JPH05226130A - Manufacture of smfen magnet powder - Google Patents

Manufacture of smfen magnet powder

Info

Publication number
JPH05226130A
JPH05226130A JP4057111A JP5711192A JPH05226130A JP H05226130 A JPH05226130 A JP H05226130A JP 4057111 A JP4057111 A JP 4057111A JP 5711192 A JP5711192 A JP 5711192A JP H05226130 A JPH05226130 A JP H05226130A
Authority
JP
Japan
Prior art keywords
powder
smfen
producing
magnet powder
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4057111A
Other languages
Japanese (ja)
Inventor
Koichiro Morimoto
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4057111A priority Critical patent/JPH05226130A/en
Publication of JPH05226130A publication Critical patent/JPH05226130A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure

Abstract

PURPOSE:To manufacture SmFeN magnet powder at a low cost. CONSTITUTION:Sm2O3 powder, Fe powder, and Ca are blended so that the mol ratio is Sm2O3/Fe=1/17-1.5/17 and Ca/Sm2O3=3.3 or higher and are ground and mixed while giving a high energy, are rinsed for eliminating non-reaction Ca and CaO which is a reduction reaction product, are dried and subjected to crystallization heat treatment, and further are nitriding treatment, thus obtaining SmFeN magnet powder with hexagonal Sm2Fe17Nx phase (X=1-3) as a main organization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ボンド磁石の製造に
適した高い磁気特性をもつSmFeN系合金粉末を安価
に製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inexpensively producing an SmFeN alloy powder having high magnetic characteristics suitable for producing a bonded magnet.

【0002】[0002]

【従来の技術】一般に、Sm2 Fe17x (X=1〜
3)化合物は、永久磁石材料として優れた磁気的特性を
もつため、すでにこの化合物を主体組織とする磁粉を樹
脂や低融点金属・合金で結合したボンド磁石の開発が進
められてる。
2. Description of the Related Art Generally, Sm 2 Fe 17 N x (X = 1 to
3) Since the compound has excellent magnetic properties as a permanent magnet material, development of a bonded magnet in which magnetic powder mainly composed of this compound is bonded with a resin or a low melting point metal / alloy is underway.

