JP3524530B2 - Method and apparatus for manufacturing oxide superconductor structure - Google Patents

Method and apparatus for manufacturing oxide superconductor structure

Info

Publication number
JP3524530B2
JP3524530B2 JP2001353708A JP2001353708A JP3524530B2 JP 3524530 B2 JP3524530 B2 JP 3524530B2 JP 2001353708 A JP2001353708 A JP 2001353708A JP 2001353708 A JP2001353708 A JP 2001353708A JP 3524530 B2 JP3524530 B2 JP 3524530B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
manufacturing
temperature
heating
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001353708A
Other languages
Japanese (ja)
Other versions
JP2002245878A (en
Inventor
玉樹 小林
泰子 元井
典夫 金子
文夫 岸
透 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001353708A priority Critical patent/JP3524530B2/en
Publication of JP2002245878A publication Critical patent/JP2002245878A/en
Application granted granted Critical
Publication of JP3524530B2 publication Critical patent/JP3524530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超伝導体の焼結
体を用いた構造体の製造方法及び製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a structure using a sintered body of an oxide superconductor.

【0002】[0002]

【従来の技術】1986年のベドノルツ及びミューラー
による、酸化物超伝導体La2-xBaxCuO4の発見
(Z.Phys.B64(1986)189−193)
以降、多くの研究機関によって様々な研究が行われた結
果、現在までに多数の新しい超伝導体が発見されてい
る。その内で液体窒素の沸点(77K)以上で超伝導状
態となる物質としては、Y系、Bi系、Tl系の3種に
大別される。
2. Description of the Related Art The discovery of an oxide superconductor La 2-x Ba x CuO 4 by Bednorz and Mueller in 1986 (Z. Phys. B64 (1986) 189-193).
Since then, various researches have been conducted by many research institutes, and as a result, many new superconductors have been discovered so far. Among them, substances that are in a superconducting state at the boiling point of liquid nitrogen (77 K) or higher are roughly classified into three types, Y-type, Bi-type, and Tl-type.

【0003】Tl系は、組成式TlmBa2CanCun+1
y(m=1,2、n=0,1,2…)で表される物
質、及びその類縁の物質群であり、120K以上の最も
高い臨界温度(Tc)の物質を含む。しかしながら、必
須元素であるTlは強い毒性を有する為、実用化に際し
て障害となることが懸念される。
The Tl system is a compositional formula Tl m Ba 2 Can n Cu n + 1.
It is a substance represented by O y (m = 1, 2, n = 0, 1, 2, ...) And its related substance group, and includes a substance having the highest critical temperature (Tc) of 120 K or higher. However, since Tl, which is an essential element, is highly toxic, it is feared that it may be an obstacle to practical use.

【0004】Bi系は、組成式Bi2Sr2CanCun+1
y(n=0,1,2…)で表される物質、及びその類
縁の物質である。Bi系は、Tc>100KとTl系に
次ぐ高いTcの物質を含み、又、圧延加工等による焼結
体に対する加工性も優れていることから、線材やシール
ド容器等として実用化する為の検討が進行している。し
かしながら、Bi系の物質では、超伝導体内に浸入する
磁束を固定するピン止め中心の作成方法が確立していな
い為、77Kにおいて臨界電流密度(Jc)を測定して
みると、外部から印加する磁場の増大に伴って、Jcが
急激に低下することがわかっている。従って、液体窒素
を冷媒として使用する場合には、使用出来る環境が限定
される。
The Bi system is a composition formula Bi 2 Sr 2 C n Cu n + 1.
It is a substance represented by O y (n = 0, 1, 2, ...) And its related substances. Bi-based materials contain Tc> 100K and the highest Tc material next to Tl-based materials, and because they are also excellent in workability for sintered bodies by rolling, etc., examination for practical application as wire rods and shield containers Is in progress. However, for Bi-based materials, the method of creating the pinning center that fixes the magnetic flux that enters the superconductor has not been established, so when measuring the critical current density (Jc) at 77K, it is applied from the outside. It is known that Jc sharply decreases with increasing magnetic field. Therefore, when liquid nitrogen is used as a refrigerant, the usable environment is limited.

