehicle body pulling force calculation means; and an oil amount control valve that adjusts the oil amount of each hydraulic suspension mechanism from the calculation results of the oil amount calculation means. Because it is equipped with this feature, it is possible to accurately detect the vehicle body posture and keep the vehicle body almost flat at all times, improving ride comfort and handling stability.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係る車体の姿勢制御装置のブロツク図
である。
FIG. 1 is a block diagram of a vehicle body attitude control device according to the present invention.

【図2】油圧式懸架機構の油圧回路図である。FIG. 2 is a hydraulic circuit diagram of the hydraulic suspension mechanism.

【図3】車体に対する横加速度センサの配置を示す平面
図である。
FIG. 3 is a plan view showing the arrangement of lateral acceleration sensors with respect to the vehicle body.

【図4】車両の旋回走行時車体に作用する突上げ力を表
す背面図である。
FIG. 4 is a rear view showing the thrust force acting on the vehicle body when the vehicle is turning.

【図5】姿勢制御装置の制御プログラムの流れ図である
FIG. 5 is a flowchart of a control program of the attitude control device.

【図6】各車輪の油圧式懸架機構に備えられるフイード
バツク制御機構のブロツク線図である。
FIG. 6 is a block diagram of a feedback control mechanism provided in the hydraulic suspension mechanism of each wheel.

【符号の説明】[Explanation of symbols]

16:油量制御弁 19:油圧式懸架機構 28:車高センサ 29:前後加速度センサ 30:舵角センサ 31:車速センサ 32a,32b:横加速度センサ 33:移動荷重配分算出手段 34:前後加速度補正手段 35:相対変位量算出手段 38:車体引下げ力算出手段 39:振動制御量算出手段 40:油量算出手段 16: Oil amount control valve 19: Hydraulic suspension mechanism 28: Vehicle height sensor 29: Longitudinal acceleration sensor 30: Rudder angle sensor 31: Vehicle speed sensor 32a, 32b: Lateral acceleration sensor 33: Moving load distribution calculation means 34: Longitudinal acceleration correction means 35: Relative displacement calculation means 38: Vehicle body pulling force calculation means 39: Vibration control amount calculation means 40: Oil amount calculation means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】各車輪の車高変化から車体のロール変位量
、ピツチ変位量、上下変位量を求める相対変位量算出手
段と、舵角、車速、前後加速度、車体前後部の横加速度
から前後軸のコーナリングフオースの割合を求める移動
荷重配分算出手段と、相対変位量算出手段と前後加速度
と移動荷重配分算出手段との演算結果から車体をフラツ
トに保つためのロール制御トルク、ピツチ制御トルク、
上下変位力を求める振動制御量算出手段と、車体前後部
の横加速度とコーナリングフオースの割合とから車体引
下げ力を求める車体引下げ力算出手段と、振動制御量算
出手段と車体引下げ力算出手段との演算結果から油圧式
懸架機構の制御油量を求める油量算出手段と、油量算出
手段の演算結果から各油圧式懸架機構の油量を加減する
油量制御弁とを備える車体の姿勢制御装置。
1. Relative displacement calculation means for calculating the roll displacement, pitch displacement, and vertical displacement of the vehicle body from changes in the vehicle height of each wheel; Roll control torque, pitch control torque, and pitch control torque for keeping the vehicle body flat are calculated from the calculation results of the moving load distribution calculating means for calculating the cornering force ratio of the shaft, the relative displacement amount calculating means, the longitudinal acceleration, and the moving load distribution calculating means.
Vibration control amount calculation means for calculating vertical displacement force; Vehicle body pulling force calculation means for calculating vehicle body pulling force from the ratio of lateral acceleration and cornering force of the front and rear of the vehicle body; Vibration control amount calculation means and Vehicle body pulling force calculation means. An attitude control system for a vehicle body, comprising: an oil amount calculation means for determining the amount of control oil for each hydraulic suspension mechanism from the calculation result of the oil amount calculation means; and an oil amount control valve that adjusts the oil amount for each hydraulic suspension mechanism from the calculation result of the oil amount calculation means. Device.
JP41587690A 1990-12-28 1990-12-28 Body attitude control device Expired - Lifetime JP2956221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41587690A JP2956221B2 (en) 1990-12-28 1990-12-28 Body attitude control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41587690A JP2956221B2 (en) 1990-12-28 1990-12-28 Body attitude control device

