JPH04293701A - Production of soft magnetic powder having high saturation magnetic flux density - Google Patents

Production of soft magnetic powder having high saturation magnetic flux density

Info

Publication number
JPH04293701A
JPH04293701A JP3083344A JP8334491A JPH04293701A JP H04293701 A JPH04293701 A JP H04293701A JP 3083344 A JP3083344 A JP 3083344A JP 8334491 A JP8334491 A JP 8334491A JP H04293701 A JPH04293701 A JP H04293701A
Authority
JP
Japan
Prior art keywords
powder
phase
flux density
magnetic flux
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3083344A
Other languages
Japanese (ja)
Inventor
Koichiro Morimoto
耕一郎 森本
Takuo Takeshita
武下 拓夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP3083344A priority Critical patent/JPH04293701A/en
Publication of JPH04293701A publication Critical patent/JPH04293701A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Abstract

PURPOSE:To stably produce a soft magnetic powder having a high saturation magnetic flux density by crushing a nitrided iron powder having a specified content of nitrogen with high energy. CONSTITUTION:A finely atomized pure iron powder is heated in an NH3 gas current and nitrided to produce a nitrided Fe powder consisting essentially of an alpha-Fe phase and an epsilon-FexN phase (x=2 to 3) and contg. 5-15atom% N. The Fe powder is placed in an epicyclic ball mill and crushed with the high collision energy of the crushing balls in an N2 gas atmosphere. Consequently, the alpha-Fe phase and epsilon-FexN phase as the major component phases are superfinely mixed, alloying proceeds due to the diffusion of nitrogen, hence a metastable Fe16N2 phase high in saturation magnetic flux density is formed by >=20vol.%, and a soft magnetic iron fine powder having a high saturation magnetic flux density is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、高い飽和磁束密度を
有する軟磁性粉末の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method for producing soft magnetic powder having a high saturation magnetic flux density.

【0002】0002

【従来の技術】従来、モーターやトランスなどの磁心、
さらに磁気シールドなどの樹脂結合軟磁性複合部材が、
純Fe粉末などの軟磁性粉末に、所定割合のエポキシ樹
脂などの樹脂結合剤を配合し、混合した後、所定形状の
圧粉体に加圧成形し、この圧粉体に樹脂硬化処理を施す
ことにより製造されることは良く知られるところである
[Prior Art] Conventionally, magnetic cores of motors, transformers, etc.
Furthermore, resin bonded soft magnetic composite members such as magnetic shields,
A predetermined proportion of a resin binder such as an epoxy resin is blended into a soft magnetic powder such as pure Fe powder, and after mixing, it is pressure-molded into a powder compact of a predetermined shape, and this compact is subjected to a resin hardening treatment. It is well known that it is manufactured by

【0003】0003

【発明が解決しようとする課題】一方、近年の各種電気
電子機器の高性能化および軽量化はめざましく、これに
伴ない、これらの磁性部材として用いられる各種樹脂結
合軟磁性複合部材にも特に飽和磁束密度の向上が要求さ
れるが、従来の軟磁性複合部材においては、これを構成
する軟磁性粉末の飽和磁束密度が十分でないために、こ
れらの要求に満足に対応することができないのが現状で
ある。
[Problems to be Solved by the Invention] On the other hand, in recent years, the performance and weight reduction of various electrical and electronic devices have been remarkable. Improvements in magnetic flux density are required, but conventional soft magnetic composite members cannot satisfactorily meet these demands because the saturation magnetic flux density of the soft magnetic powder that constitutes them is insufficient. It is.