【0005】Y系は、組成式YBa2Cu3yとその同
形構造、及び類縁の物質群であり、Tcは最高で92K
程度とBi、Tl系に比べて低いが、77KにおいてJ
cの磁場による低下がBi系と比べて格段に小さいこと
が、単結晶や薄膜に対する測定から知られている。尚、
Yが他のランタノイドに置換されたものも、ほぼ同様の
性質を示すことが知られており、本明細書で以下でY系
という場合、これら他のランタノイドに置換された系も
便宜上含むものとする。しかし、焼結体の場合には、結
晶粒界に大きなポテンシアルバリアが発生し弱結合とな
る為、十分なJcが得られず、初期にはY系の利用は薄
膜に限定されるという見方が有力であった。しかしなが
ら、その後の研究の結果、溶融処理等のプロセスが改良
され、焼結体においてもJcを向上させることが可能と
なった。更に、Y2BaCuO5を微細に析出させ、ピン
止め中心を作製する方法が確立されたことにより、ディ
スクマグネットや、非接触軸受けとして利用される展望
が開かれ、今後の利用が期待されている。
The Y system is a substance group of composition formula YBa 2 Cu 3 O y and its isomorphic structure, and related compounds, and Tc is 92 K at the maximum.
The degree is lower than that of Bi and Tl systems, but at 77K, J
It is known from measurements on single crystals and thin films that the decrease in c due to the magnetic field is significantly smaller than that in the Bi system. still,
It is known that those in which Y is substituted with other lanthanoids also show substantially the same properties, and when the Y system is referred to in the present specification, the system substituted with these other lanthanoids is also included for convenience. However, in the case of a sintered body, a large potential barrier is generated at the crystal grain boundary and weak bonding occurs, so that sufficient Jc cannot be obtained, and there is a view that the use of the Y system is limited to a thin film in the initial stage. It was influential. However, as a result of subsequent research, the processes such as the melting process were improved, and it became possible to improve Jc even in the sintered body. Furthermore, the establishment of a method for finely depositing Y 2 BaCuO 5 to form a pinning center has opened up the prospect of its use as a disk magnet or non-contact bearing, and its future use is expected. .

【0006】しかしながら、Y系焼結体の結晶粒界にお
ける弱結合を解消する方法としてはいくつかの報告があ
るが、いずれも一担部分溶融状態とした後、徐冷するプ
ロセスを含んでいる。尚、部分溶融状態とは、1100
℃程度に加熱することによりYBa2Cu3yがY2Ba
CuO5と液相に分解した状態であり、その後の徐冷に
より、再びYBa2Cu3yを形成するものである。こ
の為、部分溶融状態で生成される液相は、Y2BaCu
yの粒間に表面張力で保持され直ちに流出するという
ことはないが、焼結体が大きくなると若干の流出は免れ
得ない。液相が流出すると焼結体内に空孔が多生し、超
伝導特性を低下させるという問題がある。
[0006] However, there have been some reports on the method of eliminating the weak bond at the crystal grain boundary of the Y-sintered body, but each of them includes a process of gradually cooling after partially supporting the melted state. . The partially molten state is 1100.
YBa 2 Cu 3 O y turns into Y 2 Ba when heated to about ℃
It is in a state of being decomposed into CuO 5 and a liquid phase, and then YBa 2 Cu 3 O y is formed again by slow cooling. Therefore, the liquid phase generated in the partially molten state is Y 2 BaCu.
Although it does not flow out immediately because it is held by the surface tension between O y grains, some outflow is unavoidable when the sintered body becomes large. When the liquid phase flows out, there are problems that vacancies are generated in the sintered body and the superconducting property is deteriorated.

【0007】これに対し、ディスクマグネットとして用
いる円盤状ペレット等の単純な形状の場合には、空孔の
発生した部分を削り取る等して使用することが出来る
が、形状が少しでも複雑になるとそのような方法も使え
ない為、従来の方法の適用は小型で単純な形状のものに
限られていた。
On the other hand, in the case of a simple shape such as a disk-shaped pellet used as a disk magnet, it is possible to use it by shaving off the portion in which holes are generated, but if the shape becomes a little complicated, Since such a method cannot be used, the application of the conventional method is limited to a small and simple shape.