【0003】上記Sm2 Fe17x (X=1〜3)化合
物を主体とする高い保磁力をもつ等方性磁粉は、まず、
原料粉末として、Sm粉末および純Fe粉末を混合して
混合粉末を作製し、この混合粉末を遊星ボールミルやア
トライターボールミルなどの高エネルギー粉砕機を用い
て高エネルギーを与えながら粉砕・混合することにより
SmとFe合金化すると同時に非晶質を主体とするSm
Fe合金粉末を製造し(上記高エネルギー粉砕機を用い
て混合粉末を合金化する方法は、例えば、機械的合金化
法、メカニカルアロイング法などとして一般に知られて
いる)、この非晶質を主体とするSmFe合金粉末を結
晶化して微結晶Sm2 Fe17相を主体組織とする粉末を
つくり、この粉末をN2 を主体とする雰囲気中に保持し
ながら窒化処理を施して微結晶Sm2 Fe17x 相(X
=1〜3)を主体組織とするSmFeN系磁石粉末とす
ることにより製造されていた。
The isotropic magnetic powder mainly composed of the Sm 2 Fe 17 N x (X = 1 to 3) compound and having a high coercive force is as follows.
As raw material powder, Sm powder and pure Fe powder are mixed to prepare a mixed powder, and the mixed powder is pulverized and mixed while applying high energy using a high energy pulverizer such as a planetary ball mill or an attritor ball mill. Sm mainly composed of amorphous at the same time as Fe alloy with Sm
The Fe alloy powder is produced (a method of alloying the mixed powder using the above-mentioned high energy pulverizer is generally known as a mechanical alloying method, a mechanical alloying method, etc.) and The SmFe alloy powder containing the main component is crystallized to form a powder containing the microcrystalline Sm 2 Fe 17 phase as the main structure, and the powder is subjected to a nitriding treatment while being held in an atmosphere containing N 2 as the main component to form the microcrystalline Sm 2 Fe 17 N x phase (X
= 1 to 3) as the main structure of the SmFeN magnet powder.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のSmFeN系磁石粉末を製造する方法では、(1)
原料粉末として高価なSm粉末を用いるためにコスト
高となる、(2) 高エネルギー粉砕・混合処理工程で
Smの酸化が著しく、このため出発組成のSm/Feの
モル比が、高い残留磁束密度が得られるSm2 Fe17
x化合物の化学量論の近く2/17〜3/17の組成範
囲では、α−Feが析出して大きな保磁力が得られな
い、などの課題があり、従来の製造方法で製造されたS
mFeN系磁石粉末は、高価格である割にはボンド磁石
製造用磁石粉末として十分なものではなかった。
However, in the above-mentioned conventional method for producing SmFeN magnet powder, (1)
Since expensive Sm powder is used as the raw material powder, the cost becomes high. (2) Sm oxidation is remarkable in the high energy pulverizing / mixing process step, and therefore the Sm / Fe molar ratio of the starting composition is high. To obtain Sm 2 Fe 17 N
In the composition range of 2/17 to 3/17, which is close to the stoichiometry of the x compound, there is a problem that α-Fe precipitates and a large coercive force cannot be obtained, and S produced by the conventional production method has a problem.
Although the mFeN-based magnet powder is expensive, it was not sufficient as a magnet powder for producing a bonded magnet.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者等は、
高い残留磁束密度が得られるSm2 Fe17x 化合物の
化学量論の近くの組成(具体的には、Sm/Feのモル
比が2/17〜3/17の組成)を有しα−Feの析出
の少ない高保磁力を有するSmFeN系磁石粉末を、従
来よりも安価に製造すべく研究を行った結果、原料粉末
としてSm粉末よりも格段に安いSm2 3 粉末を用
い、このSm23 粉末をCaおよびFe粉末と共に配
合し、高エネルギー粉砕機を用いて高エネルギーを与え
ながら粉砕・混合し、上記粉砕・混合中にSm2 3
Caで還元すると同時に還元されたSmとFeを合金化
せしめて非晶質を主体とするSmFe合金粉末を製造
し、未反応のCaおよび還元反応生成物であるCaOを
水洗により除去し、乾燥したのち、従来法と同様に結晶
化熱処理し、さらに上記結晶化熱処理して得られた微細
結晶化Sm2 Fe17化合物を窒化処理すると、Sm2
17x 相(X=1〜3)を主体とするSmFeN系磁
石粉末を製造することができるとう知見を得たのであ
る。
Therefore, the present inventors have
The composition has a composition close to the stoichiometry of the Sm 2 Fe 17 N x compound (specifically, a composition having a Sm / Fe molar ratio of 2/17 to 3/17) capable of obtaining a high residual magnetic flux density, and α- the SmFeN-based magnetic powder having a small coercive force of Fe precipitation, as a result of studies to inexpensively manufactured than conventional, using a much cheaper Sm 2 O 3 powder than Sm powder as raw material powder, the Sm 2 O 3 powder was blended with Ca and Fe powders, pulverized and mixed with a high energy pulverizer while giving high energy, and Sm 2 O 3 was reduced by Ca during the pulverization and mixing, and at the same time reduced Sm and SmFe alloy powder mainly composed of amorphous is produced by alloying Fe, unreacted Ca and reduction reaction product CaO are removed by washing with water, and dried, followed by crystallization heat treatment as in the conventional method. And above When nitriding the obtained fine crystallized Sm 2 Fe 17 compound crystallized heat treatment, Sm 2 F
It was found that the SmFeN magnet powder mainly composed of the e 17 N x phase (X = 1 to 3) can be produced.