【0004】0004

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、高い飽和磁束密度を有する軟磁
性粉末を製造すべく研究を行なった結果、まず、例えば
純度:100メッシュ以下のアトマイズ純Fe粉末など
の純Fe粉末に、例えばアンモニア気流中、温度:57
0℃で窒化処理を施して、主体組織がα−Fe相とε−
FexN相(x=2〜3)からなり、かつ窒素:5〜1
5原子%を含有する窒化処理Fe粉末を形成し、この窒
化処理Fe粉末に、粉砕ボールの高い衝突エネルギーが
粉末に付与されるアトライターミルや遊星ボールミルな
どの高エネルギー粉砕機を用いて、粉砕混合処理を施す
と、前記窒化処理Fe粉末には、これの粉砕・薄片化、
および薄片の冷間圧接あるいは薄片の母粉末へのたたみ
込みが起り、この結果α−Fe相およびε−FexN相
(x=2〜3)の主要構成相の超微細混合と同時に、窒
素拡散による合金化が進行して飽和磁束密度の高い準安
定Fe16N2 相が形成されるようになり、上記準安
定Fe16N2 相を粉末全体に占める割合で20容量
%以上含有する高エネルギー粉砕処理粉末は、高い飽和
磁束密度を示し、かつこの軟磁性粉末を樹脂結合軟磁性
複合部材の製造に用いた場合にも、製造された軟磁性複
合部材は同様に高い飽和磁束密度を示すようになるとい
う研究結果を得たのである。
[Means for solving the problem] Therefore, the present inventors
From the above-mentioned point of view, as a result of conducting research to produce soft magnetic powder with a high saturation magnetic flux density, first, pure Fe powder such as atomized pure Fe powder with a purity of 100 mesh or less was heated in a stream of ammonia, for example. , temperature: 57
After nitriding at 0℃, the main structure is α-Fe phase and ε-
Consisting of FexN phase (x = 2 to 3), and nitrogen: 5 to 1
A nitrided Fe powder containing 5 at. When subjected to the mixing treatment, the nitrided Fe powder undergoes pulverization and flaking,
and cold welding of the flakes or folding of the flakes into the base powder, resulting in ultrafine mixing of the main constituent phases of α-Fe phase and ε-FexN phase (x = 2 to 3), and at the same time due to nitrogen diffusion. As alloying progresses, a metastable Fe16N2 phase with a high saturation magnetic flux density is formed, and a high-energy pulverized powder containing 20% by volume or more of the above-mentioned metastable Fe16N2 phase in the entire powder has a highly saturated Research results have shown that when this soft magnetic powder is used to manufacture resin-bonded soft magnetic composite members, the manufactured soft magnetic composite members also exhibit high saturation magnetic flux density. It was.

【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、α−Fe相とε−FexN相(
x=2〜3)を主体組織とする窒素:5〜15原子%含
有の窒化処理Fe粉末に、高エネルギー粉砕処理を施し
て、前記窒化処理粉末中に全体に占める割合で20容量
%以上の準安定Fe16N2 相を形成することにより
高い飽和磁束密度を有する軟磁性粉末を製造する方法に
特徴を有するものである。
[0005] This invention was made based on the above research results, and consists of α-Fe phase and ε-FexN phase (
A nitrided Fe powder containing 5 to 15 atomic % of nitrogen having a main structure of The present invention is characterized by a method of producing soft magnetic powder having a high saturation magnetic flux density by forming a metastable Fe16N2 phase.

【0006】なお、この発明の方法において、窒化処理
Fe粉末の窒素含有量を5〜15原子%と限定したのは
、その含有量が5原子%未満でも、また15原子%を越
えても次工程の高エネルギー粉砕処理工程でのFe16
N2相の形成が困難となり、粉末全体に占める割合で2
0容量%以上のFe16N2 相を形成することができ
ないという理由によるものであり、また高エネルギー粉
砕処理粉末中の準安定Fe16N2 相の含有量を20
容量%以上としたのは、その割合が20容量%未満では
所望の高い飽和磁束密度を確保することができないとい
う理由からである。
[0006] In the method of the present invention, the nitrogen content of the nitrided Fe powder is limited to 5 to 15 at%, because even if the content is less than 5 at% or exceeds 15 at%, the following Fe16 in the high-energy pulverization process of the process
It becomes difficult to form N2 phase, and the proportion of N2 phase in the whole powder decreases to 2.
This is because it is not possible to form a Fe16N2 phase of 0% or more by volume, and the content of the metastable Fe16N2 phase in the high-energy pulverized powder is reduced to 20% by volume.
The reason why the ratio is set to be at least 20% by volume is that if the ratio is less than 20% by volume, a desired high saturation magnetic flux density cannot be secured.