【0008】[0008]

【発明が解決しようとしている課題】従って、本発明の
目的は上記した超伝導体に関する各種の従来技術の問題
点を解決することにある。又、本発明の目的は、超伝導
特性を低下させることなく、且つ、大きな構造体や複雑
な形状のものも形成し得る、Y系の超伝導体構造体の製
造方法を及びこれを適用した製造装置を提供することに
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems of various prior arts related to superconductors. Further, an object of the present invention is to apply a method for producing a Y-based superconductor structure which can form a large structure or a complex shape without deteriorating the superconducting property and applied the same. To provide a manufacturing apparatus.

【0009】[0009]

【問題点を解決する為の手段】上記の目的は以下の本発
明によって達成される。即ち、本発明は、酸化物超伝導
体を用いて構造体を製造する方法において、水平方向の
軸を回転軸として構造体を回転させながら部分溶融する
工程を含み、該工程では、上記構造体の一部を溶融させ
るとともに、当該構造体の溶融部分から遠ざかる部分
を、当該溶融部分から遠ざかるにつれて温度が低下する
様な温度勾配を持って加熱することを特徴とする酸化物
超伝導体構造体の製造方法、及びかかる製造方法を適用
した製造装置であって、水平軸方向に沿って構造体を保
持する支持部と、水平軸を回転軸として構造体を回転さ
せる機構と、構造体を所望の温度に加熱する機構とを具
備し、該構造体を所望の温度に加熱する機構が、端部に
構造体の一部を部分溶融させる為の第1の加熱部と、該
第1の加熱部に隣接して設けられ、且つ第1の加熱部の
近くでは高温であり、遠ざかるにつれて温度が低下する
様な温度勾配を持つ第2の加熱部を有することを特徴と
する酸化物超伝導体構造体の製造装置である。
The above objects can be achieved by the present invention described below. That is, the present invention is an oxide in the process for producing a structure with a superconductor, seen including a step of partially melted while rotating the structure of the horizontal axis as the rotation axis, the more該工, the structure Melt part of the body
And the part away from the molten part of the structure
, The temperature decreases as the distance from the melted part increases.
A method for manufacturing an oxide superconductor structure characterized by heating with such a temperature gradient , and a manufacturing apparatus to which such a manufacturing method is applied, wherein the structure is maintained along a horizontal axis direction.
The supporting part to be held and the structure is rotated around the horizontal axis.
And a mechanism for heating the structure to a desired temperature.
A mechanism for heating the structure to a desired temperature is provided at the end.
A first heating part for partially melting a part of the structure;
Is provided adjacent to the first heating unit, and
The temperature is high in the vicinity and decreases with distance.
It is characterized by having a second heating part having a similar temperature gradient.
And an oxide superconductor structure manufacturing apparatus .

【0010】[0010]

【作用】本発明によれば、部分溶融処理中に、試料に対
し水平方向の軸を中心とした回転運動を与えることによ
り、液相の流出が防止され、空孔のない特性に優れた超
伝導体構造体の製造が可能となる。
According to the present invention, the liquid phase is prevented from flowing out by imparting a rotational motion about the axis in the horizontal direction to the sample during the partial melting process, and it is excellent in the characteristics of no voids. It is possible to manufacture a conductor structure.

【0011】[0011]

【実施例】次に実施例、参考例及び比較例を挙げて本発
明を更に具体的に説明する。参考 例1 超伝導体構造体に前処理を行う。この前処理の典型的な
手順は次のようなものである。先ず、Y23、BaCO
3、CuOの夫々の粉末を、金属元素の比率がY:B
a:Cu=1:2:3になるように混合し、900℃の
大気中で10時間程度反応させる。この反応物を粉砕し
た後、再度900℃の大気中で反応させる。この工程を
数回くり返した後、反応物を粉砕し、重量比で5%のA
2O粉末を加えて混ぜ、よく混合する。これを棒状に
プレス加工し、950℃の大気中で20時間程度かけて
焼結する。
EXAMPLES Next , the present invention will be described more specifically with reference to Examples , Reference Examples and Comparative Examples. Reference Example 1 A superconductor structure is pretreated. The typical procedure of this pretreatment is as follows. First, Y 2 O 3 and BaCO
3 , CuO powder, the ratio of metal elements Y: B
The mixture is mixed so that a: Cu = 1: 2: 3, and reacted in the atmosphere at 900 ° C. for about 10 hours. After crushing this reaction product, it is again reacted in the atmosphere at 900 ° C. After repeating this process several times, the reaction product was crushed and 5% by weight of A was added.
Add g 2 O powder, mix, and mix well. This is pressed into a rod shape and sintered in the air at 950 ° C. for about 20 hours.