【0006】この発明は、かかる知見にもとづいてなさ
れたものであって、Sm2 3 粉末、純Fe粉末、およ
びCaをモル比で、Sm2 3 /Fe:1/17〜1.
5/17、Ca/Sm2 3 :3.3以上となるような
割合に配合して配合粉末を作製する工程、この配合粉末
に、高エネルギー粉砕機を用いて高エネルギーを与えな
がら粉砕・混合処理を施して、Sm2 3 の還元および
SmとFeの合金化を行うと同時に非晶質を主体とする
SmFe合金粉末を製造する工程、上記SmFe合金粉
末を水洗して未反応Caおよび還元反応生成物CaOを
除去する工程、上記水洗したSmFe合金粉末を乾燥
し、結晶化熱処理を施して、微結晶Sm2 Fe17相を主
体組織とする粉末を製造する工程、この粉末にN2 を主
体とする雰囲気中で熱処理する窒化処理を施して、六方
晶Sm2 Fe17x 相(X=1〜3)を主体組織とする
SmFeN系磁石粉末を製造する工程、の各工程からな
るSmFeN系磁石粉末の製造方法に特徴を有するもの
である。
The present invention has been made on the basis of the above-mentioned findings. The Sm 2 O 3 powder, the pure Fe powder, and the Ca in a molar ratio of Sm 2 O 3 / Fe: 1/17 to 1.
5/17, Ca / Sm 2 O 3 : A step of preparing a compounded powder by mixing it in a ratio such that it is 3.3 or more, and pulverizing the compounded powder while applying high energy using a high energy pulverizer. A step of performing a mixing treatment to reduce Sm 2 O 3 and alloy Sm and Fe, and at the same time, to produce an SmFe alloy powder mainly composed of an amorphous material; washing the SmFe alloy powder with water to obtain unreacted Ca and A step of removing the reduction reaction product CaO, a step of drying the above-mentioned washed SmFe alloy powder and subjecting it to a crystallization heat treatment to produce a powder having a microcrystalline Sm 2 Fe 17 phase as a main structure, and adding N 2 to this powder. A step of producing a SmFeN-based magnet powder having a hexagonal Sm 2 Fe 17 N x phase (X = 1 to 3) as a main structure by performing a nitriding treatment in an atmosphere mainly composed of SmFeN magnet powder It is characterized by the manufacturing method of powder.

【0007】この発明で用いるSm2 3 粉末とCaを
配合し、高エネルギー粉砕機を用いて粉砕・混合する
と、粉砕・混合中に Sm2 3 +3Ca=2Sm+3CaO なる反応が生じてSm2 3 は還元されSmとなり、S
mはFeと合金化して非結晶を主体とするSmFe合金
粉末が生成される。
When the Sm 2 O 3 powder used in the present invention and Ca are blended and pulverized and mixed by using a high energy pulverizer, a reaction of Sm 2 O 3 + 3Ca = 2Sm + 3CaO occurs during the pulverization and mixing, resulting in Sm 2 O. 3 is reduced to Sm, S
m is alloyed with Fe to produce SmFe alloy powder mainly composed of amorphous.

【0008】一方、Caは酸化されてCaOとなり、未
反応のCaおよび酸化されて生成したCaOは、簡単に
水洗除去することができる。
On the other hand, Ca is oxidized to CaO, and unreacted Ca and oxidized CaO can be easily removed by washing with water.