【0007】[0007]

【実施例】つぎに、この発明の方法を実施例により具体
的に説明する。
[Examples] Next, the method of the present invention will be explained in detail with reference to Examples.

【0008】粒度:100メッシュ以下のアトマイズ純
Fe粉末に、アンモニア気流中、温度:570℃に2〜
100時間の範囲内の所定時間保持の条件で窒化処理を
施して、主要構成相がいずれもα−Fe相とε−Fex
N相(x=2〜3)からなり、かつ表1に示される窒素
含有量の窒化処理Fe粉末を形成し、ついでこれらの窒
化処理Fe粉末:15gを、それぞれ容器がステンレス
鋼製の遊星ボールミルに、直径:11mmのステンレス
鋼製ボール11個と一緒に装入し、容器内を真空引きし
てから高純度N2 ガスを導入して雰囲気をN2 ガス
雰囲気とした状態で、容器を300rpm の公転速度
で回転し、20時間の高エネルギー粉砕処理を行なうこ
とにより本発明法1〜3、並びに窒化処理Fe粉末の窒
素含有量がこの発明の範囲から外れた比較法1,2をそ
れぞれ実施し、粒度:150メッシュ以下(25〜35
μmの範囲内の所定の平均粒径)を有する軟磁性粉末を
製造した。
[0008] Atomized pure Fe powder with a particle size of 100 mesh or less was heated to 570°C in an ammonia stream for 2 to 30 minutes.
Nitriding treatment is performed under conditions of holding for a predetermined time within the range of 100 hours, and the main constituent phases are α-Fe phase and ε-Fex.
Nitrided Fe powder consisting of N phase (x = 2 to 3) and having the nitrogen content shown in Table 1 was formed, and then 15 g of these nitrided Fe powders were placed in a planetary ball mill with a container made of stainless steel. The container was charged together with 11 stainless steel balls with a diameter of 11 mm, and after the inside of the container was evacuated, high-purity N2 gas was introduced to create an N2 gas atmosphere, and the container was rotated at 300 rpm. Methods 1 to 3 of the present invention and comparative methods 1 and 2 in which the nitrogen content of the nitrided Fe powder was out of the range of the present invention were carried out by rotating at high speed and performing high-energy pulverization treatment for 20 hours, Particle size: 150 mesh or less (25-35
A soft magnetic powder having a predetermined average particle size in the range of μm was produced.

【0009】[0009]

【表1】[Table 1]

【0010】この結果得られた軟磁性粉末について、F
e16N2相の含有割合および飽和磁束密度を測定した
Regarding the soft magnetic powder obtained as a result, F
The content ratio of e16N2 phase and the saturation magnetic flux density were measured.

【0011】Fe16N2 相の含有割合は、200k
V透過電子顕微鏡を用いて制限視野電子線回折を行ない
、この結果の回折パターンの中のFe16N2 相の反
射を用いて暗視野像を結像して、写真撮影し、この写真
からFe16N2 相の体積分率を算出することにより
求めた。
[0011] The content ratio of Fe16N2 phase is 200k
Selected area electron diffraction was performed using a V transmission electron microscope, and a dark field image was formed using the reflection of the Fe16N2 phase in the resulting diffraction pattern, and a photograph was taken. From this photograph, the volume of the Fe16N2 phase was determined. It was determined by calculating the fraction.

【0012】また飽和磁束密度は、振動試料型磁力計を
用い、10KOeの磁場を印加して測定した。
The saturation magnetic flux density was measured using a vibrating sample magnetometer and applying a magnetic field of 10 KOe.