Publications (2)

Publication Number Publication Date
JPH04297314A true JPH04297314A (en) 1992-10-21
JP2956221B2 JP2956221B2 (en) 1999-10-04

Family

ID=18524151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41587690A Expired - Lifetime JP2956221B2 (en) 1990-12-28 1990-12-28 Body attitude control device

Country Status (1)

Country Link
JP (1) JP2956221B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0684150A1 (en) * 1994-05-24 1995-11-29 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno System for determining the stability of a vehicle
CN113184054A (en) * 2021-05-20 2021-07-30 上海擎朗智能科技有限公司 Robot chassis and robot chassis control method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9878693B2 (en) 2004-10-05 2018-01-30 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US9327726B2 (en) 2004-10-05 2016-05-03 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US9205717B2 (en) 2012-11-07 2015-12-08 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US9371002B2 (en) 2013-08-28 2016-06-21 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
BR112017008825A2 (en) 2014-10-31 2018-03-27 Polaris Inc method and power steering system for a vehicle, methods for controlling a power steering system of a vehicle and for controlling a vehicle, throttle replacement method for a recreational vehicle, and, vehicle.
CN115474170A (en) 2016-02-10 2022-12-13 北极星工业有限公司 Method and system for facilitating use of a recreational vehicle, recreational vehicle and user interface
MX2019005524A (en) 2016-11-18 2019-11-21 Polaris Inc Vehicle having adjustable suspension.
US10406884B2 (en) 2017-06-09 2019-09-10 Polaris Industries Inc. Adjustable vehicle suspension system
US10987987B2 (en) 2018-11-21 2021-04-27 Polaris Industries Inc. Vehicle having adjustable compression and rebound damping
US11904648B2 (en) 2020-07-17 2024-02-20 Polaris Industries Inc. Adjustable suspensions and vehicle operation for off-road recreational vehicles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0684150A1 (en) * 1994-05-24 1995-11-29 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno System for determining the stability of a vehicle
NL9400843A (en) * 1994-05-24 1996-01-02 Tno System for determining the stability of a vehicle.
CN113184054A (en) * 2021-05-20 2021-07-30 上海擎朗智能科技有限公司 Robot chassis and robot chassis control method
CN113184054B (en) * 2021-05-20 2023-09-15 上海擎朗智能科技有限公司 Robot chassis and robot chassis control method

Also Published As

Publication number Publication date
JP2956221B2 (en) 1999-10-04

Similar Documents

Publication Publication Date Title
US4706771A (en) Vehicle steering control system using desired vehicle model
JP2932589B2 (en) Vehicle motion control device
EP0487529B1 (en) A wheeled vehicle steering system
JP4285343B2 (en) Roll stiffness control device for vehicle
JPH02182521A (en) Suspension control device
JPH0270561A (en) Movement controller for vehicle
JPS62295714A (en) Suspension for vehicle
JPH04297314A (en) Attitude control device for car body
US5099940A (en) Rear wheel steering control system for vehicle
Shim et al. Using µ feedforward for vehicle stability enhancement
JPH03231017A (en) Camber angle control device for wheel
JPH03231015A (en) Alignment control device for wheel
JP3006088B2 (en) Body attitude control device
JPH03231016A (en) Camber angle control device for wheel
JP2707574B2 (en) Vehicle turning control device
JP3047467B2 (en) Body attitude control device
JP2953062B2 (en) Body attitude control device
JPH0948338A (en) Behavior control device for vehicle
JP2956222B2 (en) Body attitude control device
JPH04232112A (en) Car body attitude control device
JPH0319107B2 (en)
JP2746002B2 (en) Driving force distribution device for four-wheel drive vehicle with four-wheel steering device
JP3132695B2 (en) Vehicle yawing momentum control device
JP2851386B2 (en) Torque distribution control device for four-wheel drive vehicle
JP3123572B2 (en) Body attitude control device