【0009】さらに、この発明において、原料粉末のS
2 3 粉末、Fe粉末およびCaをモル比でSm2
3 /Fe:1/17〜1.5/17、Ca/Sm
2 3 :3.3以上となるような割合に配合したのは、
Sm2 3 /Feが1/17未満ではα−Feの生成が
防ぎ難く磁石粉末の保磁力が減少するので好ましくな
く、一方、Sm2 3 /Feが1.5/17を越えると
飽和磁化の値の小さなSmに富む不純物相が多く形成さ
れるため磁石粉末の残留磁束密度が減少するので好まし
くない理由によるものであり、また、Ca/Sm2 3
が3.3未満ではCaが原料のSm2 3 の還元のみに
ほぼ消費され、高エネルギー粉砕・混合工程でのSmの
酸化をCaによって防ぐことができず、このためα−F
eの生成を招き磁石粉末の保磁力が減少するので好まし
くない理由によるものである。
Further, in the present invention, the raw material powder S
m 2 O 3 powder, Fe powder and Ca in a molar ratio of Sm 2 O
3 / Fe: 1/17 to 1.5 / 17, Ca / Sm
The proportion of 2 O 3 : 3.3 or more is
When Sm 2 O 3 / Fe is less than 1/17, it is not preferable because the formation of α-Fe is difficult to prevent and the coercive force of the magnet powder is reduced, while when Sm 2 O 3 / Fe exceeds 1.5 / 17, it is saturated. This is because the residual magnetic flux density of the magnet powder is reduced because a large amount of Sm-rich impurity phase having a small magnetization value is formed, which is not preferable, and Ca / Sm 2 O 3
Is less than 3.3, Ca is almost consumed only for the reduction of the raw material Sm 2 O 3 , and the oxidation of Sm in the high energy pulverization / mixing step cannot be prevented by Ca. Therefore, α-F
The reason for this is that the coercive force of the magnet powder decreases due to the generation of e, which is not preferable.

【0010】なお、Ca/Sm2 3 が5を越えるとS
mとFeとの均一な粉砕・混合を阻害する傾向があるこ
と、また後の水洗工程で余剰のCaの除去に長時間を要
するところから、5以下であることが一層好ましい。
When Ca / Sm 2 O 3 exceeds 5, S
It is more preferably 5 or less because it tends to hinder the uniform pulverization and mixing of m and Fe, and it takes a long time to remove excess Ca in the subsequent water washing step.

【0011】[0011]

【実施例】つぎに、この発明を実施例にもとづいて具体
的に説明する。
EXAMPLES Next, the present invention will be specifically described based on Examples.

【0012】原料粉末として、平均粒径:1.2μmの
Sm2 3 粉末、平均粒径:15μmのFe粉末および
粒径:2.5mm以下のCaを用意し、これら原料粉末を
表1に示される配合組成となるように配合し、得られた
配合粉末を直径:11mmのステンレスボール11個とと
もに容積:80cm3 のステンレス製容器を備えた遊星ボ
ールミルの上記容器に装入し、容器内をArガス雰囲気
として、容器公転速度:300r.p.m で15時間回転す
ることにより高エネルギー粉砕・混合処理を施し、上記
高エネルギー粉砕・混合処理して得られた粉末を水洗し
てCaOと未反応のCaを除去し、ついでアセトンで水
を置換して乾燥し、さらにこの乾燥した粉末をAr雰囲
気中、温度:700℃、30分間保持することにより結
晶化処理を行った。
As raw material powders, Sm 2 O 3 powder having an average particle diameter of 1.2 μm, Fe powder having an average particle diameter of 15 μm and Ca having a particle diameter of 2.5 mm or less are prepared. The mixture powder was blended so as to have the blending composition shown, and the resulting blended powder was loaded into 11 pieces of stainless steel balls having a diameter of 11 mm and the above-mentioned container of a planetary ball mill equipped with a stainless steel container having a volume of 80 cm 3 , and the inside of the container was filled. High-energy pulverization / mixing treatment was performed by rotating the vessel in an Ar gas atmosphere at a container revolution speed of 300 rpm for 15 hours, and the powder obtained by the high-energy pulverization / mixing treatment was washed with water to react with CaO. Crystallization was performed by removing Ca, then replacing water with acetone and drying, and further maintaining the dried powder in an Ar atmosphere at a temperature of 700 ° C. for 30 minutes.