【0012】次に、この様にして形成した焼結体に通常
のセラミックス用加工装置を用いて孔をあけ、パイプ状
の構造体とする。の構造体を図1に示す炉を用いて部
分溶融処理を行う。1は炉体、2は炉芯管、3はフラン
ジである。4は処理すべきパイプ状の焼結体であり、試
料支持部5によって支持される。左側の試料支持部5は
スプリングジョイント6によって右側に押しつけられて
おり、焼結体4を挟み固定する様になっている。又、7
は減速器であり、8はモーターであり、両方のモーター
は同調して動く様になっている。
Next, a hole is made in the thus-formed sintered body by using an ordinary ceramics processing device to form a pipe-shaped structure. Performing partial melt process using a furnace shown in FIG. 1 the structure of it. Reference numeral 1 is a furnace body, 2 is a furnace core tube, and 3 is a flange. Reference numeral 4 denotes a pipe-shaped sintered body to be processed, which is supported by the sample support unit 5. The sample support portion 5 on the left side is pressed to the right side by a spring joint 6 so as to sandwich and fix the sintered body 4. Also, 7
Is a speed reducer, 8 is a motor, and both motors move in synchronization.

【0013】以上の様な炉を用い、焼結体4を毎分1〜
10回転程度で回転させながら部分溶融処理する。この
際の典型的な温度プロセスとしては、1080℃で20
分間保持した後、10℃/minの速度で1000℃ま
で降温し、更に、1000℃から950℃までを5℃/
hourの速度で降温し、その後徐冷する。この様にし
た焼結体4を別の炉に移した後、500℃の酸素中で1
00時間程度アニールする。以上の様にして得られる構
造体の空孔率は、密度から見積って約5%であり、図1
の本発明の製造装置を用いない場合の空孔率約30%と
比べて大幅に改善される。
Using the furnace as described above, the sintered body 4 is
Partial melting is performed while rotating about 10 times. A typical temperature process at this time is 20 ° C. at 1080 ° C.
After holding for a minute, the temperature is lowered to 1000 ° C at a rate of 10 ° C / min, and further, from 1000 ° C to 950 ° C, 5 ° C / min.
The temperature is lowered at the hour, and then gradually cooled. After transferring the sintered body 4 thus prepared to another furnace, the sintered body 1 was placed in oxygen at 500 ° C. for 1 hour.
Anneal for about 00 hours. The porosity of the structure obtained as described above is about 5% as estimated from the density.
Compared with the porosity of about 30% when the manufacturing apparatus of the present invention is not used.

【0014】実施例 全体のプロセスは参考例1と同様であるが、部分溶融処
理に図2に示す装置を用いることにより、より大きな構
造体を作製することが出来る。図中、9は参考例1で説
明した前処理を施した焼結体であり、10は試料支持部
であり、不図示のスプリングジョイントにより焼結体9
を押しつけて固定している。11は透明石英の炉芯管、
12は炉体であり、炉体9の左端は赤外線集光型で炉の
長さ方向に1cmの集光部13を有している。図2に示
した様にそれに続いてカンタル炉がある。巻線14の密
度は左端が密で右に行くと徐々に粗くなっており、左端
より30cmのところまで巻線14があり、その右に2
0cmの巻線14のない部分がある。この炉体12はレ
ール15の上に乗っており、左右に移動することが出来
る。
[0014] The entire process of Example 1 is the same as in Reference Example 1, by using the apparatus shown in FIG. 2 in partial melting process, it is possible to produce a larger structure. In the figure, 9 is a sintered body facilities pretreatment described in Reference Example 1, 10 is a sample support portion, the sintered body by the spring joint (not shown) 9
It is fixed by pressing. 11 is a transparent quartz furnace core tube,
Reference numeral 12 denotes a furnace body, and the left end of the furnace body 9 is an infrared ray condensing type and has a concentrating portion 13 of 1 cm in the length direction of the furnace. Following that is a Kanthal furnace as shown in FIG. The density of the winding 14 is dense at the left end and gradually becomes coarser as it goes to the right. There is the winding 14 up to 30 cm from the left end, and 2 at the right.
There is a part without the winding 14 of 0 cm. The furnace body 12 is on a rail 15 and can move to the left and right.