【0013】さらに、これらの軟磁性粉末に、それぞれ
2重量%のエポキシ樹脂を加え、アセトン中で混練し、
アセトンを蒸発除去した後、5 ton/cm2 の圧
力で外径:40mm×内径:20mm×厚さ:10mm
の寸法をもったリング状圧粉体にプレス成形し、この圧
粉体に、温度:200℃に1時間保持の条件で樹脂硬化
処理を施すことにより軟磁性複合部材を製造した。
Furthermore, 2% by weight of epoxy resin was added to each of these soft magnetic powders, and the mixture was kneaded in acetone.
After removing acetone by evaporation, the outer diameter: 40 mm x inner diameter: 20 mm x thickness: 10 mm was prepared at a pressure of 5 ton/cm2.
A soft magnetic composite member was manufactured by press-molding the powder into a ring-shaped green compact having dimensions of , and subjecting the green compact to a resin curing treatment at a temperature of 200° C. for 1 hour.

【0014】これらの軟磁性複合部材の飽和磁束密度を
、直流B−Hカーブトレーサーを用い、50・Oeの磁
界を印加して測定した。これらの測定結果を表1に示し
た。
The saturation magnetic flux density of these soft magnetic composite members was measured by applying a magnetic field of 50·Oe using a DC B-H curve tracer. The results of these measurements are shown in Table 1.

【0015】なお、表1には、代表的軟磁性粉末として
知られている純Fe粉末の同一条件での測定結果も示し
た。
Table 1 also shows the measurement results of pure Fe powder, which is known as a typical soft magnetic powder, under the same conditions.

【0016】[0016]

【発明の効果】表1に示される結果から、本発明法1〜
3で製造された軟磁性粉末は、純Fe粉末に比して一段
と高い飽和磁束密度を示し、かつこれを用いて製造した
軟磁性複合部材も高い飽和磁束密度を示し、一方比較法
1,2で製造された軟磁性粉末に見られるように、窒化
処理Fe粉末中の窒素含有量がこの発明の範囲から外れ
ると、いずれの場合も高エネルギー粉砕処理によって2
0容量%以上の準安定Fe16N2 相を形成すること
ができないので、この結果の軟磁性粉末並びにこれを用
いて製造した軟磁性複合部材は低い飽和磁束密度しか示
さないことが明らかである。
Effects of the invention From the results shown in Table 1, it can be seen that methods 1 to 1 of the present invention
The soft magnetic powder produced in Comparative Methods 1 and 2 showed a much higher saturation magnetic flux density than pure Fe powder, and the soft magnetic composite member produced using it also showed a higher saturation magnetic flux density. When the nitrogen content in the nitrided Fe powder falls outside the scope of this invention, as seen in the soft magnetic powder produced by
It is clear that since it is not possible to form more than 0% by volume of the metastable Fe16N2 phase, the resulting soft magnetic powder as well as the soft magnetic composite member manufactured using the same exhibit only a low saturation magnetic flux density.

【0017】上述のように、この発明の方法によれば、
高い飽和磁束密度を有する軟磁性粉末を製造することが
でき、したがってこの軟磁性粉末を用いれば高い飽和磁
束密度を有する軟磁性複合部材の製造も可能であって、
これが組込まれる各種電気電子機器の高性能化および軽
量化に寄与するところ大なるものがあるなど工業上有用
な効果がもたらされるのである。
As mentioned above, according to the method of the present invention,
A soft magnetic powder having a high saturation magnetic flux density can be manufactured, and therefore, by using this soft magnetic powder, it is also possible to manufacture a soft magnetic composite member having a high saturation magnetic flux density,
It brings about industrially useful effects, such as greatly contributing to higher performance and lighter weight of various electrical and electronic devices in which it is incorporated.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  α−Fe相とε−FexN相(x=2
〜3)を主体組織とする窒素:5〜15原子%含有の窒
化処理Fe粉末に、高エネルギー粉砕処理を施して、前
記窒化処理Fe粉末中に全体に占める割合で20容量%
以上の準安定Fe16N2 相を形成することを特徴と
する高い飽和磁束密度を有する軟磁性粉末の製造法。
Claim 1: α-Fe phase and ε-FexN phase (x=2
~3) Nitrogen: 5 to 15 atomic % containing nitrogen is subjected to high-energy pulverization treatment to form a nitrided Fe powder with a proportion of 20 volume % to the total in the nitrided Fe powder.
A method for producing soft magnetic powder having a high saturation magnetic flux density, characterized by forming the above metastable Fe16N2 phase.
JP3083344A 1991-03-22 1991-03-22 Production of soft magnetic powder having high saturation magnetic flux density Withdrawn JPH04293701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3083344A JPH04293701A (en) 1991-03-22 1991-03-22 Production of soft magnetic powder having high saturation magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3083344A JPH04293701A (en) 1991-03-22 1991-03-22 Production of soft magnetic powder having high saturation magnetic flux density