【0013】上記結晶化処理された粉末をさらにN2
流中、温度:450℃、5時間保持の窒化処理し、微細
結晶のSm2 Fe17x 相を主相とするSmFeN系磁
石粉末を製造する本発明法1〜3および比較法1〜3を
実施した。
The crystallized powder is further nitrided in a N 2 gas stream at a temperature of 450 ° C. for 5 hours to obtain Sm 2 Fe 17 N x phase fine crystalline SmFeN magnet powder. Inventive methods 1 to 3 and comparative methods 1 to 3 were carried out.

【0014】なお、比較法1〜3は、この発明の条件か
ら外れており、この外れた値に*印を付して示してあ
る。
The comparative methods 1 to 3 deviate from the conditions of the present invention, and the deviated values are indicated by * marks.

【0015】さらに比較のために、粒径:300μm以
下のSm粉末を用意し、上記Sm粉末をFe粉末とSm
/Fe=2.5/17となるように配合し、得られた配
合粉末を直径:11mmのステンレス製ボール11個とと
もに容積:80cm3 のステンレス製容器を備えた遊星ボ
ールミルの上記容器に装入し、容器内をArガス雰囲気
として、容器公転速度:300r.p.m で15時間回転す
ることにより高エネルギー粉砕・混合処理を施し、さら
にAr雰囲気中、温度:700℃、30分保持の結晶化
処理およびN2 気流中、温度:450℃、5時間保持の
窒化処理を施すことにより、微細結晶のSm2 Fe17
x 相と主相とするSmFeN系磁石粉末を製造する従来
法1を実施した。
Further, for comparison, Sm powder having a particle size of 300 μm or less was prepared, and the Sm powder was replaced with Fe powder and Sm.
/ Fe = 2.5 / 17, and the resulting blended powder is loaded into the above-mentioned container of a planetary ball mill equipped with a stainless steel container having a volume of 80 cm 3 together with 11 stainless steel balls having a diameter of 11 mm. High-energy pulverization / mixing treatment is performed by rotating the container in an Ar gas atmosphere at a container revolution speed of 300 rpm for 15 hours, and further crystallization treatment in an Ar atmosphere at a temperature of 700 ° C for 30 minutes. And nitriding treatment in a N 2 stream at a temperature of 450 ° C. for 5 hours to obtain fine crystalline Sm 2 Fe 17 N
Conventional method 1 for producing SmFeN magnet powder having the x phase and the main phase was carried out.

【0016】上記本発明法1〜3、比較法1〜3および
従来法1により製造されたSmFeN系磁石粉末にエポ
キシ樹脂:2重量%を加えてアセトン中で混練し、真空
乾燥によりアセトンを蒸発せしめ、ついで圧力:6ton
/cm2 でプレス成形して、10mm立法の寸法を有するプ
レス成形体を作製した。
Epoxy resin: 2% by weight was added to the SmFeN magnet powder produced by the above-mentioned Inventive Methods 1-3, Comparative Methods 1-3 and Conventional Method 1 and kneaded in acetone, and the acetone was evaporated by vacuum drying. Then pressure: 6 ton
/ Cm 2 was press-molded to prepare a press-molded body having a cubic dimension of 10 mm.

【0017】上記プレス成形体を、N2 気流中、温度:
150℃に2時間保持することにより樹脂硬化処理して
ボンド磁石を製造し、このボンド磁石の磁気特性を測定
し、その測定結果を表1に示した。
[0017] The above press-molded body, N 2 in a stream, temperature:
The resin was cured at 150 ° C. for 2 hours to produce a bonded magnet, and the magnetic characteristics of this bonded magnet were measured. The measurement results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】表1に示される結果から、この発明のS
2 3 粉末、CaおよびFe粉末を原料粉末とするS
mFeN系磁石粉末の製造方法は、水洗工程および乾燥
工程が付加されて従来のSm粉末およびFe粉末を原料
粉末とするSmFeN系磁石粉末の製造方法よりも繁雑
になるものの、得られた粉末はボンド磁石製造用磁石粉
末として優れた特性を示し、さらにSm2 3 粉末はS
m粉末に比べて価格が格段に安いところから、原料粉末
としてSm2 3 粉末を使用するこの発明は従来よりも
低コストのSmFeN系磁石粉末を提供することがで
き、産業上すぐれた効果を奏するものである。
From the results shown in Table 1, S of the present invention
S using m 2 O 3 powder, Ca and Fe powder as raw material powder
The method for producing mFeN-based magnet powder is more complicated than the conventional method for producing SmFeN-based magnetic powder using Sm powder and Fe powder as raw material powders by adding a washing step and a drying step, but the obtained powder is bonded. It has excellent properties as a magnet powder for magnet manufacturing, and Sm 2 O 3 powder is S
Since the price is much lower than that of m powder, the present invention that uses Sm 2 O 3 powder as a raw material powder can provide SmFeN-based magnet powder at a lower cost than conventional ones, and has an excellent industrial effect. It plays.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Sm2 3 粉末、純Fe粉末、およびS
2 3 の還元剤としてのCaを、モル比で、 Sm2 3 /Fe:1/17〜1.5/17、 Ca/Sm2 3 :3.3以上、 となるような割合に配合して配合粉末を作製する工程、 この配合粉末を高エネルギー粉砕機に入れて高エネルギ
ーを与えながら粉砕・混合処理を施すことにより、Sm
2 3 を還元すると同時に還元して得られたSmとFe
と合金化し、非晶質を主体とするSmFe合金粉末を製
造する工程、上記SmFe合金粉末を水洗して未反応の
Caおよび還元反応生成物CaOを除去する工程、 上記水洗したSmFe合金粉末を乾燥し、結晶化熱処理
を施して、微結晶Sm2 Fe17相を主体組織とする粉末
を製造する工程、 この粉末にN2 を主体とする雰囲気中で熱処理する窒化
処理を施して、六方晶Sm2 Fe17x 相(X=1〜
3)を主体組織とするSmFeN系磁石粉末を製造する
工程、からなることを特徴とするSmFeN系磁石粉末
の製造方法。
1. Sm 2 O 3 powder, pure Fe powder, and S
A ratio such that Ca as a reducing agent for m 2 O 3 has a molar ratio of Sm 2 O 3 / Fe: 1/17 to 1.5 / 17, Ca / Sm 2 O 3 : 3.3 or more. Sm is prepared by blending with the above to prepare a blended powder, and by putting this blended powder into a high-energy pulverizer and pulverizing and mixing while applying high energy,
Sm and Fe obtained by reducing 2 O 3 and at the same time
And a step of producing SmFe alloy powder mainly composed of amorphous material, a step of washing the SmFe alloy powder with water to remove unreacted Ca and a reduction reaction product CaO, and a step of drying the washed SmFe alloy powder. Then, a crystallization heat treatment is performed to produce a powder having a microcrystalline Sm 2 Fe 17 phase as a main structure. This powder is subjected to a nitriding treatment by heat treatment in an atmosphere mainly containing N 2 to obtain a hexagonal Sm 2 Fe 17 N x phase (X = 1 to 1
3) A step of producing SmFeN-based magnet powder having a main structure of 3), and a method for producing SmFeN-based magnet powder.
JP4057111A 1992-02-07 1992-02-07 Manufacture of smfen magnet powder Withdrawn JPH05226130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4057111A JPH05226130A (en) 1992-02-07 1992-02-07 Manufacture of smfen magnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4057111A JPH05226130A (en) 1992-02-07 1992-02-07 Manufacture of smfen magnet powder

Publications (1)

Publication Number Publication Date
JPH05226130A true JPH05226130A (en) 1993-09-03

Family

ID=13046416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4057111A Withdrawn JPH05226130A (en) 1992-02-07 1992-02-07 Manufacture of smfen magnet powder

Country Status (1)

Country Link
JP (1) JPH05226130A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966447B2 (en) * 1998-05-15 2012-07-04 アドバンスド ナノ テクノロジーズ プロプライエタリー リミテッド Method for producing ultrafine powder
CN103785847A (en) * 2014-02-26 2014-05-14 江门市新会区宇宏科技有限责任公司 Method for preparing 1:12 type Nd-Fe(M)-N permanent magnet alloy powder through reduction diffusion method
CN106960712A (en) * 2017-04-10 2017-07-18 华北理工大学 A kind of method that metastable state samarium ferroalloy nitrogenizes crystallization
CN108994311A (en) * 2018-08-02 2018-12-14 兰州大学 A kind of method of solid salt mist projection granulating and reduction-diffusion process preparation anisotropy high-performance samarium iron nitrogen permanent magnetic alloy powder
CN110117752A (en) * 2019-06-24 2019-08-13 江西理工大学 A method of preparing samarium ferroalloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966447B2 (en) * 1998-05-15 2012-07-04 アドバンスド ナノ テクノロジーズ プロプライエタリー リミテッド Method for producing ultrafine powder
CN103785847A (en) * 2014-02-26 2014-05-14 江门市新会区宇宏科技有限责任公司 Method for preparing 1:12 type Nd-Fe(M)-N permanent magnet alloy powder through reduction diffusion method
CN106960712A (en) * 2017-04-10 2017-07-18 华北理工大学 A kind of method that metastable state samarium ferroalloy nitrogenizes crystallization
CN106960712B (en) * 2017-04-10 2018-10-02 华北理工大学 A kind of method of metastable state samarium ferroalloy nitridation crystallization
CN108994311A (en) * 2018-08-02 2018-12-14 兰州大学 A kind of method of solid salt mist projection granulating and reduction-diffusion process preparation anisotropy high-performance samarium iron nitrogen permanent magnetic alloy powder
CN110117752A (en) * 2019-06-24 2019-08-13 江西理工大学 A method of preparing samarium ferroalloy
CN110117752B (en) * 2019-06-24 2021-05-07 江西理工大学 Method for preparing samarium-iron alloy

Similar Documents

Publication Publication Date Title
JPH0974006A (en) Magnetic material and bonded magnet
US5549766A (en) Magnetic material
JP2006183151A (en) Method for producing magnetic material powder and method for producing bond magnet
JP2006291257A (en) Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
JP3219865B2 (en) Magnetic materials, permanent magnets and bonded magnets
JP3455557B2 (en) Magnetic material
JPH08191006A (en) Magnetic material
JPH05226130A (en) Manufacture of smfen magnet powder
JP3135665B2 (en) Magnetic materials and bonded magnets
JP3247508B2 (en) permanent magnet
JP3768553B2 (en) Hard magnetic material and permanent magnet
JP3109637B2 (en) Anisotropic needle-like magnetic powder and bonded magnet using the same
JPH0336895B2 (en)
JP3157659B2 (en) Manufacturing method of permanent magnet powder
JPH04293702A (en) Production of soft magnetic powder low in coercive force
JP3795694B2 (en) Magnetic materials and bonded magnets
JPH0590018A (en) Manufacture of magnetic powder
JPH06342706A (en) Magnetic material
JPH0582326A (en) Manufacture of soft magnetic powder
JPH0578701A (en) Production of soft magnetic powder
JPH0574620A (en) Manufacture of soft magnetic powder
JPH07118702A (en) Production of fe-n soft magnetic powder having high saturation magnetic flux density
JPH04293701A (en) Production of soft magnetic powder having high saturation magnetic flux density
JPH059511A (en) Production of fe-co soft magnetic powder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518