【0015】以上の様な本発明の製造装置を用い、焼結
体9を毎分2回転の速度で回転させながら炉体12を右
から左へ移動させることにより、部分溶融と徐冷を行
う。炉体12の温度条件を、赤外線集光部13で108
0℃、巻線部14の左端で1000℃、右端で950℃
となる様に調整する。又、炉体12の移動速度は毎時3
cmで右から左へ移動させる。この様な構成とすること
により、大きな構造体でも部分溶融している領域は小さ
いので処理がし易く、より大きな構造体を作製すること
が出来る。その後、酸素中で500℃、100時間のア
ニールを行い本発明のプロセスが完了する。
Using the production apparatus of the present invention as described above, partial melting and gradual cooling are performed by moving the furnace body 12 from right to left while rotating the sintered body 9 at a speed of 2 revolutions per minute. . The temperature condition of the furnace body 12 is set to 108 by the infrared condensing unit 13.
0 ℃, 1000 ℃ at the left end of the winding part 14, 950 ℃ at the right end
Adjust so that Further, the moving speed of the furnace body 12 is 3 per hour.
Move from right to left in cm. With such a structure, even a large structure has a small partially melted region, so that it is easy to process and a larger structure can be manufactured. After that, annealing is performed in oxygen at 500 ° C. for 100 hours to complete the process of the present invention.

【0016】[0016]

【発明の効果】以上述べた様に、本発明の酸化物超伝導
体構造体の製造方法及び製造装置によれば、Y系超伝導
体で、粒界弱結合を含まず、Tcが77Kと高く、磁場
印加の下で実用に供することの出来る特性に優れた焼結
体の構造体を製造することが可能となる。又、本発明方
法によれば、大きな構造体や複雑な形状のものも同様に
形成することが出来る。
As described above, according to the method and the apparatus for manufacturing the oxide superconductor structure of the present invention, the Y-based superconductor does not include weak grain boundary bonds and has Tc of 77K. It is possible to manufacture a sintered body structure that is high and has excellent characteristics that can be put to practical use under application of a magnetic field. Further, according to the method of the present invention, a large structure or a complicated shape can be similarly formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】参考例で使用した部分溶融処理を行う為の製
装置の一例を示す構成図である。
1 is a configuration diagram showing an example of a manufacturing apparatus for performing the partial melting process used in Reference Example.

【図2】部分溶融処理を行う為の本発明の製造装置の
例を示す構成図である。
2 is a block diagram showing an <br/> example of a manufacturing apparatus of the present invention for performing the partial melting process.

【符号の説明】[Explanation of symbols]

1、12:炉体 2、11:炉芯管 3:フランジ 4、9:焼結体 5、10:支持部 6:スプリングジョイント 7:減速機 8:モーター 13:赤外線集光部 14:巻線 15:レール 1, 12: furnace body 2, 11: Furnace core tube 3: Flange 4, 9: Sintered body 5, 10: support section 6: Spring joint 7: Reducer 8: Motor 13: Infrared light collecting part 14: Winding 15: Rail