Publications (1)

Publication Number Publication Date
JPH04293701A true JPH04293701A (en) 1992-10-19

Family

ID=13799823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3083344A Withdrawn JPH04293701A (en) 1991-03-22 1991-03-22 Production of soft magnetic powder having high saturation magnetic flux density

Country Status (1)

Country Link
JP (1) JPH04293701A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050111457A (en) * 2004-05-21 2005-11-25 박종덕 The fe-based nano-alloy powders and the method there of
CN103268799A (en) * 2013-05-02 2013-08-28 南昌大学 Iron nitrogen boron nano-crystalline soft magnetic material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050111457A (en) * 2004-05-21 2005-11-25 박종덕 The fe-based nano-alloy powders and the method there of
CN103268799A (en) * 2013-05-02 2013-08-28 南昌大学 Iron nitrogen boron nano-crystalline soft magnetic material and preparation method thereof

Similar Documents

Publication Publication Date Title
US9378876B2 (en) Ferromagnetic particles and process for producing the same, and anisotropic magnet, bonded magnet and compacted magnet
US20150248956A1 (en) Rare-earth-iron-based alloy material
WO2012161189A1 (en) Rare earth-iron-nitrogen system alloy material, method for producing rare earth-iron-nitrogen system alloy material, rare earth-iron system alloy material, and method for producing rare earth-iron system alloy material
JPH0974006A (en) Magnetic material and bonded magnet
JPH06346101A (en) Magnetically anisotropic powder and its production
EP3379550A1 (en) Method for producing rare earth magnet and rare earth magnet
JP2000086685A (en) Production of iron carbonyl silicide, and iron carbonyl silicide
JPH09190909A (en) Manufacture of r-t-n permanent magnet powder and of anisotropic bond magnet
JPH08191006A (en) Magnetic material
JPH05222483A (en) Production of iron nitride based high density sintered compact
Jurczyk et al. Application of high energy ball milling to the production of magnetic powders from NdFeB-type alloys
JPH04293701A (en) Production of soft magnetic powder having high saturation magnetic flux density
JPH04293702A (en) Production of soft magnetic powder low in coercive force
JPH0766021A (en) Permanent magnet
JPH0590018A (en) Manufacture of magnetic powder
JP2016044352A (en) Method for producing powder for magnet, and method for producing rare earth magnet
JP2016100519A (en) Production method of magnetic powder, production method of dust magnet member, and dust magnet member
JPH05226130A (en) Manufacture of smfen magnet powder
JPH07118702A (en) Production of fe-n soft magnetic powder having high saturation magnetic flux density
JPH04371505A (en) Production of soft magnetic powder having high saturation magnetic flux density
JP6331982B2 (en) Magnet molded body, magnetic member, method for manufacturing magnet molded body, and method for manufacturing magnetic member
JPH07118703A (en) Production of fe-n soft magnetic powder having high saturation magnetic flux density
JP3209291B2 (en) Magnetic material and its manufacturing method
JP2926161B2 (en) Manufacturing method of permanent magnet
JPH059503A (en) Production of fe-co soft magnetic powder

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514