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸 文夫 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 田 透 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平5−283881(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 12/00 - 13/00 H05K 9/00 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Fumio Kishi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Toru Toru 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. Within the corporation (56) Reference JP-A-5-283881 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01B 12/00-13/00 H05K 9/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化物超伝導体を用いて構造体を製造す
る方法において、水平方向の軸を回転軸として構造体を
回転させながら部分溶融する工程を含み、該工程では、
上記構造体の一部を溶融させるとともに、当該構造体の
溶融部分から遠ざかる部分を、当該溶融部分から遠ざか
るにつれて温度が低下する様な温度勾配を持って加熱す
ことを特徴とする酸化物超伝導体構造体の製造方法。
1. A method of manufacturing a structure using an oxide superconductor, seen including a step of partially melted while rotating the structure as a rotational axis of the horizontal shaft, in about該工,
While melting a part of the structure,
Move the part away from the melted part away from the melted part.
Heating with a temperature gradient such that the temperature decreases as
Method of manufacturing an oxide superconductor structure characterized by that.
【請求項2】 請求項1の製造方法を適用した製造装置
において、水平軸方向に沿って構造体を保持する支持部
と、水平軸を回転軸として構造体を回転させる機構と、
構造体を所望の温度に加熱する機構とを具備し、該構造
体を所望の温度に加熱する機構が、端部に構造体の一部
を部分溶融させる為の第1の加熱部と、該第1の加熱部
に隣接して設けられ、且つ第1の加熱部の近くでは高温
であり、遠ざかるにつれて温度が低下する様な温度勾配
を持つ第2の加熱部を有することを特徴とする酸化物超
伝導体構造体の製造装置。
2. A manufacturing apparatus to which the manufacturing method according to claim 1 is applied, a support portion holding the structure along a horizontal axis direction, and a mechanism for rotating the structure around the horizontal axis as a rotation axis.
The structure includes a mechanism for heating to the desired temperature, the structure
A mechanism to heat the body to the desired temperature is part of the structure at the end
First heating unit for partially melting the metal, and the first heating unit
High temperature near the first heating part.
And a temperature gradient such that the temperature decreases as the distance increases.
Oxide superconductor structure of a manufacturing apparatus characterized by have a second heating unit with.
JP2001353708A 2001-11-19 2001-11-19 Method and apparatus for manufacturing oxide superconductor structure Expired - Fee Related JP3524530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001353708A JP3524530B2 (en) 2001-11-19 2001-11-19 Method and apparatus for manufacturing oxide superconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001353708A JP3524530B2 (en) 2001-11-19 2001-11-19 Method and apparatus for manufacturing oxide superconductor structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19128792A Division JP3283909B2 (en) 1992-06-26 1992-06-26 Metal oxide material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002245878A JP2002245878A (en) 2002-08-30
JP3524530B2 true JP3524530B2 (en) 2004-05-10

Family

ID=19165677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001353708A Expired - Fee Related JP3524530B2 (en) 2001-11-19 2001-11-19 Method and apparatus for manufacturing oxide superconductor structure

Country Status (1)

Country Link
JP (1) JP3524530B2 (en)

Also Published As

Publication number Publication date
JP2002245878A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
JP2672334B2 (en) Superconductor manufacturing method
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
US5011823A (en) Fabrication of oxide superconductors by melt growth method
US5527765A (en) Superconducting YBa2 Cu3 O7-x produced at low temperatures
JPH01286902A (en) Production of oxide superconductor
CA2173273C (en) Compositions for melt processing high temperature superconductor
JP4113113B2 (en) Oxide superconductor joining method and oxide superconductor joined body
JPH0829940B2 (en) Method for manufacturing superconducting material layer
KR920005516B1 (en) Method of making a body with superconductive oxide body
JP3524530B2 (en) Method and apparatus for manufacturing oxide superconductor structure
US5591698A (en) Low temperature (T lower than 950° C.) preparation of melt texture YBCO superconductors
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
Meng et al. Processing of low cost Bi-2212 tapes
Zheng et al. Bi4Ca3Sr3Cu4O y ceramic fibers from crystallization of glasses
JP3889139B2 (en) Oxide superconductor containing silver and method for producing the same
JPH0687611A (en) Oxide superconductor and production thereof and wire rod thereof
Babu et al. Large single grain (RE)-Ba-Cu-O superconductors with nano-phase inclusions
US5399312A (en) Method for fabricating high-jc thallium-based superconducting tape
Goretta et al. Fabrication of high-Tc superconductors
JP2733197B2 (en) Method for producing rare earth element-containing single crystal
JPH06187848A (en) Oxide superconducting wire and manufacture thereof
JPH04296408A (en) Oxide superconducting wire rod and manufacture thereof
KR970005161B1 (en) Method of fabricating a superconductive body and apparatus and systems comprising the body
Poeppel et al. Recent improvements in bulk properties of ceramic superconductors
JPH0692795A (en) Method for producing unidirectionally solidified body and device therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees